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Estimation of interwell connectivity is of great importance to optimization of injection-production
scheme and decision-making of potential-tapping strategies during the later stage of waterflooding.
However, the traditional reservoir simulation requires detailed information of various reservoir/fluid
parameters, which is time-consuming and difficult to obtain the reliable estimates due to large un-
certainties. The capacitance-resistance model inferred from field injection and production data provides
an attractive alternative to understanding the interwell connectivity relationship and close-loop reser-
voir management. For this study, the producer-based and injector-producer pair-based capacitance
resistance model, CRMP and CRMIP, are employed to compute liquid production rate of each producer,
respectively, followed by description of observed water cut data using the Koval fractional-flow equation.
Then, this paper proposes a novel framework that enables the newly developed Stochastic Simplex
Appropximate Gradient (StoSAG) algorithm to optimize interwell connectivity in waterflooding reser-
voirs by preconditioning the hybrid nonlinear constraints, which is further validated by a heterogeneous
synthetic case. The results show that, compared to the projected-gradient (PG) and EnKF methods, the
StoSAG optimization technique can handle the sequential data assimilation in large-scale nonlinear
dynamics more robustly; due to more degrees of freedom, the CRMIP representation captures the res-
ervoir's dynamic behavior better than CRMP, resulting in a more satisfactory estimation of geological
parameters relative to each reservoir control volume; The Koval fractional-flow equation are effective to
represent the water-producing characteristics from small-to-large water cut period, but a great deviation
will be caused during the extra-high water cut stage (fi,>90%) because of its inherent drawbacks.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

the finite difference method, which requires detailed information
of various reservoir/fluid parameters, such as porosity, perme-

Estimation of interwell connectivity is essential to field devel-
opment project design, which is also of great importance to opti-
mization of injection-production scheme, analysis of remaining oil
distribution and decision-making of potential-tapping strategies.
However, the traditional reservoir simulation is usually based on
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ability, relative permeability and saturation in grid blocks. Since
information about those parameters is also limited by measuring
techniques, vast majority of those parameters are mainly deter-
mined by interpolation from that of well points, usually leading to a
great deviation. Furthermore, uncertainties of the reservoir/fluid
parameters used for history matching field production data are
further intensified by the inherent drawbacks of the existing
measuring techniques, which cannot meet the requirement of good
physical understanding to reservoir (Jin et al., 2004; Kang et al.,
2012; Zhao et al., 2015a). Using historical data of injection and
production rates has proven to be an attractive alternative to
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accurate estimation of interwell connectivity in water flooded
reservoirs. The simplified reservoir models proposed mainly consist
of the linear multivariate regression model (Gentil, 2005), the
capacitance-resistance model (CRM) (Yousef et al., 2006a, 2006b;
Sayarpour et al, 2007; Moreno, 2013; Mamghaderi and
Pourafshary, 2013; Zhang et al., 2015; Holanda et al., 2015), the
multiwell productivity index (Kaviani et al., 2010), the flow-
network model (Lerlertpakdee et al., 2014) and the interwell nu-
merical simulation model (Zhao et al., 2015b, 2016). As an alter-
native to reservoir simulation, the CRM representation is generally
based on signal-processing techniques and a total mass balance
equation with compressibility, in which injection rate are assumed
as input signals and production rates are treated as output signals
of the integrated dynamic system, respectively, and characterizes a
flooded reservoir by rapid estimating connectivity coefficients,
time constants and productivity indices using only the producers'
bottom-hole pressure if necessary and production/injection rate for
history matching. Due to its high computational efficiency and
capability for reservoir performance prediction, the CRM has
gained substantial popularity to close-loop reservoir management
and production optimization, especially in areas of primary re-
covery (Nguyen, 2012), waterflooding (Lee et al., 2011; Tafti et al.,
2013), gas flooding (Nguyen, 2012; Sakazar-Bustamante et al.,
2012) and CO; geological sequestration (Tao and Bryant, 2015).
However, all the above-mentioned simplified reservoir models
are single-phase flow model merely history matching and pre-
dicting the liquid production rate, and not capable of separating the
oil production from the total production adaptively, which bring
about plenty of difficulties for decision-making of potential-tapping
strategies during the later stage of waterflooding. To tackle the
deficiencies, Gentil et al. (Gentil, 2005) present an empirical linear
relationship between the natural logs of instantaneous water-oil
ratio and cumulative water injection, which is usually valid in
mature water floods. For the same reason, it provides often a good
approximation at the late life of a waterflood when water cut is
large. Zhao et al. (2015a; 2015b; 2016) assume that the rock and
fluid are incompressible during the tracking process of water cut
data. Instead of solving the saturation distribution along each one-
dimensional space, the Buckley-Leverett waterflood front equation
is applied to compute water cut at the downstream well of each
well pair, which keeps a fast computation speed. Nevertheless, the
Buckley-Leverett model has many assumptions such as homoge-
nous media, one dimension flow, incompressible system, negligible
gravity and capillarity, all of which should be carefully understood
prior to application. Cao et al. (2014, 2015) provide a water frac-
tional flow equation inferred from field production data using the
Koval theory. By history matching field water cut data, two model
parameter, Koval factor and drained pore volume, will be estimated.
The Koval fractional-flow equation is far more general and flexible
because there is no specific assumption regarding the immiscible
displacement, which has the advantage to address the issue of
viscous fingering in a miscible displacement. Furthermore, due to
the high complexity of flooded reservoirs and urgent requirement
of real-time production optimization, the gradient-based methods
(e.g., the steepest-descent method, the projected-gradient method,
and so on) commonly used to solve optimization problems where
the direction of search for a local minimum is obtained by
computing the gradient of objective function with respect to the
geological parameters such as connectivity coefficients, time con-
stants and productivity indices, will not be suitable in many cases,
particularly, the large-scale heterogeneous waterflood reservoirs
with hybrid nonlinear constraints. Nowadays, the derivative-free
optimization techniques have garnered attentions in the compu-
tational mathematics literature. Whereby, the ensemble-based
methods have proven to be one of the most popular derivative-

free optimization techniques for many applications due to its
versatility and simplicity, involving in close-loop reservoir man-
agement (Chen et al., 2009, 2012; Do and Reynolds, 2013; Zhao
et al,, 2013), estimation of optimal well controls (Su and Oliver,
2010; Oliveira and Reynolds, 2014; Fonseca et al., 2014), and EOR
screening (Odi et al., 2010; Katterbauer, 2015; Chen and Reynolds,
2016). However, there are few proposals for interwell connectiv-
ity estimation with the ensemble-based optimization techniques
(Zhang et al., 2015; Jafroodi and Zhang, 2011).

Here, we develop a novel framework that enables the newly
developed Stochastic Simplex Appropximate Gradient (StoSAG)
algorithm to optimize interwell connectivity in heterogeneous
waterflooding reservoirs by preconditioning the hybrid nonlinear
constraints. This paper is organized as follows: First, we provide the
formulation and architecture of different capacitance-resistance
models and Koval fractional flow equation, respectively, followed
by a brief description of the ensemble-based optimization process
for solving hybrid nonlinear constrained problems. Thereafter, with
respect to a heterogeneous synthetic case, the proposed technique
is performed to history match the observed production data
adaptively, and thus determine the interwell geological parameters
such as connectivity coefficients, time constants, and drained pore
volumes. Finally, we summarize the results and present the con-
clusions of this work.

2. Methodology

In this section, the producer-based and injector-producer pair-
based capacitance resistance models (Sayarpour et al., 2007), CRMP
and CRMIP, are respectively introduced to compute liquid produc-
tion rate of each producer within a specific reservoir control vol-
ume in terms of considering the impact of interwell connectivity,
time lag and reservoir/fluid compressibility. Moreover, the Koval
water fractional-flow equation developed by Cao et al. (2014, 2015)
is applied to separate the oil production from total production.
Thereafter, a novel ensemble-based optimization framework pre-
conditioning hybrid nonlinear constraints is then provided to
minimize the squared difference between the predicted and
observed production data, so that the interwell geological param-
eters such as connectivity coefficients, time constants, and drained
pore volumes will be eventually estimated.

2.1. Capacitance-resistance model
(1) Producer-based representation-CRMP

As shown in Fig. 1, the producer-based representation (CRMP)
divides the reservoir into a series of control volumes based each
producer and includes all the injectors that influence their pro-
duction rates, which may be all injectors, unless some extra

Fig. 1. Schematic of reservoir control volume in the CRMP representation.



D. Wang et al. / Journal of Natural Gas Science and Engineering 38 (2017) 245—256 247

constraints are imposed. The CRMP model considers one time
constant for each producer and one connectivity coefficient for
each injector-producer pair, therefore, the continuity equation
(Sayarpour et al., 2007) for producer j is as follows.

dg;(t) 1 R dPyy
a +;jq1(f) =7 ;fu[z(t) )it (1)

where g;(t) is the liquid production rate of producer j at time ¢, m?/
d, j=1,2,...,Npro; I;(t) is the injection rate of injector i at time ¢,
m3/d,i=1,2,-- +,Ninjs Npro and Njy; are the total number of pro-
ducers and injectors, respectively; P, ; is the bottom-hole pressure
of producer j at time t, MPa; J; is the productivity index of producer
j, m3/(MPa-d); 7 is the time constant for volume drained by pro-
ducer j, which is a measure of the time necessary for pressure wave
to propagate in porous media and effectively influence the pro-
duction signal, 7 = C¢-V, /], The total compressibility c;, the drained
pore volume V}, and the productivity index J play an integrated
impact on the time constant; f; is the connectivity between injector
(i) and producer (j), f; €10, 1], the closer the f; approaches to zero,
the poorer the connectivity between i-j pair.

For any time interval t;, when changes of bottom-hole pressure
are considered, the semi-analytical solution to Eq. (1) is derived
using time and space superposition, which is given by (Sayarpour
et al.,, 2007)

[ G—ts

) e s
qj(ty) =q;(to)e +Y qe (l —e 7 )
s=1

Ninj Ap(s) }
1.8 g W
l;[f'l I ] JirTi g

(2)

where the superscript s is index of time interval; 4t; is the sth time
interval, d; g;(t;) is the liquid production rate of producer j at time
ty, m3/d; gj(to) is the liquid production rate of producer j at the
initial time to of history matching, m3/d; ;) and Ap‘(j}J. are the rate
of injector i and changes in bottom hole pressure of producer j
during time interval t;_; to ts, respectively.

To match the production history for a pattern of Nj,; injectors
and Ny, producers by the CRMP representation as shown in Eq. (2),
the CRMP has (Nj; +3) unknown model parameters for each
producer j: fij(i=1,2,...,Nppj, j=1,2,...,Npro), qj(to), 7; and J;.
Therefore, to use the CRMP in a field, one must evaluate Npro (Njpj +
3) model unknowns. Nevertheless, pressure data are often not
available while rate data are of great abundance. If the bottom-hole
pressure at the producers is kept constant, the model parameters
decreases to Npro(Niyj + 2) for the CRMP.

Fig. 2 shows the influence of connectivity coefficient and time
constant for a CRMP production rate response with only one
injector and one producer. It indicates that, the connectivity co-
efficients are directly related to the change in the steady state
response of the output signal caused by a unit variation in the input,
and changing the connectivity coefficients is equivalent to shifting
the response up or down; however, the time constants mainly
present a time-varying behavior, a faster system has low time
constant, while a slower system has higher time constant.

Furthermore, in order to hold a material balance of the injected
fluid, the following inequality constraint should be satisfied:

Ninj
ZfijSL j=1727"'7Npro 3)

(2) Injector-producer pair-based representation -CRMIP

As shown in Fig. 3, the CRMIP representation assigns one time
constant and one connectivity coefficient for each injector (i)-pro-
ducer (j) pair, which is more suitable for estimation of interwell
connectivity in heterogeneous waterflood reservoir. The governing
differential equation for each injector-producer pair based control
volume is states as:

dg(t) 1 1 dPyy
dt +7.qu1](t) - ?ijﬁjll(t) *]1] dt (4)

where g;;(t) is the production rate of producer j relative to the i-j
pair control volume at time t, m3/d; 7 is the time constant of the i-j
pair control volume; I;(t) is the injection rate of injector i at time ¢,
m3/d; Jij is the productivity index relative to the i-j pair control
volume, m*/(MPa-d); P, j is the bottom-hole pressure of producer j
at time ¢, MPa; f;; is the connectivity coefficient associated to the i-j
pair control volume, €[0,1].

Based on superposition principle in time and space, the semi-
analytical solution Eq. (4) at time interval ¢, is determined, which
takes the form of Eq. (5) (Sayarpour et al., 2007).

[
i
Qij(fk)=Qij(to)e< )
) &t

k _Ats Ap N < i >
Z T f !
+5:1 (1 e ) Jy .Ii(S) iy i A‘;Vs ")e
(5)

At time interval ty, the total production rate g;(t) of producer j
are described as:

Ninj

qj(te) = > aii(ti) (6)
o1

When neglecting aquifer support besides injectors and changes
of bottom-hole pressure, for each injector-producer pair, three
unknown model parameters exist: fj, qj(tp) and 7;. The model
unknowns of the CRMIP representation sums to 3 x Npro X Nip.
Apart from the inequality constraint shown in Eq. (3), the initial
values of liquid production rate g;(ty) of each injector-producer
pair based control volume must hold the following equality
constraint.

Nirj

Z gij(to) = g;(to) (7)

2.2. Koval fractional-flow equation

Due to the fact that the CRM representations are merely single-
phase flow model, which history matches and predicts the total
production rates, hence a fractional flow model must be imple-
mented into the CRM representations to separate oil production
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Fig. 2. Impact of different connectivity coefficient and time constant on CRMP production rate with one producer and one injector (according to Holanda et al (Holanda et al., 2015)).

Fig. 3. Schematic of reservoir control volume in the CRMIP representation.

from the total production. For this study, to address the issue, the
fractional-flow equation inferred from field production data using
the Koval theory is advanced to develop a relationship between
water cut and dimensionless time. By history matching field water
cut data, two characteristic parameters, the Koval factor and
drainage volume, are estimated, which takes the form of Eq. (8)
(Cao et al., 2014, 2015).

O tD<m
K
fu=q Kat = |32 (8)
Vb Tk
Ka—1 Kg P
1 tp = Kyg

where K,, denotes the Koval factor, which is a measure of het-
erogeneity, the stronger the local heterogeneity, the larger the
Koval factor is. For homogeneous reservoirs, K, is equal to 1.0; tp
denotes the dimensionless time, which is defined to be the cu-
mulative water injection in pore volumes, given by

IZ > fili
tp = x t (9)
Vyi
where f;; is the connectivity coefficient, easily obtained by history
matching field production data using the above-mentioned CRM
representations; V,; is the drained pore volume of a producer or
each injector-producer pair, m>; J; is the injection contribution to

the reservoir control volume at time t,, m>/d. For further details, the
reader is referred to Cao et al. (2014, 2015).

3. Ensemble-based optimization process

To obtain a satisfactory estimation of interwell connectivity in
waterflooding reservoirs, an efficient ensemble-based technique is
addressed to history matching the observed production data, such
as liquid production rate, oil production rate and water cut, and the
estimated results are significantly influenced by characteristic pa-
rameters coupling with different reservoir control volumes. On
basis of the theory that predicted values of production performance
should be in accordance with the observed, a least-squared
objective function needs to be developed, and take the form of
Eq. (10).

N¢ Npro

mipimize J =33 [ao - @™ ()] (102)
Subjected to,

ulw <y <uf? i=1,2,.,Ny (10b)

cu) <0, i=1,2,....,n (10c)

ei(w)=0, i=1,2,...,n (10d)

where J(u) is the least-squared objective function; u is the 1 x Ny,
vector of unknown controlling variables; Egs. (10b), (10c) and (10d)
are the bound, inequality, and equality constraints, respectively;
uf.""" and u,?’p are the lower and upper limits for the ith controlling
variable u;, respectively; n; and 1, are the number of inequality and
equality constraints, respectively.

In order to enforce the upper and lower bound constraints, we
apply a logarithm transformation (Gao and Reynolds, 2006) to each
element of the unknown controlling vector, and the ith component
of the transformed controlling vector v corresponding to u is given
by

low
u; — u;
yi=In| 2 1 (11)
’ (ll?“’ui)

where u; denotes the ith component of the unknown controlling
vector u. After applying this log-transformation to each of the
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controlling variables, the original bound-constrained optimization
problem is transformed to an unbounded optimization problem
because each v; can vary from —oo to +oc0. However, following
Oliveira and Reynolds (2014) in the log-domain, the variables are
still truncated to the interval [-5, 5] as the practical limits in the log
domain.

After the optimization problem is solved for v, the unknown
controlling vector u can be obtained with the inverse log-
transformation, which can be expressed as
ul? + exp( — v;)ulew
T+exp(—u)

_exp(upuy? +ulow

1+ exp(vy) (12)

In general, the inequality and equality constraints (Eqs. (10c)

and (10d), respectively) are handled with the augmented
Lagrangian method, given by

Aru—-C<0 (13a)
A:u—-E=0 (13b)

S

where Ar is the n; x Ny Jacobian matrix of inequality constraint
functions; A; is the ne x Ny Jacobian matrix of equality constraint
functions; € = (Cy, Gy, ...Cni)T is the n;-dimensional column vector
containing the inequality constraint values; E = (Eq, E;, ...En?)T is
the ne-dimensional column vector containing the equality
constraint values.

After using the log-transformation to handle bound constraints,
the augmented Lagrangian function (Oliveira and Reynolds, 2014) is
defined as

Lo(u, A, ) = J(u) _Zle] Sej € u) 2u Z Sej* e](u)

- Z Acimax[se- (@), = Ac]
i1

o> {max s (W)~} (14)
M=

where Z.; and A.; are the Lagrange multipliers associated with
equality and inequality constraints, respectively; u is the penalty
parameter; s.; and sc; are the scaling factors for equality and
inequality constraints, respectively, which will be applied to scale
the constraints and to avoid convergence issues caused by poor
scaling; when the C; and E; are the nonzero constraint values in Eq.
(14), we define s,j=1/E; for j=1,2,...,n. and s.; =1/C; for
i=1,2,...,n. Note that, if we apply the log-transformation to
alleviate the bound constraint, and the general inequality and
equality constraints do not exist, the augmented Lagrangian func-
tion reduces to a traditional unbounded optimization procedure.

Through the so-called outer loop, the Lagrange multiplier A and
the penalty parameter u are self-adaptively adjusted during opti-
mization. Once they are fixed, we solve the following sub-problem.
minimize Lg(u) (15)

usRM

Lagrange multiplier A or the penalty parameter u in the next
outer iteration according to the magnitude of any constraint
violation. If the constraint violation is large, we keep the same
Lagrange multiplier A fixed and decrease the penalty parameter p.
Otherwise, when the constraint violation is small, we update the
Lagrange multiplier 1 and keep the same penalty parameter pu.

For the augmented Lagrangian method, the constraint violations
are measured using the constraint violation factor ¢, which is

defined as
‘l nE 2
ac, = o Z[Se1°€] +Z{max SciCi(w), O]} )
v j:1
n,>00,n,=0

where n, denotes the number of violated constraints; Given n’, the
constraint-violation tolerance at outer iteration /, the Lagrange
multipliers are updated whether o, <7’ is satisfied.

Ale+J,1 :Aé_j+ a j=1,2 (17a)
I
SciCi(u
Y~ max |0, 2L, + ',( ) L i=1,2,..m (17b)
’ 7
If o, > 7', then the penalty parameter u is updated by
phtt =7 (18)

For this study, 7 = 0.25 and 7/ = 0.01.

The initial guess of u0 is obtained by requiring that, when all
squared constraint terms in Eq. (14) are equal to 0.1, the sum of
these terms times 1/(2u) is of the same magnitude as the
augmented objective function, which implies that

o 0.1x (ne+mn)
N 2] (u%)

Following Chen et al. (2012), the initial guess of Lagrange mul-
tipliers are as follows,

(19)

0
AO %7 j=1,2,...n (20a)
e : 0
Agi = max{o,%} i=1,2,-.n (20b)

At each iteration of the so-called inner loop, the newly devel-
oped StoSAG optimization algorithm (Fonseca et al., 2016) is
applied to solve the above-mentioned augmented Lagrangian
function by considering hybrid nonlinear constraints.

. }

k+1 k k

vt =u"-a (21)
¢ [Hdknm

fork = 0,1, 2, ...until convergence, where u® is the initial guess and

uX is the estimate of the optimal controlling vector at the kth iter-
ation; a, is the step size; and the initial value
ak 0.1 x mm(u“" u"""’) d, denotes the search direction vector,
which is used to pr0v1de a reasonable approximation to the singly-
smoothed true gradient of the augmented Lagrangian function
Lq(u¥); ||-||, denotes the infinite norm of the controlling vector.
In this work, provided that the unknown control variables
including connectivity coefficients, time constants and productivity
indices are usually assumed to be independent and treated as
constant, no correlation of different unknown control variables
should be considered. To obtain the search direction d,, at iteration
k+1, we first generate N, samples of the Gaussian random vector uk,
where X~N(u.I) (i.e, the mean of u¥ is equal to u* and its
covariance matrix I). These samples can be generated as,
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;l\]’;:uk—i—Z-, j=1,2,-Ne (22)

where k is the iteration number of inner loop; Z; is an Ny-dimen-
sional independent, standard, random-normal vector with mean
equal to Ny-dimensional zero vector and covariance matrix equal to
Ny x Ny identity matrix I, i.e., Z~NO, I)._ __

Specifically, assuming 6U]’-< =uk —uk and
0Ly |Jl-C = La(uj’f) — Ly(u¥), the search direction vector d, 4, of StoSAG
optimization can be written as

+

OUF oLy ¢ (23)

18 (o (o)
dk,SfO = mz 6Uj€ 6U]
=

where the superscript ‘+’ on a matrix denotes the Moore-Penrose
pseudo-inverse; the superscript ‘T’ on a vector or matrix denotes
the transpose process.

For StoSAG optimization, if L, (u¥t1) < Ly (u¥), we accept uk*! as
the new iterate; otherwise, we decrease the step size by replacing
a, with 0.5a;, and apply Eq. (21) again until we obtain a reasonable
search direction vector u¥! such that L, (uk*1) < L, (u¥) or we reach
the maximal number of allowable step-size cuts, which is equal to
10 in this work. If, with the maximal number of step-size cuts
allowed, a reasonable u**! has not been found satisfying
Lq(u*t1) <Ly(uk), then we generate a new sample of perturbed
controls from Eq. (22) to generate a new approximation of the
singly-smoothed true gradient to find an uphill search direction. If,
with five successive samples of perturbed controls, an uphill di-
rection is not found, then the inner loop is terminated. In addition,
we assume the maximal number of allowable simulation runs as
2000 in the synthetic case presented. At iteration [ of the outer loop,
the convergence criteria for the inner loop are described as.

’ La (ukH) s (uk> 1
max[[La(u)[,10] = (24)
||uk+1 _ uk||2 - gfl (25)

max ([oF],,1.0)

Note that, both 5} and 5{, vary with outer iterations, in which we
always use in this work that &}) =0.1and 52 = 0.1. For every outer
iteration, the adjustment strategies of E} and Ef, are given by

E} = max(0.5f}_1,§}’) (26a)

&, = max (0,56,

For the steepest descent, if at iteration [ of the outer loop, the
inner iteration converges to u”, then we set ul:! = u*. The complete
augmented Lagrangian algorithm will be terminated if both of the
following equations holds.

(26b)

La(53t) ~La(uboe) | _

[ (aye) [ 1.0] = o
oot —wbor],

max(’ uf)pt‘ . 1.20) =S (28)

where 51’? and Eﬁ are the presumed final tolerances for the
augmented Lagrangian algorithm, respectively. In the cases,
5}1 =104 and £" = 10-3, following Oliver et al. (2008).

Fig. 4. The 3D geological model of the synthetic heterogeneous reservoir.
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Table 1

Reservoir and fluid parameters of the three-dimensional reservoir simulation model.
Parameter Value Parameter Value
Initial reservoir pressure, MPa 5.5 Water viscosity, mPa-s 0.5
Reservoir temperature, C 36 Oil viscosity, mPa-s 5.0
Average porosity 0.28 Water density, kg/m? 1000
Average permeability, 10 3ym? 676 0il density, kg/m? 850
Irreducible water saturation (Swc) 0.265 Rock compressibility, 1/MPa 6.0e-6
Oil relative permeability at Swc 1.0 Qil compressibility, 1/MPa 5.0e-5
Residual oil saturation (Sor) 0.32 Water compressibility, 1/MPa 4.5e-6
Water relative permeability at Sor 0.4 Bottom hole pressure, MPa 3.0

4. Case study injectors and 4 producers) totally. Production is performed at a

To validate the reliability of the proposed optimization frame-
work for estimation of interwell connectivity, a three-dimensional
(3D) synthetic reservoir simulation model is established, as shown
in Fig. 4. The parameters of the 3D geological model are as follows:
a corner-point grid system is adopted, with a 31 x 31 x 6 grid, and
the step size of X, Y, and Z direction are 29 m, 30 m and 1.2 m,
respectively. The reservoir and fluid parameters are listed in Table 1.
Five-spot injection production pattern is utilized to exploit the
heterogeneous synthetic reservoir, and there are 9 vertical wells (5
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Fig. 5. The inputted values of monthly-averaged injection rate.
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Fig. 6. The simulated water cut data of each producer.

constant bottom-hole pressure of 3.0 MPa, and injection is per-
formed at a varying surface liquid rate, as presented in Fig. 5, which
is random-normally distributed with mean equal to 60 m?3/d and
variance equal to 5. Meanwhile, the fluid support besides injectors,
such as an aquifer influx, along with the impact of gravity and
capillary pressure are neglected. The commercial reservoir simu-
lator Eclipse is introduced to achieve the observed production data
for 240 months, and the ultimate water cut reaches to 98.1%. The
simulated water cut data of each producer and production perfor-
mance of the synthetic reservoir are shown in Figs. 6 and 7,
respectively.

The coefficient of determination (or R?) is developed to indicate
the goodness of fitting between the observed and predicted
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Fig. 7. The actual production performance of the entire reservoir.
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Fig. 8. The iteration convergence process of objective function under different opti-
mization algorithms.
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production data. An R? of 1.0 indicates that the predicted produc-
tion data perfectly fits the observed values, which is defined as

S i —fi)?
(29)

where y; is the observed value; f; is the predicted value; y is the
mean of the observed data.

4.1. Robustness of optimization framework

To understand the robustness of the developed optimization
framework definitely for hybrid nonlinear constrained problems,
CRMP representation associated with each producer-based control
volume is utilized to calculate liquid production rate, afterwards,
the StoSAG, EnKF and traditional projected gradient (PG) methods
are performed to history match the field production data, respec-
tively. Comparisons of the iteration convergence process and fitting
effect of the observed liquid production data are further carried out,
as shown in Figs. 8—9.

From Figs. 8—9, we observe that, both StoSAG, EnKF and tradi-
tional PG methods can achieve a satisfactory fitting of the observed
production data, and convergence speed of StoSAG optimization
tends to be faster. The main reason is that, the projected-gradient
method has to be done in an iterative form and require extensive
computational resources, however, the StoSAG method can be used
to compute gradients through a Monte Carlo evaluation of the
approximate gradient over an ensemble of state variables
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corresponding to their uncertainties by a simpler means than that
of the EnKF method, which enables the StoSAG optimization al-
gorithm to handle the sequential data assimilation in large-scale
nonlinear dynamics more robustly.

4.2. Comparison of different CRM representations

Depending on the heterogeneity of reservoirs being studied,
different injectors can influence the production rate of a certain
producer with various waterflood front velocities. Therefore,
assuming only one time constant for each producer, it does not
agree well with the actual reservoir condition completely, which
leads to the CRMP no longer a reliable model and some systematic
errors will be incorporated in description of the dynamic behaviors
to drive the evolution of connectivity inevitably. In such a case, it
may be better to apply the injector-producer based representation
(CRMIP) to characterize the real-time liquid production rate. For
this study, sensitivity analysis of different CRM representations,
CRMP and CRMIP, are implemented to compare the estimated re-
sults of interwell connectivity in the synthetic waterflood reservoir.
Fitting effect of the observed liquid production data using the CRMP
and CRMIP models are displayed in Figs. 10 and 11, respectively. The
corresponding estimates of interwell connectivity are shown in
Fig. 12.

It demonstrates that, compared to CRMP, the CRMIP holds more
degrees of freedom to capture the reservoir's dynamic behaviors;
Even CRMIP does not match the production history greater than
CRMP, it still follows most trends of the system dynamics while
CRMP tends to provide a smoother production rate estimates due to
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Fig. 9. Liquid rate fitting effect of typical well Prod_4 using different optimization algorithms.
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(a) CRMP model

(b) CRMIP model

Fig. 12. The estimated interwell connectivities of synthetic reservoir using different CRM representations.

Table 2
Other estimated geological parameters of the synthetic waterflooding reservoir.
Time constant, d Drained pore volume, m?
Prod_1 Prod_2 Prod_3 Prod_4 Prod_1 Prod_2 Prod_3 Prod_4
Inj_1 19.2 149 8.5 7.0 599.0 1448.7 3819 1270.5
Inj_2 19.1 133 7.9 7.1 1000.5 558.2 1052.0 1350.7
Inj_3 18.7 11.8 7.5 7.2 9279 691.6 8684 1457.2
Inj_4 17.8 104 7.2 7.6 5746 910.0 6743 1082.1
Inj.5 164 9.3 7.1 8.0 606.6 320.2 2139.1 651.9
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the single time constant assumption, leading to a more reliable
estimation of interwell connectivity and better agreement with the
expected dynamics in synthetic waterflooding reservoir.

4.3. Adaptation of fractional-flow equation

In order to evaluate the adaptation of Koval fractional-flow
equation, we combine the CRMIP representations with the Sto-
SAG optimization algorithm to inversely estimate the connectivity
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Fig. 13. Fitting effect of the observed water cut data with respect to 4 producers.
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coefficients and time constants relevant to each injector-producer
pair based control volume by history matching the observed
liquid production data. On this basis, updating the Koval factor and
drained pore volume sequentially, dynamic fitting of water cut data
is further completed. Apart from Fig. 12(b), the other estimated
geological parameters between each injector-producer pairs are
presented in Table 2. Fig. 13 shows the fitting effect of the observed
water cut data with respect to the 4 producers.

As can be seen, the Koval fractional flow equation is of high
efficiency to describe the water-producing characteristics from
small-to-large water cut period including water breakthrough.
However, when waterflooding is under extra-high water cut period
(fw>90%), using the Koval fractional-flow equation will lead to a
great deviation, which gives rise to great difficulties to a good un-
derstanding of remaining oil distribution and decision-making of
potential-tapping strategies.

5. Conclusions

(1) The producer-based and injector-producer pair based
capacitance-resistance models, CRMP and CRMIP, are
respectively utilized to compute the liquid production rate of
each producer associated with each reservoir control vol-
ume, followed by description of observed water cut data
using the Koval fractional-flow equation. Then, a novel
framework that enables the newly developed StoSAG algo-
rithm to optimize interwell connectivity in waterflooding
reservoirs by preconditioning the hybrid nonlinear con-
straints is finally proposed.

(2) Case study indicates that, compared to the PG and EnKF
methods, the StoSAG optimization technique can handle the
sequential data assimilation in large-scale nonlinear dy-
namics more robustly; due to more degrees of freedom, the
CRMIP representation captures the reservoir's dynamic
behavior better than CRMP, resulting in a more satisfactory
estimation of geological parameters relative to each reservoir
control volume; The Koval fractional-flow equation are
effective to represent the water-producing characteristics
from small-to-large water cut period, but a great deviation
will be caused during the extra-high water cut stage
(fw>90%) because of its inherent drawbacks.

(3) In contrast to traditional reservoir simulation, the proposed
ensemble-based technique can be regarded as an effective
way for reservoir performance prediction and further used
for real-time production optimization in strongly-
heterogeneous waterflooding reservoirs, which also pro-
vides a theoretical analysis for rapid estimation of interwell
connectivity by solving large-scale nonlinear optimization
problems. On the other hand, great efforts should be made to
the multi-layer capacitance resistance model considering the
effects of cross flow between the layers and the difference of
drained recoverable reserve along the vertical direction,
which will be discussed in great detail later.
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Nomenclature

q(t) =liquid production rate of one producer at time t

q(to) =liquid production rate of one producer at initial time of
history matching

I(t) =injection rate of one injector at time ¢

Npro =total number of producers

Nipj =total number of injectors

Py =bottom-hole pressure of one producer at time t

] =productivity index of one producer

T =time constant for volume drained by one producer

fi =connectivity coefficient between injector i and producer
J

Ct =total compressibility

Vp =drained pore volume

At =time interval

fw =water cut at the outlet of reservoir control volume

Koal = Koval factor

tp =dimensionless time

JG) = least-squared objective function

u =vector of unknown controlling variables

\' =log-transformed controlling vector corresponding to u

ulow =lower limits of the controlling variable u

Thig —upper limits of the controlling variable u

n; =number of inequality constraints

Ne =number of equality constraints

At =Jacobian matrix of inequality constraint functions

A; =Jacobian matrix of equality constraint functions

d =column vector containing the inequality constraint
values

E =column vector containing the equality constraint values

La(+) =augmented Lagrangian function

A =Lagrange multiplier

S =scaling factor

u =penalty parameter

ac, =constraint violation factor

n, =number of violated constraints, n, = n; + ne

n =constraint-violation tolerance

a =inner-loop optimization iteration step size

d =search direction vector

-1 =infinite norm of the controlling vector

E', §Z, = convergence criteria for the inner-loop optimization
iteration

E}l, EZ:convergence criteria for the outer-loop optimization
iteration =convergence criteria for the outer-loop
optimization iterationSubscripts and

Superscripts
i =injector index
j =producer index

k=time interval index in Section 2.1 =time interval index in
Section 2.1=inner-loop
optimization iteration index
in Section 3

S =time interval index

e =variable associated with equality constraints

c =variable associated with inequality constraints
l =outer-iteration index
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