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Quasi-Static Crack Growth Under
Symmetrical Loads in Hydraulic
Fracturing
Symmetrical load on the crack surfaces is found in many fluid–solid problems. The com-
bined effect of symmetrical normal and shear stresses is investigated, which impacts on
the displacement and stress fields and the predictions of crack initiation and deflection.
The boundary integral equations of displacement and stress fields are formulated using
the integral-transform method. The equations of the displacement and stress are reduced
using the Abel integral equations. The analytical solution of the full space for uniform
normal and shear stresses is obtained. The asymptotic solution of the displacement of the
crack surface is obtained near the crack tip under specific normal and shear stresses.
Results show that shear stress tends to inhibit the crack, and the predictions of crack ini-
tiation and deflection could be inappropriate for a slit crack under a singular shear
stress. This study may be useful for future investigations of the fluid–solid problems and
help to understand the hydraulic fracturing. [DOI: 10.1115/1.4036988]
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deflection

1 Introduction

Cracks under symmetrical load on the crack surfaces have been
found in many fluid–solid interaction problems, such as magma-
or water-driven cracks in the earth’s crust or glacier beds [1,2],
the stimulation of hydrocarbon-bearing rock strata to enhance the
production of oil and gas wells [3,4], and the fabrication of flexi-
ble structures and electronics [5], etc. Cracks are driven by both
normal and shear stresses, which are of certain distributions and
symmetrical about crack center (see Fig. 1) so that shear stress is
zero in front of the crack tip. Thus, there is only mode I crack in
this problem.

The predictions of crack initiation [6–8] and deflection [9]
require the asymptotic solutions of displacement and stress fields
[10,11]. A non-square-root singularity of the stress field at the
crack tip [1–4,12,13] has been reported in hydraulic fracturing. A
viscous fluid was injected at the crack center forcing the crack to
be fractured straightly and continuously. There is a strong cou-
pling between the incompressible viscous fluid flow and the crack
propagation. Non-square-root singularities of the hydrodynamic
pressure in the crack and stress field in the solid emerge. To
address the incompatibility of singularities, a dry zone or a fluid
lag, in which there is no viscous fluid, was introduced near the
crack tip. Using the fluid-lag model, the normal stress yields the
square-root singularity, and the hydrodynamic pressure has no sin-
gularity. The fluid lag is known to exist physically [3]. However,
the fluid lag has been neglected in many studies, and whether the
effect of fluid lag is negligible or not still remains unsolved
[14–16]. If the fluid lag is neglected as the assumption of most
work [1–4,13], the non-square-root stress singularity in the solid
resurfaces. This non-square-root singularity is due to the normal-
ization process where the dimensionless stress intensity factor
(SIF) is very small, and has been set to zero in most of the previ-
ous studies [1–3]. The shear stress on the crack surfaces was con-
sidered negligible in the previous studies. There has been a brief
discussion [4] on the singularity issue under the singular symmet-
rical normal and shear stresses on the crack surfaces. In this study,

we focus on the formulation of symmetrical load on the crack sur-
face with different approaches, and the predictions of crack initia-
tion and deflection. No fluid lag is assumed, and the normal and
shear stresses are assumed to be power-law functions of the dis-
tance from crack tip.

This study aims to investigate the combined effect of symmetri-
cal normal and shear stresses on the displacement and stress fields,
the criteria of initiation and the prediction of deflection of a slit
crack. Using the integral-transform method [5,10,17] and based
on the linear elastic fracture mechanics (LEFM), the boundary
integral equations of displacement and stress fields are derived,
and the analytical solution for uniform normal and shear stresses
is obtained. Based on three subproblems from hydraulic fractur-
ing, the strain energy release rate (SERR) and the SIF are calcu-
lated and discussed for uniform and power-law symmetrical
normal and shear stresses using the reversible thermodynamic
crack cycle. The applicability of three typical prediction methods
of crack deflection is discussed.

2 Mathematical Formulation

There is only a Griffith-type crack of length l in the linear-
elastic full space, as shown in Fig. 1. Cartesian coordinate system
is used such that the origin coincides with the crack center, and
the x1-axis and x2-axis are parallel and perpendicular to the crack
plane, respectively. The crack is in plane strain state. For conven-
ience and without loss of generality, we focus on the first quadrant
where x1> 0 and x2> 0. Hooke’s law gives the relationship
between stress tensor, r, and infinitesimal strain tensor, c, as

r ¼ kcIþ 2lc with c ¼ ðruþ urÞ=2 (1)

where c ¼ trðcÞ is the dilatation of an infinitesimal element, k and
l are the Lam�e coefficients, and I is the second-rank identity

Fig. 1 Schematic diagram of symmetrical normal and shear
stresses on a slit crack. The stresses are symmetrical about
both the coordinate axes.
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tensor. The inertial effect is neglected for the quasi-static crack
growth. The equations of equilibrium are [5,17]

r2uþ 1

1� 2�
rc ¼ 0 (2)

r2c ¼ 0 (3)

where � is the Poisson’s ratio. There are arbitrary symmetrical
normal and shear stresses acting on the crack surfaces. The
dynamic conditions on the crack surface are

r22ðx1; 0
þÞ ¼ �pðx1Þ; x1 2 ð0; lÞ (4)

r12ðx1; 0
þÞ ¼ sðx1Þ; x1 2 ð0; lÞ (5)

Due to the symmetry of geometry and load, the displacement and
stress fields are symmetrical about the x1-axis, and the displace-
ment and stress components, which are skew-symmetrical about
the x1-axis, are zero. There are

u2ðx1; 0
þÞ ¼ 0; x1 2 ðl;1Þ (6)

r12ðx1; 0
þÞ ¼ 0; x1 2 ðl;1Þ (7)

Assuming that there are no tractions at infinity, the stress and dis-
placement decrease to zero. Furthermore, the contribution of the
tractions at infinity can be taken into consideration by superposi-
tion due to the linear elastic assumption.

3 Solution to the Crack Problem

Fourier transforms are used to solve Eqs. (2) and (3) subjected
to boundary conditions (4)–(7). The solution of transformed equa-
tions is expressed with two auxiliary functions. The inverse Fou-
rier transforms of displacement and stress are reduced with Abel
integral equations [18].

3.1 Preliminary Results: the Auxiliary Functions. The
Fourier sine and cosine transforms, F sf�g and F cf�g, of semi-
infinite space can be expressed as

F s �f g ¼
ffiffiffi
2

p

r ð1
0

� sin kxð Þdx and F c �f g ¼
ffiffiffi
2

p

r ð1
0

� cos kxð Þdx

(8)

of which the inverse Fourier sine and cosine transforms, F�1
s f�g

and F�1
c f�g, are

F�1
s �f g ¼

ffiffiffi
2

p

r ð1
0

� sin kxð Þdk and F�1
c �f g ¼

ffiffiffi
2

p

r ð1
0

�cos kxð Þdk

(9)

Denote the Fourier transforms of the displacement vector, u, and
the dilatation, c, as U, and N, respectively. u1 is an odd function,
the Fourier sine transform is used. Similarly, Fourier cosine trans-
form is used for u2 and c. The use of Fourier transform reduces
Eqs. (2) and (3) to a set of ordinary differential equations, of
which the solutions are

U1 ¼
1

k
kBþ 3� 4�ð ÞA

2 1� 2�ð Þ �
kAx2

2 1� 2�ð Þ

" #
e�kx2

U2 ¼ B� Ax2

2 1� 2�ð Þ

� �
e�kx2

and N ¼ Ae�kx2

8>>>><
>>>>:

(10)

where Aðx1; kÞ and Bðx1; kÞ are unknown functions to be deter-
mined from the boundary conditions. Using the inverse Fourier

transforms of the stress and displacement components, one
obtains

r11 ¼ lF�1
c 2kBþ 3� 2�

1� 2�
A� kAx2

1� 2�

� �
e�kx2

� �
(11)

r22 ¼ �lF�1
c A� kAx2

1� 2�
þ 2kB

� �
e�kx2

� �
(12)

r12 ¼ �2lF�1
s

1� �
1� 2�

A� kAx2

2 1� 2�ð Þ þ kB

� �
e�kx2

� �
(13)

u1 ¼ F�1
s

1

k
kBþ 3� 4�ð ÞA

2 1� 2�ð Þ �
kAx2

2 1� 2�ð Þ

" #
e�kx2

( )
(14)

u2 ¼ F�1
c B� Ax2

2 1� 2�ð Þ

� �
e�kx2

� �
(15)

Substituting Eqs. (12), (13), and (15) into the boundary conditions
(4)–(7) yields a set of integral equations of Aðx1; kÞ and Bðx1; kÞ
as

lF�1
c fAþ 2kBg ¼ pðx1Þ; for x1 2 ð0; lÞ (16)

F�1
c fBg ¼ 0; for x1 2 ðl;1Þ (17)

�2lF�1
s

1� �
1� 2�

Aþ kB

� �
¼ s x1ð Þ; for x1 2 0; lð Þ (18)

F�1
s

1� �
1� 2�

Aþ kB

� �
¼ 0; for x1 2 l;1ð Þ (19)

Following the approach given by Sneddon and Lowengrub [10],
the functions of Aðx1; kÞ and Bðx1; kÞ can be determined from two
auxiliary functions of uðtÞ and wðtÞ as

B ¼
ðl

0

u tð ÞJ0 ktð Þdt and
1� �

1� 2�ð Þk
Aþ B ¼

ðl

0

w tð ÞJ0 ktð Þdt

(20)

which satisfy Eqs. (17) and (19), according to the following
identities:ð1

0

J0 ktð Þsin kxð Þdk ¼H x� tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � t2
p and

ð1
0

J0 ktð Þcos kxð Þdk

¼H t� xð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � x2
p (21)

Here, Hð�Þ is the Heaviside function. The solutions of the auxil-
iary functions are

u tð Þ ¼ 1� vð Þt
l

ffiffiffi
2

p

r ðt

0

Dp sð Þdsffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � s2
p þ 1� 2�ð Þt

2l

ffiffiffi
2

p

r ðl

t

s sð Þdsffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � t2
p

(22)

w tð Þ ¼ � t

2l

ffiffiffi
2

p

r ðl

t

s sð Þdsffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � t2
p (23)

The detailed derivation of Eqs. (22) and (23) is given in
Appendix A.

3.2 Displacement Field. Substituting the equations of auxil-
iary functions (22) and (23) into the inverse Fourier transforms of
the displacement components, Eqs. (14) and (15), there are
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u1 x1; x2ð Þ ¼ �
4

pE0
Im

1� 2�

2 1� �ð Þ IP þ IT

� �

� 2x2

pE0 1� �ð Þ
@

@x1

Re IP þ ITð Þ (24)

u2 x1; x2ð Þ ¼
4

pE0
Re IP þ

1� 2�

2 1� vð Þ IT

� �

þ 2x2

pE0 1� �ð Þ
@

@x1

Im IP þ ITð Þ (25)

where Re and Im represent the real and imaginary parts of a com-
plex number, respectively, E0 ¼ E=ð1� �2Þ with E being Young’s
modulus, and

IP x1; x2ð Þ ¼
ðl

0

tdtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ x2

2 � x2
1 � i2x1x2

p ðt

0

p sð Þdsffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � s2
p (26)

IT x1; x2ð Þ ¼
ðl

0

tdtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ x2

2 � x2
1 � i2x1x2

p ðl

t

s sð Þdsffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � t2
p (27)

See Appendix B for the detailed derivation. Even though these
iterated integrals have advantages in finding analytical solutions
for uniform normal and shear stresses, these are not easy to be
numerically calculated. Single integrals of reduced form are
obtained by changing the order of the integrations as

u1 x1; x2ð Þ ¼ �
4

pE0
Im

1� 2�

2 1� �ð Þ ZP;0 þ ZT;0

� �

� 2x2

pE0 1� �ð ÞRe ZT;1 þ ZP;1ð Þ (28)

u2 x1; x2ð Þ ¼
4

pE0
Re ZP;0 þ

1� 2�

2 1� �ð Þ ZT;0

� �

þ 2x2

pE0 1� �ð Þ Im ZP;1 þ ZT;1ð Þ (29)

in which the variables ZP;k and ZT;k are defined by

ZP;k x1; x2ð Þ ¼
@k

@xk
1

ðl

0

p sð ÞKP s; x1; x2ð Þds (30)

ZT;k x1; x2ð Þ ¼
@k

@xk
1

ðl

0

s sð ÞKT s; x1; x2ð Þds (31)

where the kernel functions KPðs; x1; x2Þ and KTðs; x1; x2Þ are

KP s; x1; x2ð Þ ¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x1 þ ix2ð Þ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � x1 þ ix2ð Þ2

q (32)

KT s; x1; x2ð Þ ¼
p
2
þ i tanh�1 x1 þ ix2

s
(33)

Note that KPðs; x1; x2Þ and KTðs; x1; x2Þ are derived with x2> 0 in
the first quadrant, i.e., Eqs. (32) and (33) may be inappropriate to
get the solution for x2 ¼ 0. The inapplicability is due to ImKP

changing its sign from x2 ! 0þ to x2¼ 0. The solutions for the
rest three quadrants can be obtained with the symmetry.

For x2¼ 0þ in the first quadrant, using Eqs. (24) and (25), the

displacement components of the crack surface are found to be

u1 x1; 0
þ	 

¼

4

pE0

ðx1

0

tdtffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 � t2
p � 1� 2�

2 1� �ð Þ

ðt

0

p sð Þdsffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � s2
p �

ðl

t

s sð Þdsffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � t2
p

" #
; x1 2 0; lð Þ

4

pE0

ðl

0

tdtffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 � t2
p � 1� 2�

2 1� �ð Þ

ðt

0

p sð Þdsffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � s2
p �

ðl

t

s sð Þdsffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � t2
p

" #
; x1 2 l;1ð Þ

8>>>>><
>>>>>:

(34)

u2 x1; 0
þ	 

¼

4

pE0

ðl

x1

tdtffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � x2

1

p ðt

0

p sð Þdsffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � s2
p þ 1� 2�

2 1� �ð Þ

ðl

t

s sð Þdsffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � t2
p

" #
; x1 2 0; lð Þ

0; x1 2 l;1ð Þ

8><
>: (35)

The displacement of the crack surface depends on both the normal and the shear stresses. Equation (35) reduces to the result of the crack
opening under the action of normal stress only [10], for the contribution of the shear stress being negligible. Exchanging the order of the
integrations in Eqs. (34) and (35) yields

u1 x1; 0
þ	 

¼

� 1� 2�

1� �ð ÞE0
ðx1

0

p sð Þds� 4

pE0

ðl

0

s sð Þ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi���� x1 þ s

x1 � s

����
s

ds; x1 2 0; lð Þ

� 2 1� 2�ð Þ
pE0 1� �ð Þ

ðl

0

p sð Þ
p
2
� arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 � l2
p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � s2
p

 !
ds� 4

pE0

ðl

0

s sð Þln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi���� x1 þ s

x1 � s

����
s

ds; x1 2 l;1ð Þ

8>>>>><
>>>>>:

(36)

u2 x1; 0
þ	 

¼

4

pE0

ðl

0

p sð Þln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � x2

1

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � s2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jx2

1 � s2j
p dsþ 1� 2�

1� �ð ÞE0
ðl

x1

s sð Þds; x1 2 0; lð Þ

0; x 2 l;1ð Þ

8><
>: (37)
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Note that Eqs. (28), (29), (36), and (37) are not Cauchy principal
value integrals, and can be numerically calculated readily. How-
ever, Eqs. (24), (25), (34), and (35) are suggested when analytical
solution is needed.

3.3 Stress Field. Similarly, substituting the auxiliary func-
tions (22) and (23) into the inverse Fourier transforms of the com-
ponents of stress, Eqs. (11)–(13), the components of stress tensor
can be obtained as

r11 x1; x2ð Þ ¼ �
2

p
@

@x1

Im IP þ 2ITð Þ � 2x2

p
@2

@x2
1

Re IP þ ITð Þ (38)

r22 x1; x2ð Þ ¼ �
2

p
@

@x1

ImIP þ
2x2

p
@2

@x2
1

Re IP þ ITð Þ (39)

r12 x1; x2ð Þ ¼ �
2

p
@

@x1

ReIT þ
2x2

p
@2

@x2
1

Im IP þ ITð Þ (40)

Exchanging the order of the integrations, one obtains the single
integrals of stress components as

r11 x1; x2ð Þ ¼ �
2

p
Im ZP;1 þ 2ZT;1ð Þ �

2x2

p
Re ZP;2 þ ZT;2ð Þ (41)

r22 x1; 0
þ	 

¼ � 2

p
ImZP;1 þ

2x2

p
Re ZP;2 þ ZT;2ð Þ (42)

r12 x1; x2ð Þ ¼ �
2

p
ReZT;1 þ

2x2

p
Im ZP;2 þ ZT;2ð Þ (43)

Using Eqs. (38)–(40), the expressions of stress components at
x2 ¼ 0þ degenerate to

r11 x1;0
þ	 

¼

�p x1ð Þþ
4

p

ðl

0

s sð Þsds

x2
1�s2

; x12 0;lð Þ

2

p
x1ffiffiffiffiffiffiffiffiffiffiffiffi

x2
1�l2

p ðl

0

p sð Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
l2�s2
p

x2
1�s2

dsþ4

p

ðl

0

s sð Þsds

x2
1�s2

; x12 l;1ð Þ

8>>>>><
>>>>>:

(44)

r22 x1; 0
þ	 

¼

�p x1ð Þ; x1 2 0; lð Þ
2

p
x1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
1 � l2

p ðl

0

p sð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � s2
p

x2
1 � s2

ds; x1 2 l;1ð Þ

8><
>:

(45)

r12ðx1; 0
þÞ ¼

sðx1Þ x1 2 ð0; lÞ
0; x1 2 ðl;1Þ

(
(46)

Note that the second term on the right-hand side of Eq. (44) is a
Cauchy principal value integral for x1 2 ð0; lÞ. The singularity of
Cauchy principal value integral can be removed by putting a
derivative with respect to x1 outside the integral. The stress com-
ponents in front of the crack tip are used to calculate the SIF and
the SERR.

3.4 Strain Energy Release Rate (SERR) and Stress Inten-
sity Factor (SIF). The method of reversible thermodynamic
recycle [19,20] is adopted to calculate the SERR. The method
treats the role of surface energy as a traction on the surface [19].
The mechanical energy decrement equals to the work done by the
traction on the crack surfaces, EM¼�Wt. Thus, the calculation of
decrement of mechanical energy does not require any information
of the external forces and the total strain energy. The work done
by the traction is

Wt ¼ �4

ðDl

0

1

2
r22 lþ s; 0þ
	 


u2 lþ s; 0þ
	 
�

þr12 lþ s; 0þ
	 


u1 lþ s; 0þ
	 


ds (47)

in which the coefficient, 4, is due to the use of a quarter of the
crack surface, and 1/2 is due to the linear relationship between
stress and displacement. r11 is not included because it acts on the
x1� x3 plane, which is perpendicular to crack surface. A symmet-
rical stress has no influence on r22 and r12 such that r12¼ 0. The
traction equals to r22 in front of the crack tip. The SERR is calcu-
lated as

G ¼ � dEM

dl
¼ lim

Dl!0þ

2

Dl

ðDl

0

r22 lþ s; 0þ
	 


u2 lþ s; 0þ
	 


ds (48)

where r22 is the stress component with the crack length being l
and u2 is the displacement with the crack length being lþDl.

From the equations of stress components, the SIF of mode
I crack is used to be calculated using KI ¼ limx1!lþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pðx1 � lÞ
p

r22. Note that the shear stress has no explicit effect
on the SIF according to Eq. (45). However, a shear stress on the
crack surface leads to an increment of displacement according to
Eqs. (36) and (37). The use of the SIF to calculate the asymptotic
solution of displacement near the crack tip, and vice versa, may
be inappropriate in some circumstances [4]. The SIF reveals the
square-root singularity of the stress field near the crack tip [7],
and there is r11 ¼ K1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx1 � lÞ

p
in front of the crack tip. Con-

sidering the important role of shear stress, r11 is used in this study
to calculate the SIF as

KI ¼ lim
x1!lþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx1 � lÞ

p
r11 (49)

in which, r11 consists of r22 and an additional shear-stress term
on the right-hand side of Eq. (44) for x1 2 ðl;1Þ. In Sec. 4, Eq.
(49) is used for the validation of KI ¼ limx1!lþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx1 � lÞ

p
r22,

which has long been used.

4 Quasi-Static Crack Growth Under Specific Loads

In the modeling of hydraulic fracturing, singular normal and
shear stresses have been reported [1–4,12,13]. Under the assump-
tion of inviscid fracturing fluid, the normal stress (pressure)
remains uniform along the crack, and no shear stress acts on the
crack surfaces. Using the Newtonian fracturing fluid and lubrica-
tion approximation, there is competition among elasticity, fluid
viscosity, and fracture toughness. The lubrication approximation
may be inappropriate near the crack tip. However, its effect on the
average of the displacement of the crack surface is negligible [4].
The competition results in multiple length scales and different
asymptotes that depend on the distance from the crack tip. Thus,
two regions that are viscosity-dominant and toughness-dominant
emerge. The sizes of the regions are controlled by one dimension-
less parameter, which represents the ratio of toughness to viscos-
ity [3]. If an extremely large toughness is assumed, the viscosity-
dominant region vanishes, the singularity of normal stresses is
characterized as lnðl� x1Þ, and the asymptotic solution of crack
opening, which is two times of u2 of crack surface, is

O½ðl� x1Þ1=2� [3,4]. If an extremely large viscosity is assumed,

there are p � �ðl� x1Þ�1=3
and u2 � ðl� x1Þ2=3

. According to
the lubrication approximation, the shear stress is related to crack
opening and the gradient of normal stress as s ¼ u2

ðx1; 0
þÞ@p=@x1. The singularities of shear stress are characterized

as �ðl� x1Þ�1=2
and �ðl� x1Þ�2=3

for problems with extremely
large toughness and extremely large viscosity, respectively. The
dimensionless fracture toughness is finite and positive in the
toughness-dominant problems and zero in the viscosity-dominant
problems. Thus, three subproblems are proposed as
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(1) ~pð~x1Þ ¼ 1, ~sð~x1Þ ¼ 0

(2) ~pð~x1Þ ¼ 1þ ln 4þ ln ð1� ~x2
1Þ, ~sð~x1Þ ¼ �ð1� ~x2

1Þ
�1=2

(3) ~pð~x1Þ¼Cð1=6Þ=
ffiffiffi
p
p

Cð2=3Þ�ð1�~x2
1Þ
�1=3;~sð~x1Þ¼�ð1�~x2

1Þ
�2=3

where ð~p;~sÞ¼2ðp;sÞ=E0, ð~x1;~x2;~u1;~u2Þ¼ðx1;x2;u1;u2Þ=l, and Cð�Þ
is the Gamma function. It should be noted that the expressions of
~p and ~s are from the coupling of lubrication and elasticity equa-
tions, and the coupling neglects the effect of shear stress, i.e., ~p is
from the full coupling of lubrication and elasticity equations with
the absence of shear stress and ~s is from the equilibrium equation.
The coupling of ~s is one-way. The constants of ~pð~x1Þ are used to

set the dimensionless SIF, ~K I¼2KI=E0
ffiffiffiffi
pl
p

, to 1, 1 and 0, respec-
tively. Subproblems (1)–(3) are related to problems with nonvis-
cid fluid, large fracture toughness, and large viscosity,
respectively. It should be noticed that KI in this paragraph is cal-

culated with KI¼limx1!lþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx1�lÞ

p
r22. Note that the discus-

sion of singularity issue is focusing on the power-law exponents
of normal and shear stresses, and is irrelevant with the average
values of the loads.

4.1 Analytical Solution for Uniform p and s. There is ana-
lytical solution to the first subproblem. Focus on a general case
where ~p and ~s are constant. It is difficult to do the iterated inte-
gral, IT, of Eq. (27). The analytical solution for full space can be
obtained by integrating IP and ZT,0, which are

IP ¼
p~p ~x2 � i~x1ð Þ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

~x2 � i~x1ð Þ2

s
� 1

2
4

3
5 (50)

ZT;0 ¼ i~s coth�1 ~x1 þ i~x2ð Þ þ 1

2
~x1 þ i~x2ð Þ ln 1þ 1

~x2 � i~x1ð Þ2

" #( )

(51)

Both IP and ZT,0 are applicable for x2¼ 0 except for two singular
points, (0, 0) and (1, 0). The analytical solutions of the displace-
ment and stress fields in full space are in Appendix C.

According to the first term in Eq. (35) and second term in Eq.
(37), the analytical solution of displacement component at the
crack surface is

~u2 ~x1; 0
þ	 

¼ ~p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~x2

1

q
þ 1� 2�ð Þ~s

2 1� �ð Þ 1� ~x1ð Þ; ~x1 2 0; 1ð Þ

(52)

which refers to half of the “crack opening” in hydraulic fracturing
[3]. Crack opening is a linear function of the shear stress, and the
derivative of the crack opening with respect to x1 is discontinuous
at the crack center. A negative shear stress will inhibit the opening
of the crack. Due to symmetry, a uniform and negative shear
stress acting on a slit crack results in u2¼ 0 in front of the crack
tip and u1¼ 0 along the x2-axis in the first quadrant. Figure 2
shows normalized displacement vectors and their tangential
curves. The negative shear stress leads to a counterclockwise rota-
tion which introduces negative u2 near the crack surface. Such
behavior will likely result in the crack closure.

The dimensionless stress components, ~r11 and ~r22, on the crack
plane in front of the crack tip, according to Eqs. (44) and (45), are

~r11 ~x1; 0
þ	 

¼ ~p

~x1ffiffiffiffiffiffiffiffiffiffiffiffiffi
~x2

1 � 1

q � 1

0
@

1
Aþ 2~s

p
ln

~x2
1

~x2
1 � 1

; ~x1 2 1;1ð Þ

(53)

~r22 ~x1; 0
þ	 

¼ ~p

~x1ffiffiffiffiffiffiffiffiffiffiffiffiffi
~x2

1 � 1

q � 1

0
@

1
A; ~x1 2 1;1ð Þ (54)

Fig. 2 Normalized displacement of the solid in the first quad-
rant. A uniform and negative shear stress acts on the crack sur-
face. Arrows represent displacement vectors. Solid lines are
tangent to the displacement.

Fig. 3 Dimensionless stress component, ~r11, in front of the
crack tip under different normal stresses (~x 2 5 01)

Fig. 4 Negative dimensionless stress component, 2~r11, in
front of the crack tip under different shear stresses (~x 2 5 01)
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It is evident that a uniform normal stress leads to a square-root
stress singularity at the crack tip and a uniform shear stress causes
a logarithmic stress singularity.

4.2 Asymptotic Solutions Near the Crack Tip. Figures 3
and 4 plot the numerical solutions of dimensionless stress compo-
nent, ~r11, in front of crack tip for normal-stress-only and shear-
stress-only problems. According to Eqs. (44) and (45), ~r22 equals
to ~r11 at ~x1 > 1 and ~x2 ¼ 0þ. As a result, it is possible to replace
~r11 with ~r22 as the vertical axis of Fig. 3. In Fig. 3, the power-law
exponent of the leading term of asymptotic solution is (1) �1/2
for a uniform normal stress of which the SIF is positive, (2) 0 for
a normal stress with logarithmic singularity and the SIF being
zero, and (3) �1/3 for a normal stress with its power-law exponent
being �1/3 and the SIF being zero. The 2/1 power-law exponent
shows that ~r11 has an inverse square asymptotic solution at infin-

ity, which is in accord with Eq. (53) due to ~x1

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
~x2

1 � 1

q
� 1 �

ln ð~x2
1=~x2

1 � 1Þ � 1=~x2
1 for ~x1 !1. A more general numerical

solution reveals that for ~x1 ! 1þ there is

~r11ð~x1; 0
þÞ

¼
APð~x2

1 � 1Þ�1=2 þ BPð~x2
1 � 1ÞeP þ Oð1Þ; eP 2 ð�1=2; 0Þ

APð~x2
1 � 1Þ�1=2 þ BP ln ð~x2

1 � 1Þ þ Oð1Þ; eP ¼ 0

(

(55)

for a normal stress yielding ~p ¼ ~p0 � ð1� ~x2
1Þ

eP . The SIF

becomes zero for ~p0 ¼ Cð1=2þ ePÞ=
ffiffiffi
p
p

Cð1þ ePÞ. The constant

AP is related with the SIF as AP ¼ ~K I, and BP is a constant related
to the distribution of the normal stress. In hydraulic fracturing, the
crack length increases with time, which leads to the decreasing of
~K1. The leading term of ~r11 changes from APð~x2

1 � 1Þ�1=2
to

BPð~x2
1 � 1ÞeP or BP ln ð~x2

1 � 1Þ for ~K1 decreasing to zero. The
asymptotic solution of displacement component, u2, is given by

~u2ð~x1;0
þÞ¼CP

ffiffiffiffiffiffiffiffiffiffiffiffi
1�~x2

1

q
þDPð1�~x2

1Þ
1þePþO½ð1�~x2

1Þ
3=2�;

eP2ð�1=2;1=2Þ (56)

in which CP and DP are constants related to the normal stress, and
CP ¼ ~K I. For an arbitrary non-negative ~K I, DP is finite and
positive.

A negative shear stress, ~s ¼ �ð1� ~x2
1Þ

eT , results in a negative
~r11 according to Fig. 4. The power-law exponent of ~r11 increases
with the distance from the crack tip and the increasing of eT.
According to a numerical calculation, the asymptotic solution of
~r11 for ~x1 ! 1þ due to a shear stress only yields

~r11ð~x1; 0
þÞ ¼

BTð~x2
1 � 1ÞeT þ Oð1Þ; eT 2 ð�1; 0Þ

BT lnð~x2
1 � 1Þ þ Oð1Þ; eT ¼ 0

(
(57)

where BT is a constant related to the distribution of the shear
stress. For �1< eT< 0, no constant that functions like the SIF is
observed in the calculation. The asymptotic solution of displace-
ment component, u2, under a power-law shear stress only is
obtained from Eq. (37) as

~u2ð~x1; 0
þÞ ¼ DTð1� ~x2Þ1þeT ; eT 2 ð�1; 0Þ (58)

where DT ¼ �ð1� 2�Þ=2ð1� �Þð1þ eTÞ < 0. Note that there is
no higher order terms in Eq. (58) in the neighborhood of (1, 0).

4.3 Criteria of Crack Initiation

4.3.1 Subproblem (1). From Eq. (52), it is known that when
~x1 approaches 1�, the displacement caused by shear stress, which

is characterized by �ð1� ~x1Þ, decreases more quickly than that

caused by normal stress, which is characterized by
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~x1

p
. As a

result, the right-hand side of Eq. (48) remains unchanged for an
additional uniform shear stress acting on the crack surfaces. More
rigorously, utilizing Eq. (48) of the SERR and Eqs. (52) and (54),
there is

~G ¼ lim
e!0þ

2

e

ðe

0

~pffiffiffiffiffi
2~r
p ~p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 e� ~rð Þ

p
þ 1� 2�ð Þ~s

2 1� �ð Þ e� ~rð Þ
" #

d~r ¼ p~p2

(59)

where e ¼ Dl=l is the dimensionless infinitesimal distance of the
motion of crack tip and ~r is the dimensionless distance from the
crack tip. It is evident that a uniform symmetrical shear stress has
no influence on the SERR. The equation of the SIF can be vali-
dated with Eq. (49), which yields

~K I ¼ lim
~x1!1

ffiffiffi
2
p

~p
~x1ffiffiffiffiffiffiffiffiffiffiffiffiffi

~x2
1 � 1

q � 1

0
@

1
Aþ 2~s

p
ln

~x2
1

~x2
1 � 1

2
4

3
5 ¼ ~p (60)

The SIF that calculated from ~r11 is in accord with that calculated
from ~r22 for uniform normal and shear stresses acting on the crack
surfaces. A uniform shear stress leads to a logarithmic stress sin-
gularity at the crack tip, and its singularity is negligible compared
to that due to normal stress such that ~K I is finite and positive.
Thus, a uniform shear stress has no influence on the SIF.

4.3.2 Subproblem (2). Equations (55) and (57) are combined
for ~r11, and Eqs. (56) and (58) are combined for ~u2, with eP¼ 0
and eT¼�1/2. From Eq. (48), the SERR is calculated as

~G ¼ lim
e!0þ

2

e

ðe

0

AP 2~rð Þ�1=2 þ BP ln 2~rð Þ
h i

�
ffiffiffi
2
p

CP e� ~rð Þ1=2 þ 2DP e� ~rð Þ þ DT e� ~rð Þ1=2
h i

d~r

¼ pffiffiffi
2
p AP

ffiffiffi
2
p

CP þ DT

	 

¼ pffiffiffi

2
p

ffiffiffi
2
p
� 1� 2�

1� �

� �
> 0 (61)

Considering AP> 0, the sign of ~G is determined by CP and DT. In
a problem with a large fracture toughness, CP is likely much larger
than DT resulting in a positive ~G. Using Eqs. (49), (55), and (57),
the SIF is given by

~K I ¼ lim
~x1!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð~x1 � 1Þ

p
½APð~x2

1 � 1Þ�1=2

þ BP ln ð~x2
1 � 1Þ þ BTð~x2

1 � 1Þ�1=2�

¼ AP þ BT ¼ 1þ BT (62)

which is inconsistent with ~K I ¼ limx1!lþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð~x1 � 1Þ

p
~r22 ¼ 1.

This inconsistency is due to the negative constant BT that is from
the singular shear stress. The leading term of ~r11 consists of the

contributions of the normal and shear stresses. The sign of ~K I is

determined by both AP ¼ limx1!lþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð~x1 � 1Þ

p
~r22 and BT. The

condition of ~K I being influenced by the shear stress is eT>�1/2.
Either the method of the SERR or the SIF breaks down. Consider-
ing the fundamental role of the SERR in fracture mechanics, the
use of the SIF is inappropriate in subproblem (2).

4.3.3 Subproblem (3). The SERR is calculated using Eqs.
(48) and (55)–(58) with eP¼�1/3 and eT¼�2/3 as
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~G¼ lim
e!0þ

2

e

ðe

0

BPDP 2~r e� ~rð Þ½ �1=3þ2�1=3BPDT~r�1=3 e� ~rð Þ1=3
h i

d~r

¼ 25=3pBPDT

33=2
< 0 (63)

It is evident that the SERR is negative and finite, and this situation
is due to the combined effect of the singular normal and shear
stresses. Either a smaller eP or eT will lead to a negative and sin-

gular ~G. The criterion of ~G being singular is ePþ eT<�1 for

crack problems with lim~x1!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð~x1 � 1Þ

p
~r22 ¼ 0. The SIF

~K I ¼ lim
~x1!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ~x1 � 1ð Þ

p
BP ~x2

1 � 1
	 
�1=3 þ BT ~x2

1 � 1
	 
�2=3

h i

¼ lim
~x1!1

BT

21=6 ~x1 � 1ð Þ1=6
!�1 (64)

is negative and singular because of the shear stress, even though
the normal stress has no contribution to ~K I. The criterion of ~K I

being singular is either eP<�1/2 or eT<�1/2.
The SERR, G, and the SIF, KI, have long been used for con-

structing the crack initiation criteria [6,7,19]. The applicability of
KI is based on the inverse-square-root asymptotic solution of
stress field and square-root asymptotic solution of displacement
field. For normal-stress-only problems, these asymptotic solutions
are guaranteed by an integral

ð1

0

~p ~sð Þd~sffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~s2
p (65)

However, in subproblems (2) and (3), the asymptotic solutions con-
sist of normal-stress and shear-stress parts. In subproblem (2), the
leading terms of the two parts are of the same order and opposite
signs. This results in the competition between the two parts. A higher
value of eP leads to higher value of the power-law exponents of dis-
placement and stress fields. If the part of shear stress is larger than
that of the normal stress, KI is negative. If the crack continues to frac-
ture, this correlation breaks down the applicability of KI. And the
subproblem (3) shows KI being more sensitive to the singularity of
shear stress than G. In subproblems (2) and (3), there is positive cor-
relation between the power-law exponents of displacement and stress
fields and eT. The power-law exponents of displacement and stress

Fig. 5 Angular distributions of normalized strain energy density, fS, and stress components, frr, frh and fhh, near the crack tip
(~r 5 104)

Fig. 6 Angular distributions of normalized maximum principal
stress near the crack tip (~r 5 104)
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fields are smaller than that induced by normal stress, even smaller
than 1/2 and �1/2, respectively, in subproblem (3). As a result, G
and KI are dominated by shear stress. Negative G and singular KI

emerge. When zero-KI assumption is adopted, the critical value of
the SERR approaches 0þ. However, in subproblem (3), G is negative
definitely, and a negative G results in crack arrest. If the crack grows
as assumed, both the crack initiation criteria break down.

4.4 Prediction of Crack Deflection. The angle of largest cir-
cumferential stress, rhh, maximum principal stress, r1, and strain
energy density [9], S, have been used to predict the angle of crack
deflection. Figure 5 plots the angular distributions of normalized
strain energy density, fS, and stress components, frr, frh and fhh, with
~r ¼ 10�4. As shown in the figure, h and r are the coordinates of polar
coordinate system with its origin being located at the crack tip.

For subproblem (1), these methods result in different solutions
when subjected to the same load. The maximum value of circum-
ferential stress exists in front of the crack tip, the maxima of S exist
at two certain angles related to the Poisson’s ratio, and r1 predicts
two angles, which are slightly larger than that predicted by strain
energy density, see Fig. 6. The crack will be fractured straightly or
in a zigzag path, although the last two methods predict nonzero
deflection angles. This is due to the redistribution of stress field
after a crack deflection [21]. For subproblem (2), the three methods
predict a same result as h¼ 0, i.e., the crack is fractured straightly
and steadily. For subproblem (3), it is not easy to implement the
largest circumferential stress method, because fhh is nearly negative
anywhere around the crack tip except for 0 at h¼ 0 and 6p, where
fhh approaches 0þ for ~r ! 0. As a result, the crack may keep prop-
agating directly, or there may be subcracks developing from the
crack surfaces. The maxima of S locate in front of the crack tip.
However, this is due to ~r11, which is negative. If the crack keeps
fracturing straightly, the released energy is mainly from the com-
pressive stress other than the tensile stress. The second largest val-
ues of strain energy density locate near the crack surfaces, where
frr has a largest positive value. If the crack fractures on the crack
surface, tensile subcracks emerge from the crack surfaces behind
the crack tip. According to Fig. 6, maximum principal stress gives
plausible results as h¼6p, which also suggest the developing of
subcracks from the crack surfaces. However, as the stress field has
singularity at the crack tip, the concept of principal stress needs to
be validated for the problems with symmetrical loads. It still
requires further investigations to demonstrate the applicability of
the method of maximum principal stress.

4.5 Brief Discussion. Singular symmetrical shear stress may
lead to the breakdown of the calculation of the SIF and the SERR.
The breakdown may origin from (1) the inappropriate use of the
theory of LEFM for hydraulic fracturing problems, (2) the one-
way coupling of shear stress, and (3) the lack of generality of the
model of hydraulic fracturing with combined effect of normal and
shear stresses. For the first reason, there may exist a process zone
around the crack tip. However, the solutions inside and outside the
process zone should match each other at the boundary of process
zone. The LEFM is proved to give a compressive circumferential
stress around the crack tip for subproblem (3). The process zone is
likely in compressive state in circumferential direction. Process
zone results in a finite and negative SERR. The crack will be
arrested, which is inconsistent with the assumption that the crack
propagates straightly and continuously. Thus, the first reason may
be, therefore, irrational. For the second reason, the influence of
this one-way coupling is negligible for subproblem (2) [4]. For
subproblem (3), real-time simulations are required to deal with the
full coupling problem. While for the third reason, considering the
results of Sec. 4.4, the assumption that the crack is fractured
straightly and steadily may not be appropriate, or the fluid-lag
zone behind the crack tip may not be negligible. There may be
divergent or mesh-dependent results in numerical calculations.
Effective and robust real-time numerical simulations with fluid
lags are required to further investigate the fluid–solid process.

5 Conclusions

The quasi-static crack growth with symmetrical loads, includ-
ing the normal and shear stresses, is studied. The theory of LEFM
is used to describe the deformation and fracture behavior of a brit-
tle solid. The solid is in the plane-strain state. By using the
integral-transform method, the boundary integral equations of dis-
placement and stress fields are derived for the full space. The ana-
lytical solution to a problem under the uniform normal and shear
stresses is obtained. The analytical solution shows that a negative
shear stress acting on the upper crack surface tends to inhibit the
crack. The asymptotic solution near the crack tip of the displace-
ment and stress fields is obtained under power-law normal and
shear stresses. Due to the effect of shear stress, r11 is suggested
rather than r22 to calculate the SIF. Three subproblems from
hydraulic fracturing are discussed. The results reveal that

(1) singular symmetrical loads may lead to singular SIFs and
SERRs, and the criterion of the SIF is inappropriate for
either the fracture toughness or the fluid viscosity being
extremely large;

(2) for the fracture toughness being extremely large, the largest
values of circumferential stress, maximum principal stress,
and strain energy density locate at h¼ 0, the crack is frac-
tured straightly and steadily;

(3) for the fluid viscosity being extremely large, circumferen-
tial stress is largest at h¼ 0 and 6p. A straight crack is told
by the strain energy density. Crack branches on the crack
surfaces behind the crack tip according to the maximum
principal stress.

In hydraulic fracturing, the breakdowns of the criterion of crack
initiation and the prediction of the crack deflection motivate future
work on real-time numerical simulations incorporating shear
stress and a fluid lag.
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Nomenclature

A(x1, k), B(x1, k) ¼ unknown functions after the Fourier
transformation

E, E0 ¼ Young’s modulus, E0 ¼E/(1� �2)
frr, frh, fhh ¼ normalized stress components

f1, fS ¼ normalized maximum principal stress and
strain energy density

F s, F c ¼ Fourier sine and cosine transforms
F�1

s , F�1
c ¼ inverse Fourier sine and cosine transforms
G ¼ energy release rate

IP(x1, x2) ¼ iterated integral of the normal stress
IT(x1, x2) ¼ iterated integral of the shear stress

J0(*) ¼ Bessel function of the first kind
k ¼ Fourier transform of x1

KI ¼ stress intensity factor of a mode I crack
l ¼ crack length

LEFM ¼ linear elastic fracture mechanics
p(x1) ¼ the distribution of negative normal stress

acting on the crack surfaces
S ¼ strain energy density
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s, t ¼ lengths, variables in finite integrals
SERR ¼ strain energy release rate

SIF ¼ stress intensity factor
u, u1, u2 ¼ displacement vector and its components

U, U1, U2 ¼ Fourier transforms of the displacement vector
and its components

ZP,k(x1, x2) ¼ single integral of the normal stress
ZT,k(x1, x2) ¼ single integral of the shear stress

c, c ¼ strain tensor and its trace
U(*) ¼ Gamma function
k, l ¼ Lam�e constants
� ¼ Poisson’s ratio
N ¼ Fourier transform of the trace of strain

tensor
r1 ¼ maximum principal stress

rhh ¼ circumferential stress around the crack tip
r, r11, r12, r22 ¼ stress tensor and its components

s(x1) ¼ distribution of shear stress acting on the crack
surfaces

u(t), w(t) ¼ auxiliary functions of preliminary results
The� above a variable represents that the
variable is dimensionless

Appendix A: Derivation of the Auxiliary Variables u(t)
and w(t)

Using the characteristics of sine and cosine functions, Eqs.
(16), (18), and (19) are rewritten as

d

dx
F�1

s

A

k
þ 2B

� �
¼

Dp x1ð Þ
l

; for x1 2 0; lð Þ (A1)

d

dx
F�1

c

1� �
1� 2�ð Þk

Aþ B

� �
¼

s x1ð Þ
2l

; for x1 2 0; lð Þ (A2)

d

dx
F�1

c

1� �
1� 2�ð Þk

Aþ B

� �
¼ 0; for x1 2 l;1ð Þ (A3)

Substituting Eq. (20) into Eq. (A2), one obtainsffiffiffi
2

p

r
d

dx

ðl

0

w tð Þdt

ð1
0

J0 ktð Þcos kx1ð Þdk ¼ �
s x1ð Þ

2l
(A4)

with which Eq. (21) can be reduced toffiffiffi
2

p

r
d

dx

ðl

x

w tð Þdfffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � x2
p ¼

s x1ð Þ
2l

(A5)

Using the solution of Abel integral equations [18], i.e.,

f tð Þ ¼
ðt

0

g xð Þdxffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � x2
p

g xð Þ ¼ 2

p
d

dx

ðx

0

tf tð Þdtffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � t2
p

and

f tð Þ ¼
ðl

t

g xð Þdxffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � t2
p

g xð Þ ¼ � 2

p
d

dx

ðl

x

tf tð Þdtffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � x2
p

8>>>><
>>>>:

8>>>><
>>>>:

(A6)

the solution of Eq. (A5) is found as

w tð Þ ¼ �
ffiffiffi
2

p

r
t

2l

ðl

t

s x1ð Þdx1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 � t2
p (A7)

Using Eq. (20), one has

A

k
þ 2B ¼ 1� 2�

1� �

ðl

0

w tð ÞJ0 ktð Þdtþ 1

1� �

ðl

0

u tð ÞJ0 ktð Þdt (A8)

Similarly, uðtÞ can be expressed as

u tð Þ ¼ 1� vð Þt
l

ffiffiffi
2

p

r ðt

0

Dp sð Þdsffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � s2
p þ 1� 2�ð Þt

2l

ffiffiffi
2

p

r ðl

t

s sð Þdsffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � t2
p

(A9)

Appendix B: Derivation of Boundary Integral

Equations With IP and IT

The derivations of boundary integral equations for each compo-
nent of displacement and stress are similar. In this Appendix, only
the detail of u1 is provided. Substituting the solutions of auxiliary
functions (22) and (23) into Eq. (14), and there is

u1 x1; x2ð Þ ¼ �
2 1� vð Þ

pl

ðl

0

tdt
1� 2�

2 1� vð Þ

ðt

0

p sð Þdsffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � s2
p þ

ðl

t

s sð Þdsffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � t2
p

" #

�
ð1

0

J0 ktð Þe�kx2 sin kx1ð Þdk

þ x2

pl

ðl

0

tdt

ðt

0

p sð Þdsffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � s2
p þ

ðl

t

s sð Þdsffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � t2
p

" #

�
ð1

0

kJ0 ktð Þe�kx2 sin kx1ð Þdk (B1)

The second term on the right-hand side can be reduced with
@ cos ðkx1Þ=@x1 ¼ �k sin ðkx1Þ such that

u1 x1; x2ð Þ ¼ �
2 1� vð Þ

pl

ðl

0

tdt
1� 2�

2 1� vð Þ

ðt

0

p sð Þdsffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � s2
p þ

ðl

t

s sð Þdsffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � t2
p

" #

�
ð1

0

J0 ktð Þe�kx2 sin kx1ð Þdk

� x2

pl
@

@x1

ðl

0

tdt

ðt

0

p sð Þdsffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � s2
p þ

ðl

t

s sð Þdsffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � t2
p

" #

�
ð1

0

J0 ktð Þe�kx2 cos kx1ð Þdk (B2)

The infinite integral of Bessel function, exponential function, and
trigonometric function can be simplified by Euler equation,
e�ikx1 ¼ cos ðkx1Þ þ i sin ðkx1Þ. According to Ref. [22], there isð1

0

J0 ktð Þe�kx2 cos kx1ð Þdk þ i

ð1
0

J0 ktð Þe�kx2 sin kx1ð Þdk

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � ix1ð Þ2 þ t2

q (B3)

Substituting Eq. (B3) into Eq. (B2), the displacement component,
u1, is

u1 x1; x2ð Þ ¼ �
2 1� vð Þ

pl

ðl

0

tdt
1� 2�

2 1� vð Þ

ðt

0

p sð Þdsffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � s2
p þ

ðl

t

s sð Þdsffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � t2
p

" #

� Im
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � ix1ð Þ2 þ t2

q

� x2

pl
@

@x1

ðl

0

tdt

ðt

0

p sð Þdsffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � s2
p þ

ðl

t

s sð Þdsffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � t2
p

" #

� Re
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � ix1ð Þ2 þ t2

q (B4)

With the definition of IP and IT and l ¼ ð1� �ÞE0=2, u1 is
expressed as
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u1 x1; x2ð Þ ¼ �
4

pE0
Im

1� 2�

2 1� �ð Þ IP þ IT

� �

� 2x2

pE0 1� �ð Þ
@

@x1

Re IP þ ITð Þ (B5)

Appendix C: Displacement and Stress Fields in Full

Space

Due to the symmetry, the components of displacement and
shear stress in full space can be expressed with that in the first
quadrant as

ðu1;u2;r11;r12;r22Þðx1; x2Þ ¼ ð�u1; u2;r11;�r12;r22Þð�x1; x2Þ
¼ ð�u1;�u2;r11;r12;r22Þð�x1;�x2Þ
¼ ðu1;�u2;r11;�r12;r22Þðx1;�x2Þ

(C1)

The following derivation focuses on the first quadrant where
x1� 0 and x2� 0. There is difficulty in directly integrating Eqs.
(24), (25), and (38)–(40) because of the complexity of IT. Thus, a
hybrid approach of IP and ZT,0 is used. IP is used for normal stress
and ZT,0 is used for shear stress. The derivatives of IP and ZT,0 are

@IP

@~x1

¼ ip~p

2
1� 1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

~x2 � i~x1ð Þ2

s2
4

3
5 (C2)

@2IP

@~x2
1

¼ �ip~p
�

2 1� ~x1 þ i~x2ð Þ2
h i ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ~x1 þ i~x2ð Þ2
q

(C3)

ZT;1 ¼
i~s
2

ln 1þ 1

~x2 � i~x1ð Þ2

" #
(C4)

ZT;2 ¼ �
~s

~x2 � i~x1ð Þ 1þ ~x2 � i~x1ð Þ2
h i (C5)

Note that the points (0, 0) and (0, 1) are not included because of
the singularities. At point (0, 0), there are

~u1 ¼ 0; ~u2 ¼ ~p þ 1� 2�

2 1� �ð Þ~s; ~r11 ¼ 1;

~r12 ¼ ~s and ~r22 ¼ �~p (C6)

And at point (0, 1), there are

~u1 ¼ �
1� 2�

2 1� �ð Þ ~p � 2 ln 2

p
~s; ~u2 ¼ 0; ~r11 ¼ 1;

~r12 ¼ 0 and ~r22 ¼ 1 (C7)
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