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Abstract. The atmospheric density and temperature in lower thermosphere are analyzed using numerical simulation, 
empirical model, satellite data and ground LIDAR measurement. The WACCM global atmosphere model is used as the 
numerical simulation method; the empirical models include NRLMSISE-00 and US-76; the satellite data are taken by US 
SABER/TIMED satellite. The atmospheric density and temperature with an altitude range from 60km to 100km at Germu 
in August 2013 are measured by a ground LIDAR system. Comparison of the results from different methods shows that 
the density and temperature are in good agreement below altitudes 90km and 80km, respectively. Above the altitudes, the 
discrepancy between the different methods increases with increasing altitude. It is also noted that the daily and diurnal 
variation of density and temperature become significant above 100km altitude. 
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INTRODUCTION 

In recent years, the flight corridor of newly appeared near-space vehicles has reached the lower thermosphere. In order to 
precisely predict the aerodynamic force on the near-space vehicles, further study of the lower thermosphere is required. 
Traditional research methods include empirical model [1-3], numerical model [4-16], satellite data [17-23], ground radar 
observation [24-30], and rocket and balloon [31-33]. However, due to lack of observation data at the lower thermosphere, which 
is typically beyond reach of both ground-based and satellite radar, study on this atmospheric regime is quite limited. As a result, 
physical modeling of this layer is difficult.  Figure 1 is an example of the uncertainty of the density at 100km altitude by using 
different methods, which shows up to 35% discrepancy based on US-76 standards. 

In this paper, a global climate simulation model, Whole Atmosphere Community Climate Model (WACCM) [16] is used to 
compute atmospheric density and temperature around 100km altitude, and the computed results are compared with LIDAR (Light 
Detection and Ranging) measurement at Germu in August, 2013. Also compared are the TIMED/SABER (The Sounding of the 
Atmosphere using Broadband Emission Radiometry), NRLMSISE-00 (Naval Research Laboratory Mass Spectrometer and 
Incoherent Scatter-00) and US-76 results. In the following sections, the WACCM model is briefly described, followed by 
introduction of LIDAR measurement. Then the comparison of density and temperature above Germu in August 2013 by using 
different models are shown.  

FIGURE 1. Daily density variation predicted by different methods at 100km altitude above Germu in August 2013. 
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WACCM MODEL 

WACCM model is a three-dimensional global climate model developed by National Center of Atmospheric Research in 
recent years. The latest version, WACCM4, is based on CAM-5.3 (Community Atmosphere Model) atmosphere model, which 
includes mesosphere/lower thermosphere phenomena, chemistry reactions, dynamic core etc. Numerical methods include finite 
volume method that is used in this work, spectral element method, etc. From ground to the model top (around 140km), the 
simulation zone is divided into 66 vertical layers. The vertical resolution is 1.1km in troposphere, 1.1~1.4km in lower 
stratosphere, 1.75km at stratosphere top, and 3.5km above 65km. The horizontal resolution is 4°×5°. The chemistry model being 
used is the MOZART (Model for OZone And Related chemical Tracers) chemistry model [34]. WACCM4 is based on the NCAR 
CESM (Community Earth System Model) that is a coupled model including atmosphere, land, ocean and ice modules. CESM 
version 1.2 is used in this work. The computation starts with standard data F_2000_WACCM on an in-house built Linux cluster 
using 64 CPU. 

LIDAR MEASUREMENT 

The Rayleigh laser radar developed by Institute  of Atmospheric Physics, Chinese Academy of Sciences was used to measure 
the density and temperature above Germu (36.25°N 94.54°E) in August 2013. The range of altitude being measured is from 
60km to 100km. The wavelength of the radar was 532nm.  

From 30km and above, Mie scattering from aerosols is negligible except in some special occasions such as a volcanic 
eruption. Therefore, by assuming pure molecular scattering in this region, atmosphere temperature can be derived by combining 
the hydrostatic equation and ideal gas law as 

 , (1) 

where R is the gas constant for dry air, g(z) and (z) are the gravitational acceleration and number density at the altitude of z, 
respectively. The seeding temperature T(z0) at a certain altitude can be adopted from model as the initial estimation.  

For Rayleigh scattering, the LIDAR equation for a ground-based LIDAR system is written as 

 , (2) 

where N(z) is the total photon numbers received by the telescope of area AR during time interval corresponding to a height 
interval in range z, NB is background noise from solar scattering and PMT dark counts, η is system efficiency,  
is the transmitted photon numbers within  , is Rayleigh backscatter cross section, and TA is one-way atmospheric 
transmittance. Background noise level NB is calculated by averaging photon counts from those bins corresponding to high altitude, 
where Rayleigh scattering does not occur.  

By selecting a reference density at a reference altitude 

  (3) 

In our measurement, 50km is chosen as the reference altitude. 

Germu Experiment and Discussion 

LIDAR measurement was conducted at Germu in August 2013, and the measured density and temperature are compared with 
those from WACCM, SABER, and NRLMSISE-00. Figure 2 plots the vertical density and temperature distribution, where the 
results of NRLMSISE-00, WACCM and SABER are monthly average in August 2013, and LIDAR result is on August 29th, 2013. 
The theoretical upper limit of SABER is 110km, but the available data is a little lower. The density distributions show that the 
results below 90km altitude are in good agreement, whereas above 90km, the discrepancy between the five methods increases 
substantially, especially for LIDAR, which indicates increased error of LIDAR above 90km. The temperature distributions show 
that the results below 80km altitude are in good agreement, whereas above 80km, the discrepancy increases. Note that at 110km 
altitude, the temperature result of WACCM and SABER are higher than NRLMSISE-00 and US-76 temperature, and the reason 
might be that 110km is near the upper limit of WACCM and SABER. 
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(a) Density                                                   (b) Temperature 

FIGURE 2. Atmospheric density (a) and temperature (b) distribution above Germu in August 2013. The results of 
NRLMSISE-00, WACCM and SABER are monthly averaged, and LIDAR result is on August 29th, 2013.  

 
Figure 3 is the daily density and temperature variation at 110km altitude, where WACCM and NRLMSISE-00 results are at 

local time 00:00, and local time of SABER is variable. The density distributions show large error of LIDAR at this altitude. The 
temperature distributions show same decreasing trend of NRLMSISE-00, WACCM and SABER. Note that the zigzags of 
SABER temperature are due to variable daily local time of TIMED satellite. Figure 4 is the daily density and temperature 
variation at 100km altitude. The density distributions of NRLMSISE-00, WACCM and SABER are in similar trend, whereas the 
error of LIDAR density is still large at this altitude.  Similar trend is also observed in the temperature distributions. Figure 5 is the 
daily density and temperature variation at 90km altitude, which shows smaller discrepancy of density, whereas difference in 
temperatures of different models is still relatively large.  

Among these results, the SABER measured temperature is the most reliable source. At around 110km altitude, NRLMSISE-
00 and US76 under-predict temperature, which shows loss of accuracy of these two models at this altitude. 110km is near the top 
boundary of the WACCM model which may lead to loss of accuracy and the over-predicted temperature at 110km altitude.   

 

  
(a) Density                                                   (b) Temperature 

FIGURE 3.  Daily variation of density (a) and temperature (b) at 110km above Germu in August 2013.  

 
(a) Density                                                   (b) Temperature 

FIGURE 4.  Daily variation of density (a) and temperature (b) at 100km above Germu in August 2013. 
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(a) Density                                                   (b) Temperature 

FIGURE 5.  Daily variation of density (a) and temperature (b) at 90km above Germu in August 2013. 
 
 

CONCLUSIONS 

The atmospheric density and temperature in lower thermosphere are not well studied. In this paper, the atmosphere at around 
100km altitude above Germu in August 2013 is studied, by using a global climate model WACCM and LIDAR measurement, as 
well as comparison with empirical models and satellite data. Comparison shows that the densities from the different methods 
agree for altitudes below 90km, and the temperatures agree for altitudes below 80km. Above these two altitudes, the discrepancy 
between different methods increases with increasing altitude. Daily variation of density and temperature in August 2013 is 
plotted, and the trends agree in general, whereas discrepancy increases as altitude increases. 
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