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SUMMARY

Problems in the characteristic-wise flux-split based finite difference method when compressible flows with
contact discontinuities or material interfaces are computed were presented and analyzed. The current analysis
showed the following: (i) Even with the local characteristic decomposition technique, numerical errors could
be caused by point-wise flux vector splitting (FVS) methods, such as the Steger–Warming FVS or the van
Leer FVS. Therefore, the Lax–Friedrichs type FVS method is required. (ii) If the isobars of a material
are vertical lines, the combination of using the local characteristic decomposition and the global Lax–
Friedrichs FVS can avoid velocity and pressure oscillations of contact discontinuities in this material for
weighted essentially non-oscillatory (WENO) schemes. (iii) For problems with material interfaces, the quasi-
conservative approach can be realized using characteristic-wise flux-split based finite difference WENO
schemes if nonlinear WENO schemes in genuinely nonlinear characteristic fields can be guaranteed to be
the same and the decomposition equation representing material interfaces is discretized properly. Copyright
© 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

It is well known that numerical solutions of a conservative scheme show spurious oscillation in pres-
sure and velocity in compressible flows with contact discontinuities or material interfaces [1–5]. For
single-material contact discontinuities, numerical oscillations may be caused by nonlinear equation
of state (EOS) [1] and component-wise reconstruction of conservative variables [3]. Numerical
oscillations caused by the component-wise reconstruction of conservative variables can be avoided
by reconstructing primitive or characteristic variables [3]. However, to avoid numerical oscillations
caused by nonlinear EOS, the conservative Godunov-type method might have to be abandoned
[1, 2]. Recently, Lee et al. [2] developed an adaptive framework by switching between a primitive
and a conservative numerical scheme for the Euler equations with highly nonlinear EOSs, yield-
ing good results. In problems with material interfaces, pressure and velocity oscillations are also
introduced when conservative methods are used [4, 5]. A fully conservative Godunov-type scheme
cannot maintain pressure equilibrium and will develop a pressure oscillation across material inter-
faces [5]. In order to overcome this difficulty, several fully nonconservative [6] and non-strictly
conservative [7–11] approaches have been proposed. Among these attempts, the quasi-conservative
approach proposed by Abgrall [9] appears promising and has been extended to problems with
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complicated EOSs [12–14]. This approach has been realized with low-order finite volume methods
(FVM), such as first-order and second-order variable reconstruction with various Riemann solvers
[15]. Recently, this approach has been extended to high-order weighted essentially non-oscillatory
(WENO) reconstruction with the Harten–Lax–van Leer–Contact solver [16] by Johnsen et al. [17,
18]. They suggested that only the reconstruction of primitive variables can eliminate the spurious
oscillations because the specific heat ratio is not constant [17].

On the other hand, finite difference method (FDM), particularly the flux-split based FDM, is
widely used in simulations of multi-scale problems [19]. However, the types of computational dif-
ficulties associated with the use of flux-split based FDM, particularly the frequently used nonlinear
FD WENO schemes, in solving problems of compressible flows with contact discontinuities and/or
material interfaces are not known. As argued by Nonomura et al. [20], the technique proposed by
Johnsen and Colonius [17] cannot be applied to flux-split based FD WENO schemes because these
schemes do not include primitive variable reconstruction.

In [21], we revealed that the two steps in the flux-split based FDM result in numerical oscillations
[21]. In the first step, flux vector splitting (FVS) methods, such as the Steger–Warming FVS [22] and
van Leer FVS [23], are frequently used to split the flux vector into positive and negative flux vectors.
However, these methods do not prevent velocity and pressure oscillations [5, 24]. Such FVS methods
are called point-wise FVS methods. In contrast, the Lax–Friedrichs type FVS method proposed by
Shu [25, 26] is found to have the ability to prevent this difficulty, and the global Lax–Friedrichs
FVS [26] was identified as the most simple and efficient FVS method [21]. In the second step,
FD schemes such as WENO schemes are implemented to obtain the numerical flux. The popular
method is to use the schemes in each equation directly; this may be described as being implemented
in a component-wise fashion [26]. However, nonlinear component-wise WENO discretization can
also cause numerical oscillations, and such numerical oscillations should be avoided by special
treatments of implementing WENO schemes consistently [21].

In fact, FD schemes can also be implemented in a characteristic-wise fashion [26] to obtain the
numerical flux. Through numerical simulations, Qiu and Shu [27] showed that if the characteristic-
wise flux-split based FDM was used, that is, the local characteristic decomposition technique
was adopted in the second step of the flux-split based FDM, essentially nonoscillatory solu-
tions of WENO schemes could be obtained. Therefore, it is important to determine whether the
characteristic-wise flux-split based FDM can prevent oscillations of velocity and pressure in com-
pressible flows with contact discontinuities or material interfaces. This is the topic of the present
work. The following conclusions were deduced:

� Even with the local characteristic decomposition technique, numerical errors could be caused
by point-wise FVS methods, such as the Steger–Warming FVS or the van Leer FVS. In contrast,
this difficulty can be prevented by using the Lax–Friedrichs-type FVS method proposed by
Shu [25, 26], and the global Lax–Friedrichs FVS [26] was identified as the most simple and
efficient FVS method.
� It can be theoretically proven that if the isobars of a material are vertical lines, the com-

bination of using the local characteristic decomposition and the global Lax–Friedrichs FVS
can prevent velocity and pressure oscillations of contact discontinuities in this material for
WENO schemes.
� For problems with material interfaces, the quasi-conservative approach proposed by Abgrall

[9] can be realized using characteristic-wise flux-split based FD WENO schemes if nonlinear
WENO schemes in genuinely nonlinear characteristic fields are guaranteed to be the same and
the decomposition equation representing material interfaces is discretized properly.

The paper is organized as follows. Section 2 focuses on the governing equations and numeri-
cal framework. Section 3 describes analyses of numerical errors. Numerical tests are described in
Section 4. The conclusions are given in Section 5.
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2. GOVERNING EQUATIONS AND NUMERICAL METHODOLOGY

2.1. Governing equations

The following one-dimensional Euler equation was considered:

ut C Œf(u)�x D 0 (1)

where u and f are given in the following form:

u D

0B@ �

�u

�E

1CA ; f D
0B@ �u

�u2 C p

.�E C p/u

1CA :
Here, � is the density, u is the velocity, E D �e C u2

2
is the total energy, e is the specific internal

energy, and p is the pressure. In this study, the Mie–Grüneisen type EOS p D �.�/�e C g.�/ [2]
was used, where �.�/ is the Grüneisen coefficient defined as �.�/ D 1

�
@p
@e
j� and the function g.�/

is defined in [2]. Accordingly, the sound speed c2 D @p
@�
je C

p

�2
@p
@e
j�.

2.2. Numerical methodology

After the spatial domain was discretized into an N -point grid with uniform grid spacing �x, the
mass, momentum, and energy conservation equations at point xi could be updated by one time step
(�t ) or substep:

unC1i D uni �
�t

�x
Fi ; (2)

where Fi D .F
�
i ; F

�u
i ; F

�E
i /T is defined as Fi �bfiC1=2 �bfi�1=2. Here,bfi˙1=2 is the numerical

flux at .i ˙ 1=2/.
From Equation (2), the velocity and internal energy per unit volume at time tnC1 are given by

unC1i D
.�u/nC1i

�nC1i

D
.�u/ni � F

�u
i �t=.�x/

�ni � F
�
i �t=.�x/

; (3)

.�e/nC1i D .�e/ni �
�t

�t
F
�E
i C

�
.�u/ni

�2
2�ni

�

�
.�u/ni � F

�u
i �t=.�x/

�2
2
�
�ni � F

�
i �t=.�x/

� : (4)

The flux-split based FDM usually involves two steps. The first step is usually to split the flux
vector into positive flux fC and negative flux vectors f� as f D fC C f�, where the two Jacobians
@fC

@u ;
@f�

@u are still diagonalizable and have only non-negative/non-positive eigenvalues [26]. In [21],
as the ideal-gas EOS was considered, in order to make a clear comparison between different FVS
methods for the simplest example of a problem: a single-material stationary contact discontinuity
discretized by the first-order upwind difference scheme, we presented a unified form of the Steger–
Warming FVS and Lax–Friedrichs type FVS as

f˙ D R
ƒ˙ƒ�

2
Lu; (5)

where R and L are matrices formed by the right and left eigenvectors, respectively, of the Jaco-
bian @f

@u . ƒ is a diagonal matrix formed by the corresponding eigenvalues �k.k D 1; � � � ; 3/

of @f
@u , which are ordered as �1 D u � c; �2 D u; �3 D u C c, where c is the local

sound speed. The diagonal matrix ƒ� formed by ��
k
.k D 1; � � � ; 3/ differs for different FVS

methods as follows: (i) in the Steger–Warming FVS, ƒ� D jƒj; and (ii) in the global
Lax–Friedrichs FVS,ƒ� D ˛I , where I is the identity matrix and ˛ D max16j63 j�j j of the whole
computation domain [26]. In fact, the global Lax–Friedrichs FVS is directly written as
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f˙ D
f˙ ˛u
2

: (6)

This method does not require the flux function to be a homogeneous function of degree one so that
the flux function can be expressed as a product of the Jacobian matrix and conservative variables.
Therefore, this method is suitable for materials described by complicated EOS.

The next step is to obtain the numerical flux via various conservative FD schemes. The
characteristic-wise fashion [26, 27] involves the following steps.

At each fixed xiC1=2, the average state uiC1=2 is computed by the simple mean or the Roe mean.
The corresponding eigenvalue, left eigenvector, and right eigenvector are denoted by �k;iC1=2,
lTk;iC1=2, and rk;iC1=2, where k D 1; � � � ; 3.

The local characteristic decomposition of the flux function at xm are computed using qCm D
LiC1=2fCm and q�m D LiC1=2fCm, where the matrix LiC1=2 is formed by the row vectors lTk;iC1=2
and m D i � l; � � � ; i C r labels the points from the leftmost to the rightmost in the stencil of the
conservative scheme. Using the nonlinear scheme to obtain the characteristic numerical flux in each
characteristic field, we obtainbqC

k;iC1=2
andbq�

k;iC1=2
. Then, we obtainbqC

iC1=2
andbq�

iC1=2
.

Finally, transforming back into physical space, we obtain bfiC1=2 D bfC
iC1=2

C bf�
iC1=2

D

RiC1=2.bqCiC1=2 Cbq�iC1=2/, where the matrix RiC1=2 is formed by the column vectors rk;iC1=2.

3. NUMERICAL ERROR ANALYSIS

Noticing that the velocity u and pressure p were constant at time tn, we denoted them as u0 and p0.
Using the specific expression of RiC1=2,

RiC1=2 D

0B@ 1 1 1

u0 � ciC1=2 u0 u0 C ciC1=2

siC1=2 C
u2
0

2
� u0ciC1=2

u2
0

2
C biC1=2 siC1=2 C

u2
0

2
C u0ciC1=2

1CA ; (7)

where the siC1=2
�
� eiC1=2 C

p0
�iC1=2

�
, sound speed ciC1=2, Grüneisen coefficient �iC1=2, and

biC1=2

�
� siC1=2 �

c2
iC1=2

�iC1=2

�
were calculated in terms of uiC1=2, we have,

bf˙iC1=2 D
0BBB@

P3
kD1bq˙k;iC1=2

u0

�P3
kD1bq˙k;iC1=2�C ciC1=2Q˙M;iC1=2

u2
0

2

�P3
kD1bq˙k;iC1=2�C u0ciC1=2Q˙M;iC1=2 C siC1=2Q˙P;iC1=2 C biC1=2bq˙2;iC1=2

1CCCA ;
(8)

where

Q˙M;iC1=2 Dbq˙3;iC1=2 �bq˙1;iC1=2; (9)

Q˙P;iC1=2 Dbq˙3;iC1=2 Cbq˙1;iC1=2: (10)

3.1. Necessity of Lax–Friedrichs type flux vector splitting

In [21], we reported that the general condition for Equation (5), coupled with the first-order upwind
scheme to avoid velocity a nd pressure oscillations for a stationary contact discontinuity, is that
.��1/m D .�

�
3/m D .�

�
0/m for a fixed point xm and .��0/m should be kept constant for arbitrary val-

ues ofm, wherem D i � l; � � � ; iC r labels the points from the leftmost point to the rightmost point
in the stencil of the conservative scheme. In order to avoid introducing numerical oscillations by
FVS for contact discontinuities, the relation

�
.��1/m D .�

�
2/m D .�

�
3/m D const

	
should hold for

arbitrary point in the stencil. Therefore, although the equations are decoupled when the local char-
acteristic decomposition technique is used, the Steger–Warming FVS will still introduce numerical
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oscillations because .��
k
/i .k D 1; � � � ; 3I i D 1; � � � ; N / is different for different grid points. In con-

trast, the global Lax–Friedrichs FVS was found to be the most simple and efficient method to satisfy
these constraints in which .��

k
/m is set to a constant ˛ for the entire computation field and is used

as the foundation of analyses hereafter.

Remark 1
When the local characteristic decomposition technique is adopted, the local Lax–Friedrichs flux
splitting method [25] can also be used in each characteristic field. Following the notations used in
this paper, the local Lax–Friedrichs flux splitting can be written as

q˙k;m D
1

2
lTk;iC1=2

�
fm ˙ ˛k;iC1=2um

	
; (11)

where ˛k;iC1=2 (� max.j.�k/i j; j.�k/iC1j/) at i C 1=2 in the kth characteristic field [25, 28]. The
following conclusions are still valid for the local Lax–Friedrichs flux splitting method. However,
this method cannot be used in a component-wise fashion.

3.2. One-dimensional contact discontinuity problem

In [21], we reported that even with the ideal-gas EOS, numerical oscillations can be caused by
component-wise nonlinear difference discretization among equations. In this section, we present the
following theoretical derivation:

� For a material whose isobars are vertical lines in the (�e; �) plane, that is, �iC1=2.�/ D � ,

g.�/ D g, siC1=2 D
c2
iC1=2

�iC1=2
and biC1=2 D 0, by combining the local characteristic decom-

position and the global Lax–Friedrichs FVS, velocity and pressure oscillations of contact
discontinuities can be avoided for WENO schemes.

When the global Lax–Friedrichs FVS is used, the local positive/negative characteristic fluxes can
be written as

q˙m D
�iC1=2

2c2
iC1=2

0BBBBB@
u2
0

2
C

u0ciC1=2
�iC1=2

�u0 �
ciC1=2
�iC1=2

1

2c2
iC1=2

�iC1=2
� u20 2u0 �2

u2
0

2
�
u0ciC1=2
�iC1=2

�u0 C
ciC1=2
�iC1=2

1

1CCCCCA
0BB@

.�u/m˙˛�m
2

.�u2Cp/m˙˛.�u/m
2

.�EuCpu/m˙˛.�E/m
2

1CCA : (12)

For a contact discontinuity, the velocity and pressure are constant and the local positive/negative
characteristic fluxes can be simplified into

q˙m D

0BBBBB@
� 1
2ciC1=2

p0
2
C

�iC1=2

2c2
iC1=2

u0˙˛
2

�
p0�g
�

	
m

u0˙˛
2

2c2
iC1=2

��iC1=2u0

2c2
iC1=2

�m �
�iC1=2

c2
iC1=2

u0˙˛
2

�
p0�g
�

	
m

1
2ciC1=2

p0
2
C

�iC1=2

2c2
iC1=2

u0˙˛
2

�
p0�g
�

	
m

1CCCCCA : (13)

By denoting the discretization operator of WENO schemes used in the kth characteristic field as
D˙
k;iC1=2

, the characteristic numerical fluxes Oq˙
1;iC1=2

and Oq˙
3;iC1=2

in Equation (8) can be written as

bq˙1;iC1=2 D D˙1;iC1=2 �� 1

2ciC1=2

p0

2

�
CD˙1;iC1=2

 
�iC1=2

2c2
iC1=2

u0 ˙ ˛

2

�p0 � g
�

�
m

!
; (14)

bq˙3;iC1=2 D D˙3;iC1=2 � 1

2ciC1=2

p0

2

�
CD˙3;iC1=2

 
�iC1=2

2c2
iC1=2

u0 ˙ ˛

2

�p0 � g
�

�
m

!
: (15)
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Then we have

Q˙P;iC1=2 D D
˙
3;iC1=2

�
 ˙iC1=2

�p0 � g
�

�
m

�
CD˙1;iC1=2

�
 ˙iC1=2

�p0 � g
�

�
m

�
; (16)

Q˙M;iC1=2 D
p0

2ciC1=2
CD˙3;iC1=2

�
 ˙iC1=2

�p0 � g
�

�
m

�
�D˙1;iC1=2

�
 ˙iC1=2

�p0 � g
�

�
m

�
; (17)

where  ˙
iC1=2

D
�iC1=2

2c2
iC1=2

u0˙˛
2

.

Finally, for a single-material problem (�=const,g=const), Equations (16) and (17) can be
simplified further into

Q˙P;iC1=2 D
u0 ˙ ˛

2

p0 � g

c2
iC1=2

; (18)

Q˙M;iC1=2 D
p0

2ciC1=2
: (19)

Using Equations (19) and (8) and the definition of Fi , we can obtain F �ui D u0F
�
i . Substituting

this relation to Equation (3), we can obtain unC1i D uni D u0. Under this condition without velocity

oscillation, we can similarly have F �Ei D
u2
0

2
F
�
i by using Equations (18), (19), and (8) and the

definition of Fi . Substituting this relation to Equation (4), we have .p�g
�
/nC1i D .p�g

�
/ni , that is,

pnC1i D pni D p0. Thus, the condition without pressure oscillation is obtained.

Remark 2
It should be noted that the intrinsic nonlinear mechanism of nonlinear WENO schemes may also
induce numerical oscillations. It has been reported that numerical solutions are sensitive to the �
value, which is used to avoid division by zero in the nonlinear weights formulation [29–32]. Even for
a simple linear equation such as the linear advection equation, the nonlinearity of WENO schemes
can generate spurious high-mode oscillations [32]. Furthermore, these numerical oscillations will
be generated regardless of the value of �, and the amplitude of the spurious oscillations increases
with smaller � values [32].

3.3. Extension to multi-material flow

For multi-material flows where the ratio of specific heat � is not constant, Abgrall [5, 9] proposed a
quasi-conservative approach as follows: (i) the proper variable to represent the fluid composition is
a function of the ratio of specific heat (i.e., 	 D 1

��1
); and (ii) the equation of 	 should be written as

@	

@t
C u

@	

@x
D 0: (20)

Here, we attempted to realize Abgrall’s quasi-conservative approach by using the characteristic-wise
flux-split based finite difference WENO schemes.

The Grüneisen coefficient for this case is �.�/ D ��1 and the function g.�/ is zero. If we assume
that the expressions of D1;iC1=2 and D3;iC1=2 are the same (denoted by D0;iC1=2), Equations (16)
and (17) can further be simplified into

Q˙P;iC1=2 D 2D
˙
0;iC1=2

�
 ˙iC1=2

p0

� � 1

�
; (21)

Q˙M;iC1=2 D
p0

2ciC1=2
: (22)
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Using Equations (22) and (8) and the definition of Fi , we can obtain F �ui D u0F
�
i . Substituting this

relation to Equation (3), we can obtain unC1i D uni D u0. Under this velocity equilibrium, we can
further obtain

F
�E
i D

u20
2
F
�
i C 2siC1=2D

C
0;iC1=2

�
 C
iC1=2

p0

� � 1

�
C 2siC1=2D

�
0;iC1=2

�
 �iC1=2

p0

� � 1

�
�2si�1=2D

C
0;i�1=2

�
 C
i�1=2

p0

� � 1

�
� 2si�1=2D

�
0;i�1=2

�
 �i�1=2

p0

� � 1

�
:

(23)

For WENO schemes that are combinations of low-order linear schemes [33], similar to that in [21],
the constants  ˙

i˙1=2
can be extracted from the discretization operator. Therefore, Equation (23) can

be simplified into

F
�E
i D

u20
2
F
�
i C

u0 C ˛

2

�
DC
0;iC1=2

�
p0

� � 1

�
�DC

0;i�1=2

�
p0

� � 1

��
C
u0 � ˛

2

�
D�0;iC1=2

�
p0

� � 1

�
�D�0;i�1=2

�
p0

� � 1

��
:

(24)

Substituting this relation to Equation (4), we can obtain�
p

� � 1

�nC1
i

D

�
p

� � 1

�n
i

�
�t

�x

u0 C ˛

2

�
DC
0;iC1=2

�
p0

� � 1

�
�DC

0;i�1=2

�
p0

� � 1

��
�
�t

�x

u0 � ˛

2

�
D�0;iC1=2

�
p0

� � 1

�
�D�0;i�1=2

�
p0

� � 1

��
:

(25)

If the following equation�
1

� � 1

�nC1
i

D

�
1

� � 1

�n
i

�
�t

�x

ui C ˛

2

�
DC
0;iC1=2

�
1

� � 1

�
�DC

0;i�1=2

�
1

� � 1

��
�
�t

�x

ui � ˛

2

�
D�0;iC1=2

�
1

� � 1

�
�D�0;i�1=2

�
1

� � 1

��
;

(26)

is strictly held, which is simply the proper discrete form of Equation (20), the pressure equilibrium
is maintained (see [21] for more information).

In general, the expressions of D1;iC1=2 and D3;iC1=2 are not the same. However, this constraint
can be satisfied by using the common weights technique (see [21] for more information).

4. NUMERICAL TESTS

For the numerical tests in the following, the classical fifth-order finite difference WENO scheme
(denoted as WENO5) [33] was used. The third-order total variation diminishing Runge–Kutta
scheme [34] with the CFL number set to 0.01 in order to avoid any numerical errors caused by
time integration was used for time integration, and initial values were fixed on the left and right
boundaries of the spatial domain.

4.1. One-dimensional isolated contact discontinuity in air

We considered an isolated contact discontinuity, and the initial condition was

.�; u; p/ D

´
.2; 1; 1=�air / 0 6 x 6 0:1
.0:1; 1; 1=�air/ 0:1 6 x 6 2:

(27)
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The computation was performed using N D 401 grid points, with a uniform grid spacing of �x D
0:005. Results at t D 0:45 are shown in Figures 1 and 2.

Figures 1 and 2 show the profiles of density, velocity, and pressure for the implementations of
different numerical methods, and the profiles of theoretical solutions are also plotted for compari-
son. In Figures 1 and 2, “SW”, “VL”, and “GLF” denote the Steger–Warming FVS, van Leer FVS,
and global Lax–Friedrichs FVS, respectively; "LCD" stands for the local characteristic decomposi-
tion technique with Roe approximation. According to our analysis, numerical oscillations of either
pressure or velocity can be expected if a point-wise FVS, such as the Steger–Warming FVS or van
Leer FVS, is used, and this is confirmed in Figure 2, where remarkable numerical oscillations can
be observed near the location of contact discontinuity. Furthermore, the oscillations can spread into
density (as shown in Figure 1), which is in contrast to that performed in the component-wise fashion
[21]. The combination of using the local characteristic decomposition and global Lax–Friedrichs
FVS can successfully prevent this type of numerical oscillations.

4.2. One-dimensional isolated contact discontinuity with different equations of state

We continued to consider an isolated contact discontinuity, but the material was described by
different EOS. The first one was the stiffened EOS:

p D .� � 1/�e � �…; (28)
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Figure 1. Density distributions at time t D 0:45.
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Figure 2. Velocity (left) and pressure (right) distributions at time t D 0:45.
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where � is the usual ratio of specific heats (� > 1) and… is a prescribed pressure-like constant with
the parameter values taken in turn to be � D 4:4,… D 6�108Pa [13] in this paper. The second was
the van der Waals EOS:

p D
� � 1

1 � 
�
.�e C ��2/ � ��2; (29)

where � is the ratio of specific heats and the quantities �, 
 are the van der Waals gas constants for
molecular cohesive forces and the finite size of molecules [13]. In this study, � D 1:4, � D 5Pa
m6/kg2, and 
 D 10�3m3/kg were used for the van der Waals gas [13]. The initial condition was

.�; u; p/ D

´
.�0; 100m/s; 105Pa/ 0m 6 y 6 5m

.0:1�0; 100m/s; 105Pa/ 5m 6 y 6 10m:
(30)

For the stiffened liquid, the reference density was set to �0 D 1000kg/m3, and for the van der
Waals gas, the reference density was set to �0 D 50kg/m3. The Roe approximation was used for the
local characteristic decomposition, and the global Lax–Friedrichs FVS was used for the numerical
fluxes. This test was performed on a uniform mesh of N D 401 grid points. Results at t D 25ms
are shown in Figures 3 and 4.

Figures 3 and 4 show the profiles of scaled density, velocity, and pressure of different materials.
According to our analysis, if the isobars are vertical lines in the .�e; �/ plane, the combination of
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Figure 3. Scaled density distributions at time t D 25ms.
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Figure 4. Velocity (left) and pressure (right) distributions at time t D 25ms.
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using the local characteristic decomposition and global Lax–Friedrichs FVS can prevent velocity
and pressure oscillations in contact discontinuities. This claim was confirmed by the results of
the stiffened liquid. In contrast, for the van der Waals gas, numerical oscillations of velocity and
pressure appeared.

5. CONCLUSION

Two steps are involved in flux-split based FDMs: split the flux vector into the positive/negative flux
and use an FD scheme to construct the numerical flux. The current analysis showed the following: (i)
Even with the local characteristic decomposition technique, numerical errors could be caused by the
point-wise FVS method. In contrast, the global Lax–Friedrichs FVS was found to have the ability to
avoid such numerical errors; and (ii) If the isobars of a material are vertical lines, the combination of
using the local characteristic decomposition and the global Lax–Friedrichs FVS can prevent velocity
and pressure oscillations in contact discontinuities in this material for WENO schemes.

For problems with material interfaces, the quasi-conservative approach proposed by Abgrall
[9] can be realized by the characteristic-wise flux-split based FD WENO schemes if nonlinear
WENO schemes in genuinely nonlinear characteristic fields are guaranteed to be the same and the
decomposition equation representing material interfaces is discretized properly.
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