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Abstract Based on the characteristics of fractures in naturally fractured reservoir
and a discrete-fracture model, a fracture network numerical well test model is developed.
Bottom hole pressure response curves and the pressure field are obtained by solving the
model equations with the finite-element method. By analyzing bottom hole pressure
curves and the fluid flow in the pressure field, seven flow stages can be recognized on
the curves. An upscaling method is developed to compare with the dual-porosity model
(DPM). The comparisons results show that the DPM overestimates the inter-porosity
coefficient λ and the storage factor ω. The analysis results show that fracture conductivity
plays a leading role in the fluid flow. Matrix permeability influences the beginning time
of flow from the matrix to fractures. Fractures density is another important parameter
controlling the flow. The fracture linear flow is hidden under the large fracture density.
The pressure propagation is slower in the direction of larger fracture density.
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1 Introduction

Naturally fractured reservoirs can be considered as two mediums, rock matrix and fractures.
Generally the rock matrix provides the primary storage of fluid while the fractures serve as
flow paths. The order of fracture apertures is often 0.1 mm or less. They are very small
compared with matrix dimensions. The distribution of fractures is usually random in different
scale orders. All of these make the numerical simulation of fluid flow in naturally fractured
reservoirs challenging.

At present, the well testing model of fractured reservoir is mainly based on the dual media
theory. In 1960, Barenblatt et al.[1] proposed the concept of dual media for naturally fractured
reservoirs and established the dual-porosity model (DPM) and dual permeability model. In
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this model, the cubic matrix is separated by continuum of fractures. The flow between the
matrix system and fracture system is described with an exchange term. In 1963, Warren
and Root[2] presented the homogeneous orthotropic dual medium model on the basis of the
former, which is currently the most widely used dual medium model. The heart of DPM is
the transfer function which defines the flow between the matrix and fractures. This transfer
function in Warren-Root model is the pseudo-steady state which implies that the flow in the
matrix completes instantaneously. This assumption is not realistic. Inspired by the Warren-
Root model, many authors did a lot of research and developed the DPM with the transient
transfer function. Kazemi[3] and De Swaan[4] proposed the lamellar and spheroidal DPM. There
are two important parameters that define the inter-porosity flow between the matrix system and
the fracture system, which are the inter-porosity coefficient λ and the storage factor ω. Also,
these two parameters are important for development of oil and gas field because ω determines
the amount of fluid, and λ determines the flow capacity from matrix to fracture. Usually, these
two parameters are estimated from well test interpretation.

The coefficient λ is correlated to another important parameter which is called the matrix-
fracture transfer shape factor α. In a pseudo-steady state, the mass transfer between matrix
and fracture is given by

qc =
Kmρ

µ
α(pm − pf), (1)

where qc is the exchange rate of fluid, Km is the matrix permeability, µ is the fluid viscosity, ρ
is the fluid density, pm is the average matrix block pressure, pf is the fracture pressure, and α
is the shape factor, which is a function of the shape of matrix block and the set of fracture.

In a transient state, the diffusion equations of fracture and matrix block are combined with
a mass continuity condition. Therefore, it does not use the shape factor directly. However, in
order to describe expediently, we still define the coefficient λ with the shape factor as[4]

λ = αr2
w

Km

Kf
, (2)

where rw is the radius of wellbore, and Kf is the permeability of fracture. It implies that we
use λ and Kf rather than Km and Kf to describe the transfer flow between matrix and fracture.

It can be concluded that the shape factor α determines the fluid exchange between matrix
and fracture. Warren and Root[2] defined dimensionless shape factors of 12, 32, and 60 for
one, two, and three sets of fractures, respectively. The shape factor derived by Kazemi and
Gilman[5] was 4, 8, and 12 for one, two, and three sets of fracture. Thomas et al.[6] studied
various fine-grid single-porosity and single-block DPMs. They concluded that the dimensionless
shape factor is 25 for a three-dimensional oil-water model with the mobility ratio near the unit.
Many other authors derived the shape factors under different conditions and got the analogous
form of shape factor[7–11]. The basic concept is the analysis of a single matrix block surrounded
by fractures, which is shown in Fig. 1[12].

The shape factor is calculated by solving the diffusion equation of matrix under the boundary
condition of pm(Lc, t) = pf . It should be noted that the pressure of all the boundaries is the
same in this model, which implies that the fluid flows from the center of matrix block to the
fractures edges[13]. Actually, the pressure of different fractures is not the same. Therefore,
the assumption of the constant pressure boundary condition which is essential for solving the
diffusion equation would cause the error of result. On the other hand, if we do deep analysis of
the DPM with the transient inter-porosity flow, we can find that the flow state of all the matrix
blocks is identical, which implies that the exchange rate of all the matrix blocks is the same.
However, it is obvious that the exchange rate of the blocks near the production well should be
larger than that of the far one. This is the congenital defect of the DPM.
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To sum up, the assumption of a constant boundary condition for calculating the shape factor
and the congenital defect will cause some errors for the estimations of λ and ω. In this paper,
we develop a fracture network model (FNM) which is closer to the real reservoir. We use the
discrete-fracture model[14–17] to simplify the fractures and implement a mixed finite-element
method to solve the diffusion equations and obtain the pressure behavior of the wellbore. We
analyze the characteristics of bottom hole pressure type curve and flow in porous media. Then,
we use this more accurate model to investigate the DPM in the well test which has been applied
widely for decades.

Fig. 1 Schematic of matrix-fracture model (from Ranjbar and Hassanzadeh[12])

2 Physical model

The transient flow toward a well surrounded by the fracture network is studied. The following
assumptions are considered:

(i) The fracture network develops from x- and y-directions in a rectangle reservoir. The
fractures split the matrix as small rectangles of d1 × d2. The wellbore is in an intersection of
fractures.

(ii) The fractures permeability is Kf , and the aperture is w.

(iii) The porous medium contains a slightly compressible fluid of viscosity µ and compress-
ibility C.

(iv) There is no damage zone surrounding the wellbore, and the effects of gravity, tempera-
ture, and other physical and chemical effects are ignored. The system above defined is shown
in Fig. 2. We call this model the FNM.

3 Mathematical model and numerical solution

3.1 Mathematical model

In the discrete-fracture model, it is assumed that inside the fracture, all variables remain
constant in the lateral direction that is ignoring the pressure gradient of vertical direction. The
aperture w of fracture appears as an explicit factor in front of the 1D integral for the consistency
of the integral form. The control equation of the flow in fractures can be simplified to the 1D
form.

The control equations of this problem are obtained by combining Darcy’s law and the mass
conservation based on the discrete-fracture model description. For the matrix, the transient
equation of pressure can be written as

Km

µ

∂2pm

∂x2
+

Km

µ

∂2pm

∂y2
= φmCt

∂pm

∂t
, (3)
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Fig. 2 Sketch of FNM

where pm is the matrix pore pressure, φm is the matrix porosity, and Ct is the total compress-
ibility.

For fractures, the transient equation of pressure based on the discrete-fracture model can
be written as

Kf

µ

∂2pf

∂l2
= φfCt

∂pf

∂t
, (4)

where φf is the fracture porosity, and l is the local coordinate of fractures, which is shown in
Fig. 3.

Fig. 3 Sketch of fracture local coordinates

The initial conditions for this problem are as follows:

pm = pi, pf = pi, (5)

where pi is the original formation pressure.
The inner boundary condition of constant production rate around wellbore are as follows:

N∑

j=1

Ljh
K

µ

∂pj

∂n

∣∣∣
Γ

= Bq + C
dpw

dt
, (6)

pj = pw, (7)

where Lj is the matrix element edge on wellbore, B is the fluid volume factor, q is the production
rate, pw is the bottom hole pressure, and N is the number of edges on wellbore.

The constant pressure outer boundary condition of the reservoir is given by

pj |Γ0

= pi, (8)
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or the closed outer boundary condition of the reservoir is obtained as

∂p

∂n

∣∣∣
Γ0

= 0. (9)

The convergence conditions of the matrix and fracture are other very important conditions
to close the equations. One is the pressure continuous condition, which is given by

pf |Γf
= pm|Γf

, (10)

and another is the rate continuous condition. The fluid flow between matrix and fracture is
presented in Fig. 4. The term qm1 + qm2 is the rate flow from matrix to fracture, and qf1 and
qf2 are flow rates at both ends of fracture. The following formula can be obtained according to
the material balance:

qf1 + qf2 = qm1 + qm2. (11)

Fig. 4 Rate continuous continuity between matrix and fracture

The above rates are obtained by Darcy’s law,

qm1 + qm2 =

∫

Γf

Km

µ

∂pm1

∂n
dΓf +

∫

Γf

Km

µ

∂pm2

∂n
dΓf , (12)

qf1 = w
Kf

µ

∂pf1

∂l
, qf2 = w

Kf

µ

∂pf2

∂l
, (13)

where n is the normal direction of fracture. Then, the rate continuous condition is given by

w
Kf

µ

∂pf1

∂l
+ w

Kf

µ

∂pf2

∂l
=

∫

Γf

Km

µ

∂pm1

∂n
dΓf +

∫

Γf

Km

µ

∂pm2

∂n
dΓf . (14)

Equations (3)−(9) and (14) combine the closed mathematical model for pressure transient of
the FNM. It should be noted that the model that we have developed above does not define any
transfer functions between matrix and fracture, and we just use the mass continuity condition
which is spontaneous.
3.2 Numerical method

The geometry is discretized using triangular elements for the matrix and line elements for
the fractures, which is presented in Fig. 5. Firstly, the node and triangle are numbered just like
normal grids. Secondly, line elements for fractures are marked separately.

In a rectangle of 500 m width and 500 m height reservoirs, the matrix block is 5 m×5 m,
which means that the fracture densities of x- and y-directions are 0.2 piece/m. We use AUTO-
CAD to draw the geometry model and import it into GAMBIT to mesh.

We use the Galerkin weighted residual method and finite-element discretization to solve
Eqs. (3) and (4). The variational forms of theses equations can be written as

∫∫

A

(Km

µ

∂2pe
m

∂x2
+

Km

µ

∂2pe
m

∂y2
− φmCt

∂pe
m

∂t

)
δpe

m dA = 0 (15)
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Fig. 5 Discretization of FNM

and ∫

l

(Kf

µ

∂2pe
f

∂l2
− φfCt

∂pe
f

∂t

)
δpe

f dl = 0. (16)

The weak forms of these variational equations can be written as

∫∫

A

(Km

µ

∂pe
m

∂x

∂δpe
m

∂x
+

Km

µ

∂pe
m

∂y

∂δpe
m

∂y
+ φmCt

∂pe
m

∂t
δpe

m

)
dA =

∫

S

δpe
m

Km

µ

∂pe
m

∂n
dS (17)

and ∫

l

(Kf

µ

∂pe
f

∂l

∂δpe
f

∂l
+ φfCt

∂pe
f

∂t
δpe

f

)
dl = δpe

f

Kf

µ

∂pe
f

∂l

∣∣∣
2

1
. (18)

The right terms of Eqs. (17) and (18) are the flow rates of the element edges, which can be
written as

qe
m1 + qe

m2 =

∫

Sf

δpe
m

Km

µ

∂pe
m

∂n
dSf , qe

f1 + qe
f2 = w

Kf

µ

∂pe
f

∂l
. (19)

The flow between the matrix element and the fracture element is shown in Fig. 6. When
all the matrix and fracture element equations combine together, the right terms of Eq. (18) are
offsetting using the rate continuous condition of Eq. (11). The right terms of Eq. (17) exit only if
the matrix elements are on wellbore. Therefore, the finite-element approach of discrete-fracture
model is just adding the line element equations into the 2D total finite-element equations.

The matrix element pressures are approximated as

pe
m = Nmip

e
mi + Nmjp

e
mj + Nmkpe

mk, (20)

where pe
mi, pe

mj , and pe
mk are three node pressures, and Nmi is the element interpolating function,

which is written as

Nmi = ai + bix + ciy. (21)

The time derivative term is discretized by forward difference as follows:

∂pe
m

∂t
=

pe,n+1
m − pe,n

m

∆t
. (22)
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Fig. 6 Flow between matrix triangle element and fracture line element

Then, the matrix element equation is as follows:

A
(Km

µ
b2
i +

Km

µ
c2
i +

φmCt

6∆t

)
pe,n+1
mi + A

(Km

µ
bibj +

Km

µ
cicj +

φmCt

12∆t

)
pe,n+1
mj

+ A
(Km

µ
bibk +

Km

µ
cick +

φmCt

12∆t

)
pe,n+1
mk − L

3

∂pe,n+1
mi

∂n
− L

6

∂pe,n+1
m(j,k)

∂n

=
φmCt

6∆t
pe,n
mi +

φmCt

12∆t
pe,n
mj +

φmCt

12∆t
pe,n
mk, (23)

where A =

∣∣∣∣∣∣

1 xi yi

1 xj yj

1 xk yk

∣∣∣∣∣∣
, bi = − 1

2A

∣∣∣∣
1 yj

1 yk

∣∣∣∣, ci = 1
2A

∣∣∣∣
1 xj

1 xk

∣∣∣∣ (i, j, k), and xi, yi, xj , yj, xk, and

yk are the triangle node coordinates.

The same operation is implemented to fracture line elements. The fracture pressure is
approximated as

pe
f = Nfip

e
fi + Nfjp

e
fj, (24)

where pe
fi and pe

fj are the line element node pressures, Nfi and Nfj are the interpolating functions
for the linear line element given by

Nfi =
lj − l

L
, Nfj =

l − li
L

. (25)

Then, the fracture element equations are as follows:

(Kf

µ

1

L
+

φfCt

3∆t

)
pe,n+1
fi +

(
− Kf

µ

1

L
+

φfCt

3∆t

)
pe,n+1
fj =

φfCt

3∆t
pe,n
fi +

φfCt

3∆t
pe,n
fj , (26)

where L = |li − lj | is the line element length.

The wellbore boundary condition is given by

N∑

j=1

Ljh
k

µ

∂pn+1
j

∂n

∣∣∣
Γi

+
pn+1
w

∆t
= Bq + C

pn
w

∆t
. (27)

The fracture matrix system is superimposed on the matrix due to the original non-fracture
formulation. This concept is illustrated in Fig. 7.
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Fig. 7 Schematic illustrating combining matrix and fracture element equations

Fig. 8 Bottom hole pressure response curve of FNM (pw: solid line; p
′

w: dashed lines)

4 Results and discussion

4.1 Bottom hole pressure response curve and pressure field

The bottom hole pressure response curve of FNM is presented in Fig. 8.
As seen from Fig. 8, the bottom hole pressure response curve of this mode is very similar

with dual-porosity with a transient transfer function, and it can be divided into seven stages.
(i) Wellbore storage stage
In this stage, the fluid in the wellbore dominates the flow and the pressure, and the pressure

derivate curve is a straight line with the slope 1.
(ii) Transition stage
With the decrease of wellbore pressure, the sand face rate increases into the well head rate

under the pressure difference between the wellbore and the formation. The flow transits from
wellbore storage to the formation flow.

(iii) Fracture linear flow stage
Because of high permeability of fractures, the flow occurs firstly in the fractures which are

connected directly with wellbore. This stage is similar with the bilinear flow in the vertical
fractured well[19]. In this stage, the pressure and pressure derivate curves are parallel lines.
However, the line slope is not 1/2 or 1/4 as that in the vertical fractured wells, because there are
4 fractures connected with wellbore. When the dimensionless fracture conductivity is greater
than 300, fractures can be considered as infinite conductivity[19]. Figure 9(a) presents the
pressure field of this stage. The pressure expands toward along the fractures connected with
wellbore.

(iv) Fracture network flow stage
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When the pressure expands to the fractures perpendicular to the fractures connected directly
with wellbore, the formation presents the fracture network flow. The pressure field of this stage
is shown in Fig. 9(b). The pressure expands along the fracture network.

(v) Transformation from matrix to fracture stage
With the decrease of fractures pressure, the fluid flows from matrix to fractures under the

pressure difference. In this stage, the pressure derivate curve goes down and forms a concave
because of the pressure supply of the matrix. Figure 9(c) presents the pressure field of this
stage. It shows that the matrix pressure has been significantly decreased. This is the main
feature of the matrix-fracture transfer flow which is determined by λ and ω.

(vi) Radial flow stage
When the transformation from matrix to fractures is steady, the flow is radial, which reflects

a horizontal pressure derivate in the bottom hole pressure response curve.

Fig. 9 Pressure field of FNM

4.2 Upscaling of FNM and comparison with DPM

After analyzing the pressure behavior, we intend to compare this model with the DPM.
However, the parameters of FNM and DPM are not corresponding. Therefore, the first step is
to upscale the FNM and calculate equivalent parameters.

The first one is the permeability of the whole system. In the FNM, the parameter Kf is the
permeability of fracture, and the system equivalent permeability K̃f , which exhibits the radial
flow in Fig. 8, can be calculated by averaging Kf over the whole system[20]. It is given by

K̃f = KfVf , (28)

where Vf is the volume ratio of fractures. It can be derived from a matrix block shown in
Fig. 10, which is defined as

Vf = 4(w/2)d/d2 = 2w/d. (29)

Thus, the upscaling permeability is given by

K̃f = 2Kfw/d. (30)

Now, ω and λ are the only two left parameters which are needed to be upscaled. The
definition of ω is given by

ω =
(V φCt)f

(V φCt)f+m
. (31)

In the FNM, we assume that φCt for matrix and fracture is the same. Then, we can get

ω = Vf = 2w/d. (32)
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Fig. 10 Matrix block for calculating Vf

The definition of λ is given by Eq. (2), but it should be noted that the permeability of
fractures is the upscaling value which is calculated from Eq. (30), and the shape factor is for
the shape of a quadrangular prism which implies α = 8/(d/2)2.

Up to now, we upscale the FNM and get corresponding parameters to the DPM. The next
step is to compare the two models. We regard the results of FNM as field data and use a DPM
to do well test interpretation and adjust the parameters of DPM to match the log-log curve of
the FNM. Then, we will get the parameters defined in the dual-porosity. The match plot of
log-log curves is shown in Fig. 11.

Fig. 11 Log-log match plot of FNM and DPM (pw: solid line; p
′

w: dashed lines)

The DPM does a good fit except for the early fracture linear flow stage, which is obvious
because there are not any explicitly fractures connected with wellbore in the DPM. Table 1
lists the parameters for the FNM, the upscaling ones of the FNM, and the interpretative results
with the DPM.

Table 1 Parameter comparison between FNM and DPM

Parameter FNM FNM(upscaling) DPM

C 0.001 m3/MPa − 9.64×10−4 m3/MPa
S − − −2.41

Km 1 mD − −

Kf 1.0×106 mD 400 mD 400 mD
d 5 m − −

w 0.001 m − −

ω − 4.00×10−4 8.59×10−2

λ − 3.20×10−5 2.79×10−5
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The well storage coefficients of the two models are almost the same. The skin factor of the
FNM is zero, and it is −2.41 in the DPM. This can be explained by the fact that the fractures
connected with wellbore exhibit a negative geometrical skin SG given by[21]

SG = G
( Kfw

Kmd

)
+ ln

2rw

d
, (33)

where G is a correction parameter to account for the pressure losses resulting from the low
fracture conductivity. The value of SG can be derived from Fig. 3(10) in Ref. [22], and it turns
out to be −3.21. There is an error between the DPM and the FNM. It can be explained by
the fact that there are four half-fractures connected with wellbore, and the well test matching
is not very precise.

In Table 1, the parameter Kf for the DPM is the permeability of the whole system which is
estimated from the radial flow in Fig. 8. It is exactly the same with the result of DPM, which
implies that the permeability estimated from the DPM is credible, and the upscaling method
of FNM is correct. The value of ω estimated by using the DPM is 0.085 9 which is two orders
of magnitude larger than the FNM. The value of λ estimated from the DPM is 2.79×10−5, and
it is less than the value of the FNM by 12.80%. These results imply that if we set the same
parameters of the FNM and the DPM, the log-log type curves of them will be different before
the radial flow stage.

From the comparison between the DPM and the FNM, the DPM can be used to estimate
the permeability of the whole system. However, when it is applied to estimate ω and λ by well
test of field data, it will give rise to a big error especially for ω, which affects the judgement
of naturally fractured reservoirs. This big error is caused by the congenital defect of the DPM
mentioned in the introduction. In the DPM, each of the matrix blocks is in the same state, and
the pressure of fracture system is constant in the spacial domain. Nevertheless, matrix blocks
of different distances from wellbore are in different states which implies that the exchange
rates of different matrix blocks are different. In Fig. 8(c), we can see that the pressure of
fractures varies with distance from wellbore. The exchange rate of the matrix blocks closer
to wellbore is much larger than that of the further one. Another cause of the big error is the
constant boundary condition for calculation of α presented in Fig. 1. As seen from Fig. 8(c),
the pressure of surrounding fractures is not constant. Therefore, we can conclude that the DPM
will overestimate ω and underestimate λ.
4.3 Effect of fracture permeability

Figure 12 shows the bottom hole pressure response curves of different fracture permeability.
As seen, the fracture permeability plays a decisive role on the permeability of the system. It
can be explained by Eq. (30). The larger the fracture permeability is, the earlier the fracture
linear flow begins, and the latter the transfer flow begins, which can be explained by the fact
that the larger fracture permeability implies a smaller λ from Eq. (2).

Also, we choose the case of Kf = 105 mD to compare with the DPM by the method
mentioned in Subsection 4.2. The results of two models are listed in Table 2. We can see that
the upscaling permeability is just the same as the value of the DPM. The focus should be on ω
and λ. From the last two rows, ω estimated from the DPM is almost three orders of magnitude
larger than that from the FNM, and λ estimated from the DPM is less than the value of FNM
by 17.50%, which coincides with the conclusion of Subsection 4.2.
4.4 Effect of matrix permeability

Figure 13 presents the bottom hole pressure response curves of different matrix permeability.
As shown, the matrix permeability dominates the fracture linear stage and matrix transforma-
tion stage. The larger the matrix permeability is, the smaller the slope of pressure and pressure
derivate curve is in the fracture linear stage. The larger matrix permeability leads to the smaller
dimensionless fracture conductivity, and the fracture linear flow transfers to the fracture bilin-
ear flow. The higher the matrix permeability is, the earlier the pressure derivate curve goes
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Fig. 12 Bottom hole pressure response curves of different fracture permeability (pw: solid line; p
′

w:
dashed lines)

down in the matrix transformation stage. It is just similar to the influence of λ in the DPM,
and this can be explained by the fact that larger Km implies a larger λ from Eq. (2). In Fig. 13,
when Km =10 mD, the matrix transformation stage even covers up the fracture network flow
stage. The radial flow stages of Km=10 mD and Km=1 mD are coincident, which implies that
the matrix permeability contribution to the whole system is small.

Table 2 Parameter comparison between FNM and DPM for different Kf

Parameter FNM FNM(upscaling) DPM

C 0.001 m3/MPa − 6.87×10−4 m3/MPa

S − − −2.52

Km 1 mD − −

Kf 1.0×105 mD 40 mD 40 mD

d 5 m − −

w 0.001 m − −

ω − 4.00×10−4 10.1

λ − 3.20×10−4 2.64×10−4

Fig. 13 Bottom hole pressure response curves of different matrix permeability (pw: solid line; p′

w:
dashed lines)

A comparison between the case of Km=10 mD and the DPM is performed, and the results
are listed in Table 3. We also focus on ω and λ, and the same conclusion can be made from the
last two rows in Table 3.
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Table 3 Parameter comparison between FNM and DPM for different Km

Parameter FNM FNM(upscaling) DPM

C 0.001 m3/MPa − 9.79×10−4 m3/MPa
S − − −2.37

Km 10 mD − −

Kf 1.0×106 mD 400 mD 400 mD
d 5 m − −

w 0.001 m − −

ω − 4.00×10−4 1.24×10−2

λ − 3.20×10−4 2.57×10−4

4.5 Effect of fracture density

The fracture density can be obtained from the matrix block size when the reservoir size is
fixed. Next, we discuss two kinds of circumstances. The first circumstance is d1 = d2, which
means that the matrix block is square. Fracture densities of x- and y-directions increase or
decrease at the same time. The second is fixing d1 and increasing or decreasing d2.

Figure 14 presents the bottom hole pressure response curves of different fracture density
of x- and y-directions. It shows that the fracture linear flow stage sustains shorter with the
increase of fracture density. This is because the interference of other direction’s fractures occurs
early when the fracture density is large.

Another influence of fracture density is the permeability of whole system which is obvious
from Eq. (30).

Fig. 14 Bottom hole pressure response curves of different fracture density (pw: solid line; p′

w: dashed
lines)

The bottom hole pressure response curve of different fracture density in y-direction is plotted
in Fig. 15. The effect of this situation is similar to the one shown in Fig. 14.

Figure 16 presents the pressure field of the nonuniform fracture density, which has been
discussed in Fig. 15. The pressure expands smaller in the x-direction whose fracture density is
larger. The flow in the formation is the elliptic flow.

We perform a comparison between the case of d1=5 m, d2=15 m and the DPM. However, in
this case, the upscaling formulas have to be modified. The volume ratio of fracture is modified
to

Vf = 2(w/2)(d1 + d2)/(d1d2) = w(d1 + d2)/(d1d2). (34)

Then, Eqs. (30) and (32) are appropriate for the situation of nonuniform fracture density. Table
4 lists the results of FNM and DPM. It should be noted that the differences of ω and λ between
the FNM and the DPM enlarge in the situation of nonuniform fracture density.
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Fig. 15 Bottom hole pressure response curve of different fracture density in y-direction (pw: solid
line; p

′

w: dashed lines)

Fig. 16 Pressure field of FNM

Table 4 Parameter comparison between FNM and DPM for different d1 and d2)

Parameter FNM FNM(upscaling) DPM

C 0.001 m3/MPa − 9.82×10−4 m3/MPa
S − − −2.37

Km 1 mD − −

Kf 1.0×106 mD 266.66 mD 253 mD
d1, d2 5 m, 15m − −

w 0.001 m − −

ω − 2.66×10−4 5.57×10−2

λ − 4.80×10−5 2.57×10−5

5 Conclusions

(i) A fracture network numerical well test model is developed based on the discrete-fractured
model. The model equations are solved by finite-element method, and the bottom hole pressure
response curve is obtained, which can be divided into seven stages according to the curve type
and pressure filed.

(ii) An upscaling method is developed to calculate the corresponding parameters of DPM.
Then, the FNM can be used to investigate the DPM. Comparison results show that the DPM
overestimates the storage factor ω by two orders of magnitude and the inter-porosity coefficient
λ by less than 20%.
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(iii) The effects of parameters are analyzed. The fracture permeability dominates the per-
meability of the whole system. The larger the fracture permeability is, the earlier the fracture
linear flow begins. The matrix permeability dominates the fracture linear stage and matrix
transformation stage. The larger the matrix permeability is, the smaller the slope of pressure
and pressure derivative curve is in the fracture linear stage, and the earlier the pressure deriva-
tive curve goes down in the matrix transformation stage. Fracture density is another parameter
which affects the permeability of the whole system. The larger the fracture density is, the higher
the permeability of the whole system is. The feature of the fracture linear flow can be covered
up when the fracture density is large. In the situation of nonuniform fracture density, the flow
is elliptic, and the pressure expands slower along the direction of larger fracture density. All
these effects are corresponding to effects of ω and λ.

(iv) Comparisons between the FNM and the DPM are also performed under different con-
ditions. All these comparisons confirm the fact that the DPM overestimates ω and λ.
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