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ABSTRACT : A macro slip theory is presented in this paper. Four independent slip systems are proposed for
polycrystalline solids. Each slip system consists of a slip plane which lies on a face of the octahedron in stress
space and a slip direction whick is coincident with shear stress acting on the same face of the octahedron . It
is proved that for proportional loading, present results are identical with the classical flow theory of plasticity.
For nonproportional loading, the macro slip theory shows good predicting ability . The calculated results are
in good agreement with the experimental data.
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I. INTRODUCTION

The slip model is well known in the fields of the crystal plasticity. The early work given by
Taylor[” , Orowan'?, Polanyi!?, Schmid ¥ has clearly revealed the slip mechanism of crystal .

The accurate description of deformation kinematics is due to Hill!¥ , Rice!® , Asaro!” ,
Nemat-Nasser'® , Hill and Havner'” . .

The overall elastic-plastic response of polycrystalline metals can be predicted in terms of sin-
gle crystal plasticity. The classical theory is the rigid-plastic model proposed by Taylor!* and
Bishop & Hill!"!. Lin "% developed a modified theory of Taylor model by taking account of
elastic deformation .

The self-consistent model by Kroner!' and Budiansky & Wu!" is the first elastic-plastic
theory without the assumption of uniform strain of whole polycrystalline metals and satisfying
indirectly the condition of traction and displacement continuities. Hill!!¥ developed a new
self-consistent model accounting for the plastic accommodation effect of matrix. Berveiller and
Zaoui''® modified the KBW model by taking into account the plastic accommodation effect
approximately. Weng and Chiang!'” assessed influence of plastic constraint factor on polycrystal
behaviour. Weng!'"® proposed an anistropic hardening formula .

On the other hand, Lin!"! presented an explicit polycrystal model to assess the overall elas-
tic-plastic behaviour of polycrystalline metals .

The polycrystalline metal is taken as an aggregate solid in all of these theories , where com-
plex calculations and extensive comparison with experimental data are required in order to get
the material constants .

This paper presents a new macro slip theory in which the slip model will be directly applied
to the description of macroscopic elastic-plastic response of polycrystalline metals. In the second
section , the basic description of macro slip theory of plasticity is outlined . The proportional
loading condition is analysed. It is proved that the present results are coincident with the classi-
cal flow theory for proportional loading. The general formulas for non-proportional loading of
plane stress are given in the third section .

II. BASIC DESCRIPTION
According to the Mises yield criterion, ihe octahedral shear stress t; on any face of the
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octahedron in the stress space is equal to a\/? /3 . We can imagine that the polycrystalline sol-
id has eight slip systems . Each slip system has a slip plane which is coincident with one face of
octahedron and a slip direction which is coincident with the shear stress on the corresponding
face of the octahedron. Among those eight slip systems only four slip systems are
independent .

Hence the whole slip system of metallic solids consists of four independent slip systems. At
any stage of deformation, these four slip systems are all determined by instantaneous stress
state .

The octahedron in the stress space is shown in Fig.1. The axes of coordinate system
OX X, X, are coincident with the principal axes of stresses . The unit normal s ‘" of plane ABE
has the components :

nV=1//3 Q.1)

We denote a tensor with a bold letter . The
matrix consisting of components of a tensor T is
represented by T .

The normal stress ¢, on face ABE is equal

to

6,= (a,tay+a,)73 2.2)
The stress vector on plane ABE is

£= (0'1 23] 0'3)T/\/? (23)

The shear stress vector on plane ABE is equal
to

l=’£_ Oy E= (Sl §y 53 )T/\/? (24)

The octahedral shear stress 7z is given by

Fig.1 The octahedron in the stress space. The axes of Ts:‘/sl w85, x5yF 55 x5, N, 3 (2.5)
coordinate system OX1X 2 X3 are coincident with
the principal axes of stresses Hence n ) is the unit normal of slip plane of
the first slip system. The unit vector m !’ along slip direction of the first slip system is
mV=(s 5, 5)N/3 15) (2.6)

Similarly we have other three independent slip systems. Their slip plane normals and slip direc-
tions are given as follows:

mP=(=s 5 ) /(/3 13)

a®=(=111 V//3

B=(=s, -5, 53)T/(\/? g)

Gl=(=1 -1 1 )T/\/? 2.7)
m“=(s, -5 )/ (/3 14)

2(4)=(1 -1 1 )T/\/?

These three slip systems lie on the plane BCE, CDE and DAE respectively . Below the plane
ABCD there are other four faces of the octahedron. The corresponding slip systems are
coincident with the first four slip systems respectively . Hence there are only four independent
slip systems altogether .

The plastic deformation rate D? can be expressed as

18

1=
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r'S

D’= E(u) .},'(a) a=1, -, 4 (2.8)

[+4

where |
B"’=7(@(“)®n"’+n(” @,_y(a)) 2.9)

Obviously the slip systems are determined by instantaneous stress state and vary with the stress
state . -
For proportional loading, the principal axes of stresses are kept unchanged. The resolved
shear stress 1'% acting on the four slip systems are always equal to 73 . Meanwhile the incre-
ment Ar‘® of the resolved shear stress is also always equal to Aty . Therefore all slip shear
rates should be identical .

We have

s 0O 0
. D?= _L34 0 s, 0
lo 0 s
D= 22 5 (2.10)
e~ 314 ~

Eq. (2.10) means that the components of plastic deformation rate tensor are proportional to
deviatoric stress components. That is the essential feature of the classical flow theory of
plasticity .
According to the classical flow theory of plasticity , we have
3%,
D’=;S = > S 2.11)

[4

Compare the Eqs. (2.10) and (2.11), it follows

. 3 = _ 3 o:e
= T BT a5 E, (2.12)
where E, is the tangent modulus of uniaxial temsion curve, and
E=do,/dE, 2.13)

II. NONPROPORTIONAL LOADING
We start discussing a two-dimensional problem . As shown in Fig.2, a thin wall cylinder of
metals is subjected to axial compression (or tension) and torsion .

Y
4]
x
X; 71
@
(] X
Fig.2 The thin wall cylinder of metal is subjected to Fig.3 The angle a between X- axis and

axial compression (or tension) and torsion the axis of the first principal stress
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Principal stresses can be expressed as
”1=(ax‘“’y)/z_«/(ax—ay)2/4+t§y a1

az=(a,+ay)ﬁ+ / (Gx"ay)/4+‘tfy

Let a denote the angle between x- axis and the axis of the first principal stress as shown in

Fig.3. We have
tga=21,,/{ (6,—0,)— /(ax—ay)2+4riy } (3.2)

Lete,,e, and ¢ . be the base vectors of coordinate system OXYZ and ¢, ¢, and ¢, be the

base vectors of principal axes of stresses. We find that
g=cosag,t sinag,
(3.3)

€,=—singe, tcosage,

S =L,
The transform matrix Q can be expressed as
cos g —sina 0
Q=| sina cos o 0 (3.4)
0 0 1
Hence we obtain
I;l ta) = Qm ()
A®=Qn® (3.5)

In detail , we have
m=(s,cosa—s,sina, 5 sina+s,cosa, 5 Y/(J3 1)
m @ =(=scosa—sysina, —ssinatsycosa, 530/ (/3 1)
(=5 cosa+s,sine, —sjcosa—sysinas 53)//3 15) 3.6)

2'1(3)=
(sycosa+s,sina, s;sina—s,cosa, 53)/(/3 15)

g’}(‘t):
n"=(cosa—sina. sina+cosa, 1)/,/3
n®=(-cosa—sina, —sina+cosa, 1)/,/3 4.7)
N 3.7
n ®)=(-cosa+sina, —sina—cosa, 1)/,/3

n @ =(cosa+sina, sina+cosa, 1)/,/3
) in the coordinate system OXYZ and rg(“)

} is the column matrix of the vector m ©
in the coordinate system OX X,X;, etc.

where g‘l‘“
is column matrix of the vector m @
The Schmid hardening law can be expressed as
. 4 . .
,L.(a)= Z haﬂy(ﬂ) y(a)>0
b=t a=1, - -4 (3.8)
4
T(a)szhaﬁ?(ﬂ) ,y(a):o

p=1
where 4,5 are the hardening coefficients which depend on the strain history

Here we emphasize that the resolved shear stress rate '® is referred to the updated slip
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plane . It means that we calculate the resolved shear stress rate on the slip plane which is fixed
on time f. On the next time r+Af, the new slip systems may lie on the faces of new
octahedron . But we take the resolved shear stress t‘®+A 1@ on the original slip plane at time
t. For the nonproportional loading the 7 *> will not equal to each other. But in the cage of
plane stress, we can prove that

$ W=7 ®)
$ D=7 @
For the sake of simplicity, we discuss only the case in which all slip systems are

continuously acting. The stress rate tensor g has components in the coordinate system of the
principal axes of stresses :

[ ‘E1: 0
g=| 1 o, 0
0 0 0

where ¢, , g,, 1,; are the components of stress rate tensor g on the coordinate systems of the
principal axes of stresses . On the other hand. the orientation tensors of slip systems take the
forms

B 5y (545,072 (5,+55)/2 ]
1
~1;.(|)=3_rg (5,+5,)7? 5 (5y7%53)72 (3.9)
_(s,+s3 )2 (s,+55)72 53
r T
1 5 (5:+5)72 = (5,+55)72
3=
PU=aL | e 5 ~(5,453)72 (3.10)
—(1+55)2 ~(5,45)72 5
L i
Noting .
. T “)=g :g“)=3| O.'1+(Sl+52)1.'12+ 5207
1= P V=501 (s, +5)t5+ 5,0, (3.11)
Hence we have ''=7%) | Similarly we can prove that t®) =74,

Now we look at the Schmid hardening law . We have
f(”=hn)5(” +h12);(2)+h13]/-(3)+h147;(4)
‘@) ‘(1) ‘(2) '3) *(4)
t'=h +hy v +h +h

- (3) 21 -yu) 22'1)2) 23'?1) 24-?4) (3.12)

=k 7Vt hyy P thyy Pt hyy

T'(“:hu};m*'hu);u)'*’ hagy D +hay®

The coefficient h;; represents the effect of slip shear rate };‘3) of the third slip system on the re-

solved shear stress rate 1) of the first slip system . We can image that it should be equal to
coefficients hyy . h3 and hy due to symmetry . Similarly we have

hy3=hyu=hy;=hg hy=hp=hy=hy
h12=h23=h34 =h4[ h21=h32=h43=h14
From Eq. (3.11), it follows that

.i.(l)_,,:,(3)=(h”_h3l) (,)}(1)_,y'(3))+(h12_h32) (,);(2)+,);(4))=0
T =D =(hy=hy) G~y O+ = k) G~ 7#)=0
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The determinant of above linear homogeneous algebraic equations is
A=y = hy) 4+ (= h3 >0

It follows that

S 0 3) P2) = 514
VYo=Y Yo=Y

Thercfore the behaviour of the first two slip systems seems to be the same as the rest slip

systems .
The Schmid hardening law can be represented as

W=y +h )y "+ Uyt k)3

(3.13)
t W=y thy) 3V +h) Y
Let
ho=h, g1=hathyy)/ 2Qhy)  g=h3/hy (3.14)
Eq. (3.13) becomes
e =ho{(1+g,)7 " +247% | (3.15)
(2)=h0{2q|)3(')+(1+qz)7;(2)}
The solution of Eq.(3.15) is
P =l 4y 1 =24,1 ) Aok ) (3.16)
@=L 2g, 1 V=U+g)1¥ V/ (Aghy)
where
=(1+g;) ~44} 3.17)

The solution should satisfy the constraint condition :
N )

For proportional loading. we have V=7 , 30=9@ It results

d
‘d—;‘ =ho(1+2¢,+q,)=H,
where Hy=h, (1+24 ,+4,).

On the other hand, from Eqs. (2.5) and (2.12) we obtain

Hence the parameter H, can be determined from uniaxial tension curve of materials .

In order to determine parameters ¢, and g, , it is necessary to get a set of experiment data .
A fine set of experiment data given by Budiansky et al .[*) has been used in this paper .

At first we should specify the equivalent plastic strain Z,. We have

< \’/__ : (:z)__

=g, 42 (a) (a) Z (a\ (a)_ “0'8

According to the principle of work conjunction proposed by Hill!? ,we can define the equivalent

plastic strain , as
‘o 2 4
a) — r= (@)
X Lo - e

a=1
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Fig.4 shows the loading path for the combined compression and shear tests of 14—-T4 alu-
minium alloy given by Budiansky et al.”?. All loading paths are bilinear. All specimens are
firstly subjected to uniaxial compression until o,= —1.40,, . Then loading takes the path along
which the ratio of do, /d7,, keeps constant. We select the data listed in Table 1 as the stand-
ard data from which one can find the parameters g, and ¢, .

Table 1 LS
dryxy
gx Txy Ex &y Yxv
ksi ksi 1073 1073 1073
0.0 0.0 0.0 0.0 0.0
5.98 0.0 0.593 0.209 0.007
10.82 0.0 1.042 0.373 0.012
15.20 0.01 1.451 0.522 0.022
19.65 0.0 1.870 0.676 0.025
24.15 0.0 2.298 0.837 0.028
27.95 0.01 2.745 1.008 0.037
30.35 0.0 3.204 1.214 0.028
31.65 0.0 3.630 1.438 0.043
32.40 0.0 4.078 1.662 0.050
33.07 0.0 4.527 1.893 0.092
33.80 0.0 5.062 2.168 0.117
33.86 0.01 5.096 2.183 0.120
34.04 0.13 5.172 2.219 0.139
34.15 0.28 5.248 2.267 0.181
34.22 0.54 5.511 2.398 0.272
34.67 0.78 5.894 2.584 0.384
35.08 1.04 6.320 2.803 0.520
35.27 1.21 6.539 2.904 0.580
35.61 1.43 6.867 3.063 0.683
36.02 1.79 7.533 3.349 0.865
36.70 2.26 8.233 3.692 1.117
36.73 2.68 8.682 3.907 1.330
37.54 3.23 9.808 4.446 1.761
38.24 3.71 10.902 4.985 2.172
Note: ¢y = axial contraction
£y = transverse expansion
o x = axial compressive stress
sor E=10.5%10°KSI
et =f(o)
dﬂ, 40L €x
Ldr" lJs—osss
= . E 30
E; 0.6 |- é 0= 25.0KSI
W 20+
0.4
0.378
0.2 1.18 10+
1.91
i i ) - —
0.4 0.8 1.2 1.6 0 i 1 -]
g, /o 5 10 15% 1072
o €, or ¢

Fig.4 The loading path for the combined compression
and shear tests of 14— T4 aluminum alloy given Fig.5 StressStrain curve in pure compression for
by Budiansky et al. 20} 14— T4 aluminum alloy , after [20]
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The Eq. (3.15) can be written in the incremental form :
AyP={(1+g AtV =24, A1 }/(Aghy)

(3.18)
AyP={2¢, AtV (1+4,)A1 '}/ (Aghy )
where
(l)_Aa. P(U

At®=Ag:P® -

Ao, A‘Exy 0
Aj=]At,, 0 0 (3.20)

0 0 0

*
where Ag and P ® are the matrix representations of stress increment tensor A¢ and orientation

tensor P@ in the coordinate system OXYZ .
On the other hand , we have
* (1) 3) )

Asx—(P” +P YA+ (BT + Py Ap@
(3.21)
= B+ PAy + B+ Ay ® -
Based on Eq. (3.20) the calculatxon results of incremental plastic strain can be worked out .
Let
d=(Aeh— (A& )ep VP H(AEL,—(AE%, ) )
where (Ael)e, and (A&} ),),, are the experimental results of incremental plastic strain .

Adjust the parameters ¢, and g, so that the calculated results will fit the experimental results
approximately . Our calculation shows that the result that ¢,=—0.95 and ¢,=1.4 gives very
good prediction on the plastic response .

Using the determined parameters ¢;,, g, and H, . one can calculate the elasto-plastic re-
sponse on any loading path. The calculated results for all loading paths shown in Fig.4, are
plotted in Fig.6 — Fig.11. For the sake of comparison, different calculation results predicted by
several theories are also shown in these figures. The solid line with small circle represents experi-

“ ”

mental data, the dashed line with short “— " represents the results of deformation theory, the
dashed line with longer “— " represents the results of flow theory,, symbols “ <> ”are the re-
sults of the slip theory proposed by Batdorf and Budiansky[m » small triangles “ A~ are the

present results of the macro slip theory. It can be seen that the present theory gives the best prediction .

d r / a0
//
Hr FLOW & DEF _o/‘
. | N /
- Y, EXP.
o Z 16 |- ?
< - i
=8 T
u 2 L — — FLOW THEORY
»n N © SLIP THEORY
n o{ — - -~ DEFORMATION
;? bé THEORY
0 B T i 1 | | |
35 39 ¢ 0.0004 0.0008 0 0,001 0.003 0.005
O ¥iy Ael
COMPRESSIVE STRESS,KSI PLASTIC STRAINS

Fig.6 Loading path and plastic strain: doyx /d‘t,\—)'=.1.91 .
The small triangle “ A ” represents the present result
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0 A 1 ] 111 1 1 1 S {
34 38 ¢ 0.0002 0,001 ¢ 0.001 0.005
Os ¥ Ael
COMPRESSIVE STRESS,KSI PLASTIC STRAINS

Fig.7 Loading path and plastic strain: dgx /dtxp=1.18.
The small triangle “A "represents the present result

SHEAR
STRESS . KSI r,,
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9_ EXPERIMENT
— = FLOW THEORY
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THEORY
0 1 | 1 1 14 L) - A |
38 40 0 0.0008 0.0016 ¢ 0.001 0,003 0.005
o, vE, A€l
COMPRESSIVE STRESSKSI | PLASTIC STRAINS

Fig.8 Loading path and plastic strain: doyx /d7.y=0.378.
The small trangle “A “represents the present result
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Fig.9 Loading path and plastic strain

The small triangle

T 1

7 ocy=CONSTANT
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PLASTIC STRAINS

tdox /dTxy=0.052.
‘4" represents the present result
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Fig.10 Loading path and plastic strain :
The small triangle “A "

0.001

doy /dt vy=—10.625.

represents the present result
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Fig.11 Lloading path and plastic strain: dgy /dtyy=—1.13.

The small triangle “A " represents the present result

IV. CONCLUSION AND DISCUSSION
The following conclusions can be drawn from this study :

1. A macro slip theory has been presented in this paper. This theory is based on the following
assumption : the overall plastic response of polycrystalline metals can be described by multiple
slips on four independent slip systems. Each slip system consists of a slip plane lying on a
face of the octahedron in the stress space and slip direction along shear stress direction on
the corresponding face .

2. For the single crystal, the slip systems are determined by the crystallographic structure and
independent of the stress state . On the other hand , the macro slip theory shows significant
effect of stress state on slip systems, which reflect the overall plastic response of numerous
single crystal constituents .

3. The material parameters included in the macro slip theory can be determined by standard
experiments . The calculation required for this theory is quite simple in comparison with the
self-consistent theory .

4 . For proportional loading, the resuits given by the macro slip theory are coincident with the
results of the classical flow theory .

5. For nonproportional loading , the macro slip theory shows good predicting ability . The

predicted results are in good agreement with the experimental results given by Budiansky
[20]

et al.

When a polycrystalline solid is subjected to complex loading, different single crystal constitu-
ents show different behaviour . The overall response of the plastic deformation should be
determined by some kinds of averaging methods . There are two kinds of averaging methods :

(a ) The first one is the phenomenological approach, in which some internal variables or
some complicated evolution laws of yield surface should be identified from standard experiment
work .

(b) The second one is the physical based approach in which the heterogeneous
microstructure of polycrystalline solids must be analysed and some kind of quasi statistical des-
cription should be adopted .
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The second approach is attractive from a physical point of view . But it requires complicat-
ed calculation and extensive experimental data. Meanwhile it is difficult to get the whole
microstructural information of materials .

The microstructure , orientation, shape , size and properties of different single crystal constit-
uents are completely different. The space distribution of numerous single crystal constituents is at
random . Hence the problem essentially is -a statistical one .

The present theory seems to belong to the phenomenological theory. But the parameters in-
cluded in this theory are fairly defined and have clear physical meaning . The multiple slips on
four independent slip systems are somewhat of a statistical description of multi-slips on numerous
single crystal constituents .

REFERENCES

[1] Taylor, G.1., Proc. R. Soc. London, Series A 145 (1934), 362 — 387.

[2] Orowan, E., Z. Phys., 89(1934), 634 — 659.

[3] Polanyi, Von, M., Z. Phys., 89(1934), 660 — 664 .

[4] Schmid, E., Proc. Inter. Congr. Appl. Mech. , 1924 (Deift), 342.

[5] Hill, R., J. Mech. Phys. Solids, 14 (1966), 95— 102.

[6] Rice, J., J. Mech. Phys. Solids, 19(1971), 443 — 455. .

[7] Asaro, R.J., Micromechanics of crystals and polycrystals, Advances in Applied Mechanics, Vol. 23, 1-115,
1983. Eds. Hutchinson, J.W. and Wu , T.Y.

{8) Nemat-Nasser, S., J. Appl. Mech., 50 (1983), 1114 — 1126.

[9] Hill, R. and Havner, K., J. Mech. Phys. Solids., 30(1982) .

[10] Taylor, G.IL., J. Inst . Metals, 62(1938). 307— 324.

[11] Bishop, J.F.W . and Hill, R., Phil. Mag., 42(1951), 414— 427; 1298 — 1307.

(121 Lin, T.H., J. Mech. Phys. Solids, § (1957), 143.

[13) Kroner, E., Acta Met., 9(1961), 155— 161.

[14] Budiansky, B. and Wu, T. T., Proc. 4th U.S. National Cong. Appl. Mech., 1962, 1175— [185.

[15] Hill, R., J. Mech. Phys. Solids. 13(1965), 89— 101.

[16] Berveiller, M . and Zaoui, A., J. Mech. Phys. Solids, 26(1979), 325— 344,

[17}] Weng, G.J. and Chiang, C. R.. Int. J. Solids and Struct., 20(1984), 689.

[18] Weng. G.J., Int . J. Plasticity, 3(1987), 315— 339.

{19} Lin, T.H., J. Engn. Mater. Tech., 106 (1984), 290.

[20] Budiansky, B. Dow, N. F. Peters, R. W. and Shepherd, R. P., in Proceedings of Ist U. S. National
Congress. Applied Mechanics, 1951, 503 — 512.

[21] Batdorf, S.B. and Budiansky, B., NACA TN 1871, 1949.

[22] Hill, R., in Advances in Appl. Mech., Vol. 18 (1978), 1.



