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ABSTRACT: A new method for the periodic solution of strongly nonlinear system
is given. By using this method, the existance and stability of the periodic solution
can be decided, and the approximate expression of the periodic solution can also be

found.
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I. INTRODUCTION

The periodic solution of strongly nonlinear system, due to its importance both in
theory and application, has become one of the main topics in nonlinear vibration and many
valuable results have been obtained. In this paper, a new method for the periodic solution
of strongly nonlinear system is given. By using this method, not only the existence and
stability of the periodic solution can be decided, but also the approximate expression of the
periodic solution can be found. Though this method contains some idea of averaging, it is
quite different from the traditional method of averaging. It can be seen in an example that
the problem which can not be solved by traditional method of averaging can be solved by

this method.

II. THE METHOD

Consider the strongly nonlinear system
Z+ f(z,z)z +g(x)=0

and suppose its solution is of the form

d dé
z =acos(f + 6p) + b(a) ?_ Ala) T

E = B(a,@)
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where b is the deviation of vibration centre from the origin O, Bla, 8) is a periodic function
of § with period 27. Expanding B(a, ) into Fourier series and considering only harmonics
up to k-th order we have

de

k
i B(a,0) = ap(a) + Z(an(a) cos nf + (B (a) sinnd) (2.3)

n=1

From (2.2) it follows that

db
%= (Acosby — aBsinfy)cosfd — (Asinfy + aB cosbp) sin 6§ + d—A
dA 0B 8B

[(Ad— —aB?)cosy — (aA— 52 T ¢ Bﬁ + 2AB) sin 6] cos 6
B (2.4)
—[(a A?,’ + Bi;? + 2A48B)cosfy + (A(—cilg — aB?)sin 6] sin §
dA db d?b
Mgt e

and from (2.3) we get

k
0B d d n .
_:ﬂ+§ (&cosn0+ﬂsmn9)

da da — " da da
o5 i n= (2.5)
50 = Z(—nan sin nf + nfB, cos nd)

n=1

Substituting (2.4) and (2.5) into (2.1), multiplying it by df, cosnfdf, sinnédd (n =
2,...,k + 1) respectively and then intergrating from # = 0 to # = 2m, the equations
for determining b, A, ag, an, B, (n =1,2,...,k) can be obtained

fO(aabaAaa():al"",akaﬂla".'aﬁk) =0

(2.6)
fm(aabaAaa()aal,'"7ak1/817"'1ﬁk) =0 (m= 172772k+2)

After A(a) has been solved from (2.6), the periodic solution of (2.1) can be obtained by
putting A(a)=0. Suppose a = a* is a real root of A(a) = 0. Substituting ¢* into (2.2) and
(2.3) the expression of periodic solution is thus obtained.

z = a* cos(f + 0p) + b(a*)

dé (2.7)

k
Frie ap(a™) + ;(an(a*) cosnf + B,(a”) sin nf)

The harmonic components of the periodic solution can be determined as follows. Dif-
ferentiating the 1st equation of (2.7) with respect to ¢ and noticing the 2nd equation, we
have

z = (—a* cosfpsin @ — a* sin Gy cos 8)[ap(a*) + Z(an ) cos b + Bn(a*) sinnd)]

= —%{(al(a*) sin 8y + B1(a*) cosby) — ap(a*) sin bp cos @ — ag(a*) cos by sin 6
+(a1(a*)sin by — B1(a*) cos ) cos 20 + (a1(a*) cos g + B1(a*) sin 6p) sin 260
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+ Z an(a*)sinfy — B,(a*) cos bg) cos(n + 1)8 + (@, (a*) sin fy

+,8n( *Ycos bp) cos(n — 1}8 + (a,(a*)cos By + B, (a*)sin )

sin(n + 1)8 + (—an(a*) cos by + B(a*) sin bp) sin(n + 1)6]} (2.8)
Since z is a periodic solution, x should not contain the constant term, thus from (2.8), we
can get

a1(a)sinby + B1(a*) cosfg = 0 ‘ (2.9)

by which 6 in (2.2} can be obtained
sinfg/ cos By = —G;1(a”)/a;(a”) 8o = ~tg "' B1(a*)/c1(a”) (2.10)

Now we take the mean value of df/dt over a period 2 as its approximate values, i.e. take
df/dt ~ ag(a*), hence § = ap(a*)t. Substituting it into (2.8), then integrating (2.8) and
supplementing the constant b(a*), we get

*

= _%{ — sin 6 sin ap(a*)t + cos b cos ap(a* )t
a1(a*)sin o — Bi(a*) cosbp sin 2aq(a*)t
20p(a*)
oy (a )COS 6y + 51 (a )sln % cos 200(0*)t
200( *)
k
an(a*)sinfy — Bn(a”)cosby . :
1 t
’ ,LZ { (n + 1)ag(a*) i ool

an(a*)sinfy + B,(a*) cosfy
(n — 1ap(a*)

o (a*) cos by + Br(a*)sinby
T (n+ Dao(a)
e o 2 o~ Dot
a(a*) cos by + B1(a*)sin by

2ap(a*)

3 an(a*) cos by + B.(a*)sinby
Z[ (n+1)ap(a*)

+

sin(n — 1)ag(a*)t

sin(n + 1)ag(a*)t

—an(a*) cosbp + Bn(a*)sinby .
+ (n = Dao(a*) ] } + b(a*) (2.11)

As for the stability of this periodic solution it can be decided by the sign of dA{a*)/da.
dA(a*)/da < 0 means stable, otherwise unstable.

Generally speaking, it is not easy to solve A(a) from (2.6). If we study only the
periodic solution, not the transient process, it is unnecessary to obtain the expression of A(a).
Because the periodic solution means that A(a) = 0, therefore in order to find the periodic
solution, we can preceed as follows. In (2.6) put A = 0, then from these 2k + 3 equations
we can solve the 2k + 3 unknowns a,b,aq, -, ax, 31, -+, Bk. Suppose these solutions are
a,b,ay, - Ek,ﬁl, ...,ﬁk. Because for these solutions we have A = 0, then they are just the
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quantities in (2.7), i.e.

B = b(a*) Qg = ao(a*)
;= al(a*) Qg = ak((l*)
)

Now we go on to study the stability. First expand a,b, A, ag, a1, -, 0k, 81, -, Bk into
power series at a = a*

a=a*+(a—a*)

bla) = b(a”) + db(;z*)(a —a) 4

A(a)=A(a*)+d/;(Z*)(a— Vo= d“gj*)(a—a*)

apla) = ag(a*) + dagia*)(a_ . (2.12)
an(a)=an(a*)+d—agg—“*—)(a_a*)+... n=1,2 - k

Bn(a) = Bn(a*) + d—%z(a_a*)_F...

Substituting (2.12) into (2.6), neglecting all the terms (a—a*),1 > 2, noticing that a*, b(a*),

ag(a*), ... , a, (%), B1(a*), ... , Bn (a*) satisfy (2.6) and eliminating the common factor
(a — a*), then we get

db(a*) dA(a”) dag(a®) dai(e”)  dag(a®)

fo( de '’ da ' da ' da ' ' da
W) | ala)
da da (2.13)
f (db(a*) dA(a*) dag(e*) daj(a*) dag(a*)
™V'da ' da ' da ' da da '
dg;(a*) dBk(a*)
= = 2
d0 T d )=20 m=12-,2k+
From the last 2k + 2 equations of {2.13), we can solve db/da, dag/da, da;/da, . . ., day/da,
dBo/da, dfB1/da, . . ., dBk/da as functions of dA(a*)/da. Substituting them into the 1st

equation of (2.13) we get an algebraic equation containing only one variable dA(a*)/da. By
using Hurwits criterion the sign of dA4(a*)/da can be determined and then the stability of
the periodic solution can be determined as well.

If the order of above algebraic equation is higher than five, it is quite complicated to
determine the sign of dA/da by using Hurwits criterion. In this case we will use another
criterion based on power-energy principle to decide the stability.

Rewrite {2.1) in the form

d(%z'2 +V(z)) = — f(z,z)2dz V(z) = /(fg(:c)da: (2.14)
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1 .
Suppose the total energy of the system is E(z, ) = Ez'2 + V{z) and the total work done by

the damping force f(z,z)z along a closed curve I is W = ff(w,d:):bdx, then from (2.14),
1

we get

E(zp,27) — E(zg,20) = -W
For the vibration system, the total energy must be positive and correspond to a closed curve
in the phase plane. Suppose the initial point (zq,Zg)
of the periodic solution is located on close curve [* (see
Fig.1), after a period 27 it would go back to the original

- L2 place, i.e. z(27) = zg,2(27) = &o, therefore, along I* we
. would have W = §,. f(z,&)&dz = 0. If the initial point
(/-')(h is located on the close curve [}, and W, = fll f(z,2)zdz

&% z <0, from (2.14) we know that after a period 2 its end

point must be outside I;. Similarly if (zo,Zo) is located

. on Il and Wy = flz f(z,z)zdz > O after a period 27 the

end point must be inside I (see Fig.1). In this case it

is obvious that the periodic solution must be stable. So

Fig.1 we get the following theorem.

Theorem: For system (2.1), if A(a*) =0,W(a) <0asa < a*,W(a)>0asa>a"

then the periodic solution corresponding to a* is stable, otherwise unstable.

II1. PERIODIC SOLUTION OF LIENARD EQUATION
Consider Lienard equation
i+ n(z? -yt +az+PBx®=0 nya and- 8 all >0 (3.1)

First we assume that the solution of (3.1) is

da 9

z =acosf + b(a) i A(a) i B(a) (3.2)

Because the potential energy of (3.1) is symmetric, the deviation of vibration center from
the origin O must be zero. i.e. b(a) = 0. In this case (2.6) would be

dA 3 3

(E -nv+ Znaz)A+a(—Bz+a+ Zﬂa2) =0 (3-3)
dB 2

(~2B-aS)A+ naB(—% +4)=0 (3.4)

Putting A = 0 we obtain

a* =2~ B@*)=y/a+ %ﬁa* (3.5)

As for (2.13) they are of the form

dA(a*) 3
dB%(a*) dA(a*)

aQ————

da da

dB(a*) 3
da + §ﬂa0) =0

)dA(a*)‘

da +a0(

(3.6)

+4(a+ 3ﬁ7)(d§5*) +ny)=0
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and (3.6) becomes

dA(a*),3 dA(a*),2 dA(a*) _
( % )"+ 2y ( - )"+ 2(20 + 9687) o TAm(a+3py) =0 (3.7)
. . . e dA(a*)
Since v, a and § all > 0, by using Hurwits criterion, it is easy to know that < 0as

de
dA(a*) - . . .
> 0 as 1 < 0. Therefore the periodic solution corresponding to n > 0 is
a
stable, that corresponding to 7 < 0 is unstable.
Putting n =2,v=1,a = 3,3 = 5, the approximate expression of the periodic solution

of (3.1) is z = 2 cos(4.2426t). From Fig.2 we can see the curve obtained by above analytical

n > 0, and

solution coincides with that obtained by numerical integration very well. From Fig.3 we can
also see this periodic solution is stable.

o !

Fig.2 z-t Fig.3 z-z Limit cycle
- - - analytical; — numerical

Now we further assume that df/dt is a function of both amplitude a and phase

angle 6
* =acos
d
% = Al
do (3.8)

Fri B(a,8) = Bo(a) + Bi(a)cos6 + Cy(a)sind

+B2(a)cos 26 + co{a)sin26 + - - -

For simplicity, here we only consider the components sinnf, cosné {n < 2) in df/dt. In this
case (2.6) would be of the form

dA dCy 3
fl(a - 202 - GE + uzaz — /L’)’) + a(—Bg — 201 - 2Bz - 202
a? 3,5
dB dB a?
A(—ZBO + 2B, — aag + a—(ﬁ) + a(23101 — ,U,ZBO

+uyBo — uyBz) =0 (3.10)
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dc 2
A(2Cl + ad—al) + a(—3BoBl — 40102 + u%C’l — u’yC’l) =0 (311)
dB 2p
A(—a=2t —2By) +a(4C1 By — 2BoCy — p——L 4 yyB) =0 (3.12)
dc. 2
A2C +a—2 + uaz) +a(—4ByB, — 2B? +2C2 + B2 - C2
a2
~uvCe + p—C2) =0 (3.13)

dB
A(-2B; - ad—a"’) + a(—4Bya — 4By Cy + 2B,Cs
(12 a2
+pyBe — “ZBO - ILZBZ) =0 (3.14)

(3.9)—(3.14) are very complicated, so we make the following simplifications. First we rewrite
dé/dt as

% = B{a,8) = Bo(1 + %cosO—i— %sinﬁ—f— g;zcos29+ g—zsin29+--~) (3.15)
For the periodic solution the sign of d¢/dt must be unchanged, hence .Bl/Bgl, ‘Bz/Bof,
’Cl/Bo|, |C’2/Bo‘ are all less than one. Therefore compared with By the B%, 022 and B;Cy
are all small quantities and can be neglected in the first order approximation. Next, from
above we know that when df/dt is only a function of amplitude a, we get a* ~ 2,/4 and
Fig.2 shows that the difference between the analytical solution and the numerical integration

2 2
is very small. This means the quantity 2o _ ~ is very small and the term (% - ’y)z in (3.9)-

(3.14) can be neglected. After these simplifications, now we put 4 = 0, from (3.9)—(3.14) it
is easy to obtain

o = 2\/7 Ay’ (3.16)

4o+ 1308y + 3u2y?

3 o M2 a%(a%) a’(a*) 1 ,a%(a*)
Bi=C;=0 (3.18)
1 ,a%(a*)
By =—- -v)B 3.19
o (3.19)
@) | pe¥at) 2
Cy=— — - 3.20
S TR~ el (320
By calculation, we get
B C B C
T = ao(l - 2_320) cos Byt — ;?(2) sin Bgt + Z_Bz cos 3Byt + Z?z sin3Bgt - - - (3.21)

The stability of the periodic solution can be decided by Theorem. Since
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W(a) = ff(z,i)i-dz

27
= ‘?{ n(a®cos® 8 — y)asin 6(By + By cosf
0

+C; sinf + By cos 28 + Cy sin 26)d8
ma’Bgyny , a?
= ) 7 )
From (3.16) we know a* = 2,/%, therefore it is easy to see
that W(a) > O as a > a*, W(a) < 0 as a < a*. Then by
Theorem the periodic solution is stable. Putting 7 = 2,v = 1,
a=3,=5 (g =2, &9 =5), from (3.16)—(3.21). we get

¢ = 1.8762 cos(4.228t) + 0.1069 sin(4.228t)

Figd z-t 40.0202 cos(3 x 4.228t) — 0.0356 sin(3 x 4.228t) (3.22)

- - - analytical; — numerical

The curve obtained by (3.22) and that by numerical intergra-
tion are shown in Fig.4.

IV. COMPARISON WITH THE TRADITIONAL
METHOD OF AVERAGING

The authors of [2] pointed out that for some kinds of weakly nonlinear systems the limit
cycle can not be obtained by the traditional method of averaging trigonometic functions.
But in our method, by averaging trigonometic functions the limit cycle can still be obtained.
For the sake of comparison, we use the same example as that in [2].

Consider the nonlinear system!?

1 31 1
. o3, L. 25 23 =
F+z=¢(—x +2:r+10zz z°) €= (4.1)
Suppose the solution of Eq.(4.1) is
z = ¢(t) cos Y(t) (4.3)

By using the traditional method of averaging, we have

de € 4

— = — 2

gr 80c(c + 20) s
d—w =1+ zec?

dt 8

Put dc/dt = 0, we get ¢ = 0, this means (4.1) has no limit cycle. But the (4.1)
really has a limit cycle (see Fig.5). Hence the authors of [2] turn to use the method of
averaging elliptic functions and get the approximate expression of the periodic solution
z = 1.9861cn(1.180¢,0.3760). From this we'know that the amplitude a is 1.9861, and the
frequency is 1.180. As for the stability of the periodic solution it is not discussed in [2].
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Now we solve the problem by using the method given in this paper. Suppose the
periodic solution of (4.1) is

x =acosf
da 9 (4.5)
i (a) %= B(a)

A 3 3 3
A(%E ~ea — Zeﬂa2 + Z€A2 + i—easz) —aB? + ZEaS +a=0 (4.6)
dB 3 2 3
A(-2B - agg — ;€aAB) + caB(a + QZ— - Za?B%) =0 (4.7)
3z Putting A = 0 we get a* = 1.792, B = 1.114. This shows
N that the amplitude and frequency obtained here are al-
A most the same as that obtained by using the method of
averaging elliptic functions.
-3 3 As for W(a) it can be calculated as follows
z
K W(a) = ff(z,:i:)a'cdz = ?{e(fc? —3.12% - 0.5)2dz
27
= eBa? (a®?B%sin® 6 — 3.1a% cos® 4 — 0.5)
0
- -sin” 6d6
2
Fig5 _ 20 BT s 402 80

160

N — numerical;

A — averaging elliptic function  Since W(a) > 0 as a > a*, W(a) < 0 as a < a*, then by
Theorem the periodic solution is stable.

V. CONCLUSION -

The method given here for studying the periodic solution of strongly nonlinear systems
is very simple in calculation, because only trigonometric functions are involved. The results
obtained by this method agree with those obtained by numerical integration very well. This
‘method can also be applied to strongly nonlinear nonautonomous system. This will be
investigated in another paper.
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