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Abstract Because of the interaction between film and subto the buckling scenario shown in Fig. 1a, in which there is
strate, the film buckling stress can vary significantly, dependio film/substrate interaction. Mathematically, the substrate
ing on the delamination geometry, the film and substrate mefoung’s modulus Es) and Poisson'’s ratiov{) have no role
chanical properties. The Mexican hdfext indicates such in the above equation. The studies on a ruck in a rug [4, 5]
interaction. An analytical method is presented, and relatednd a blister buckling [6] fall into this category, in which
dimensional analysis shows that a single dimensionless ptie substrate is (implicitly) assumed rigid and the clamped-
rameter canf@ectively evaluate thefgect. clamped boundary conditions apply. However, recent stud-
ies [1-3] show that the thin film delamination buckling load
Keywords Buckling - Delamination- Elastic foundation ~ can be much lower than what Eq. (1) predicts, especially for

Thin film - Compliant substrate the case of a hard film on a soft substrate. When the elas-
tic deformation of the substrate is taken into account, the
1 Introduction film/substrate bump-like deformation profile, as shown in

For a freestanding thin film with clamped-clamped bound-FIg' 1b, resembles a Mexican hat and is often analyzed by

. . ) the so-called Mexican hat wavelet decomposition [2]. The
ary conditions and a length ob2the buckling loadRc) is boundary conditions at the delamination edges are essential
given as follows [1-3] for the buckling patterns [6]. The clamped-clamped bound-

, Efl , Efl ary conditions shown in Fig. 1a requires both the displace-
Pe-c = 4 (2b)2 =Tz (1) ment and the rotation at the delamination edge to be zero. In
contrast, Yu and Hutchinson’s analysis [3] is based on (the
assumption of) nonzero displacement and rotation at the de-
i ) ~lamination edge; the clamped-clamped boundary conditions
thin plate structure [1,'2]E,f and y; are the film Young's e ths violated, which leads to a lower buckling load. For a
modulus and Poisson’s ratib= ct®/12 (c andt are the film  y;o ican hat deformation shape, the atomic force microscope
width and thickness, respectively). Equation (1) correspond@FM) measurement and finite element analysis (FEA) [2]
show that both the displacement and the rotation are nonzero
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Here the film in-plane displacement, which can have sig-
nificant impacts on the film stretching energy in the post-

Fig.1 aThe buckling shape of a clamped-clamped bégate (D buckling region [(_5, 11], is not incluc_ied. This _study focuse_s

is the delamination width)p The Mexican hat buckling shape;( NIy on the buckling, on which the in-plane displacement is

ands; are the amplitudes of the delaminated and bonded zone€OWn to have a minor influence [1]. The finite elasticity ef-

respectively)c The concomitant buckling and wrinklingl s the ~ f€Ct stands out only in the post-buckling region with (very)

wrinkling wavelength) large deformation [12, 13]. By applying the principle of vir-
tual work, i.e.,6U = 0, the following governing equations
are derived

Er 1wy (1 +wy?) + 4wy wyw) + w; ]

2 Model development

As shown in Fig. 1, the film out-of-plane displacememtjs

3
divided into the following two parts [7] +NV\/1’(1 + 5"‘/12) =0, -b<xxgb,
(7

e {wl, -b<x<hb, @ E;‘I[V\/z’”(1+vv’22)+4vv’2”vv’2’vv’2+vv2’3]

Wo, [X| > b, +NV\/2,(1 + gvv’zz) + kV\[2 =0, [X > b.
wherew; andw, are the displacements in the delaminated _ _ _
and the bonded zones, respectively,i the delamination The linearized form of Eq. (7) is as follows
length, which can be caused by a pre-existing interfacial f|aV\E W + NW, = 0, —b<x<h,
or debonding by residyaxternal loading [1, 8]. The poten- (8)
tial energy of the system is given as follows [9] Eftwy” + Nw, + kwe, =0, x| > b.

vv”2 HereN > 0 indicates compression. The following nondi-
f [ 1o w’2 (‘/1 wy? - )]dx mensionalizaton scheme is introduced
N
. =r/a, W=w/a, B=bj/a, 4%= .
-brEf w2 1 ¢ AETK
+f [Ef 2 N(YL- w2 - 1)+ Zkw? o f
o L 2 1_W'2 2 . . ;
Herea = (/4E{l/k is called by Biot as “a fundamental
vv”2 1 length” for a beam resting on an elastic foundation [10],
f [ > 5+ (‘/1 W2 )+ Esz]dx, (3) which is also the length used to evaluate tfiee of beam
1-w, bending on the contact [14]. Wagner and Vella [7] defined a
where (J = d/dx. N is the compression load applied on thelength ady, = {E{1/(pg0) (o, 9, andc are the fluid density,

thin film. The interaction between the film and the substrat@ravity acceleration and rubber sheet width, respectively)
is modeled as an elastic foundation dcid the elastic foun- andly is related with the wrinkling wavelength of an elastic

9)

dation modulus, which is given as follows [10] rubber sheet floating on a fluid. Becaysg in the Wagner
4 13 and Vella’s model is theftective elastic foundation modulus
K = 0.71E*( EsC ) @) k of a liquid [7], I,y is different froma only by a factor of V2.
S\16E;1/ ° By referring to Eq. (4)ais found to be
whereE; is the dfective Young's modulus of the substrate. 4| 4E{ ] Ef\1/3
Using the following expansions a= K 0 (E_s) (10)
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Equation (8) is now nondimensionalized as fg are the parameters given in Appendix. By substituting
1 Eg. (15) into Eq. (6) and using the symmetry condition, the
Zwlgggg + AP Wy = 0, -B<Eé<B, system potential energy is now given as follows
(11) Ua
%1W2§érfér + APWoee +Wo =0, |€] > B, = =5 = A(Re + Ro) + Af(S1 + S2), (16)
i i f

where () = d/dé¢ and4? is the dimensionless compressionwhere/7 is the dimensionless potential energt, Ry, and
defined in Eq. (9). The solutions to Eq. (11) are given as folS1, Sz are the parameters given in Appendiy is deter-

lows [15] mined by the energy minimization, i.6d/7/0A; = 0 [17],
Wi = Aq COSE1€) + By Sin(r1€) + Cof + Dy, \}//vsrinsch leads to the following equation for the buckling anal-
'B<§f? . Auf2(Ry + R)AZ + Sy + S5] = 0, (17)

- —|r2é| —Ir2él oj
W, = Age "1 cosfsé) + Boe " sin(ra¢]) (12) When 61 + S2)/[2(R, + Ry)] > 0, A, = 0 is the only
+Coel coszé) + Do€"1 sin(rzé]), solution in the real domainSg +S,)/[2(R; +Ry)] < 0 corre-
€l > B sponds to three solutionsS{+ S,)/[2(R; + R;)] = 0 is thus

the equation for us to tell whether the buckling occurs. For a
Herer; = 24 (4 > 0), 1, = m andrg = givenB, Ry, Ry, andS;, S; are dependent only o, as in-
V2(1+42). A, B, Ci, andD; (i = 1, 2) are the constants dicated in Appendix. 'I_'hereforéi is the (_)nly di_mensionless_
to be determined. The above solution forms are based on tR@rameter which has impacts on the dimensionless buckling
assumption off? < 1, whose validity will be discussed later. /0ad @?). From Egs. (9) and (10B is derived as

The coordinate system is shown in Fig.1b. The symmetr% b b (Ef\13 b(E:\Y/3
requirement foM [1,7,16,17] and the condition th&tt, =3 _0.83t(E;) = 1'2Y(E*) (18)
needs to be finite wheé approaches infinity give the fol- f
lowing solutions 3 Results and discussion
W, = A cosfi€) + Dy, The dimensionless buckling load of a clamped-clamped thin
_B<&<B, film is given as follows
Il _ . (13) P._ 3-52
W, = Ae "¢l cosfa¢) + Boe ¢l sin(rsé)), A2 s (19)

c-c = = >
JVAETTk  4B?
|€] > B. ET

, ) N P._c is the (dimensional) buckling load as given in Eqg. (1).

At ¢ = B, the following matching conditions need to be sat-rhe dimensionless buckling loadf3) is derived from

|sf|gd [7,17-19], which is required to ensure the COI’]tIﬂUItyEq_ (17) by setting$; + S;)/2(R. + Ry) = 0. Figure 2 plots

of displacement, slope, and moment. the variation of ratia42/42 . as a function ofB. As B in-

Wi (B) = Wa(B), creases, the ratio monotonically approaches to 1. In Parry’s
FEA computation [2], a Nickel film withg; = 204 GPa and

Wig(B) = Woe(B). (14) v¢ = 0.312 was deposited on a substrate, whose mechanical

Wig(B) = Wz (B). properties varied from a polycarbonate wiy = 2.4 GPa

v th hi diti hould al in th andvs = 0.37 to a rigid one withEs = ~. For a rigid
Actually the matching conditions should also contain t Substrate, the film buckling stress on a rigid substrate can

Continuity of shear fOfCE., |eV,V1£f£(B) = Wzgff(B? [?,.17— be derived from Eq. (1) aF e = nZE*(t/b)2/12 For
19]. However, as the film is modeled as an infinite oneb_c_C - 0.82GPa [2], we can find thdI/tf ~ 15. For this
two terms inW; which result in infinite d|s_placeme_r_1t are fixedb/t = 15, Parry et al. [2] used the first Dundurs’ elastic
tossed away. Therefore, only three matching conditions alismatch parameter defined @s = (E; — EZ)/(E; + E2)
required [20]. Furthermore, it is notflicult to verify that  \ypich varies from ®8 (Nickel film on polycsarbofnate sub-
once those matchmg conditions of Eg. (14) are satisfied, ,ﬂ'%qrate) to—1 (rigid substrate), to study the buckling stress
shea_r _force is continuous. By applying the above ma'[Ch'ngariation. As the first Dundurs’ parameter varied from
conditions, Eq. (13) now becomes ap = 0.98 to -1, which corresponds t® varying from
W, = Aq[cos(1é) + f7], 4.2 to infinity, Parry et al. showed a monotonic increase of
the buckling stress, which also asymptotically approached

(15) O Particularly, atzp = 0.98 andb/t = 15 (correspond-
W, = Aje7"#[ fg coss&) + fg sin(raél)], ing to B = 4.2), Parry’'s buckling stress ratio is found to be

> B 0.5/0.82 ~ 0.6 and ours isf2/42 . ~ 0.608. Here the buck-

3 ) ling load ratio is equivalent to the buckling stress ratio for
Now there is only one unknown constam;, f7, fg, and a fixed cross-section. Compared wBh ap only indicates

-B<é<B,
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the mechanical dierence between the film and the substrate. 1.0
Yu and Hutchinson’s method [3] is essentially to model the
film/substrate interaction at the delamination edge by three 0.9+
coupled springs [1, 21]. The springftiesses are dependent 2 o0sl
on b/t and two Dundurs’ parameters [3]. Because the sec- E
ond Dundurs’ parameter plays a less important role than the g 07}
first one [8, 21] andeg/Ef = (1 - ap)/(1 + ap), the dimen- 5
sionless parametd® as given in Eq.(18) is in fact a com- ;E) 0.6 ¢
bined parameter of the geometry parametebfand the
SR \ , 0.5+
elastic mismatch property of the first Dundurs’ parameter.
Mei et al. [8] usedb/t and E{/E; as two independent pa- 04
rameters to study the buckling stress of a delaminated thin 0 10 20 30 40 50 60 70 80 90 100
film, which shows the same asymptotic trend of the buckling B

stress approaching. .. Here the amplitude ratio af,/6;
is used to characterize the Mexican hfieet. As shown in ) : ]
Fig. 1b,61 ands, are the amplitudes of the delaminated and® dimensionless buckling load of a clamped-clamped fglate)
the bonded parts, respectively. Figure 3 presents the ampli-
tude ratio ofs,/6; as a function oB, in which the buckling : ‘ ‘ ‘
shapes aB = 2 andB = 40 are also plotted for a compari- T~

son. The buckling shape is obtained from Eq. (13) by setting 0.04¢

A = Ac. The ratio decreases rapidly and monotonically from [
1/22 atB = 2 towards 0 a3 increases. In comparison, the
AFM measurement yields a ratio of aboy24 for the post-
buckling shape of a Nickel film on a polycarbonate substrate
(theB = 4.2 case) [2].

Fig.2 The critical loads ratioA2/42_) as a function oB (42_, is

Amplitude ratio

0.01 A
There is an important issue needed to be addressed I

concerning the results presented above. As noticed in both ol ~— \¢
Figs. 2 and 3P starts from 2. Becaus#? < 1 covers most 0 5 10 15 20 25 30 35 40
of practical problems in the buckling analysis [15], the solu- B

tion form of Eq. (13) is derived by assumiag < 1. How- _ _ _ _ _
ever, Eq.(13) is incapable of analyzing the buckling of 4Fig. 3 The amplitude ratiod,/6:) as a function oB. The buckling
very hard film with a chunky delamination geometry on aShapes aB = 2 andB = 40 are also plotted

very soft substrate, i.e., the very smBlicase. For exam-

ple, whenEf/Eg = 1000 andb/t = 10 [1], which corre- It is also necessary for us to have some discussion on
sponds toB = 1.2, we can not findiZ in the load range of the assumptions and limitations of the model. Firstly, the
0 < 4% < 1. According to the Yu—Hutchinson model [3], the reaction of substrate to thin film is modeled by the elastic
upper limit of the buckling load isfZ_, which has already foundation model, which is dependent only on the local dis-
been shown in Flg 2. As the constraints at the d8|aminati0ﬁ|acement_ In rea"ty' the reaction depends on all disp|ace-
edges relax from the clamped ones (zero displacement apgents inside the substrate as indicated by the integral equa-
rotation) to the hinged ones (zero displacement and bengon of the half space model [22]. In other words, the thin
ing moment), the buckling load reaches the lower limit offiim geometry and buckling shape can influence the substrate
4% ¢/4[8]. In Fig.2, the buckling load is 42% ofZ_; at  reaction and thuk [22]. For example, the elastic foundation

B = 2. Our Computation can not reach this lower limit of modulusk given in Eq (4) is actua”y the one for a concen-
4% _¢/4 because there is no solution for smalier The so- trated force acting on a substrate modeled as an elastic half
lution form of Eq. (13) implicitly assumes that only delami- space [10]. When the film wrinkles with a sine shape shown
nation buckling occurs and there is no wrinkling. Howeverjn Fig. 1c, the (&fective) elastic foundation modulus is given
Mei et al. [8] showed that whekg/E{ is very small (less a5 follows [10, 17]

than 103) with relatively smallb/t ratio (b/t = 5, 10, and
20, respectively), which corresponds to fBe< 2 scenario, k,, = nE;E,
the wrinkling loadstress is smaller than that of delamination A
buckling. Therefore, wrinkling occurs before the delaminawhere = 2ntJ/E;/(3E5) is the wrinkling wavelength [1].

tion buckling, and the Yu-Hutchinson model becomes inapcompared with Eq. (4)%/ky ~ 0.9, there is 10% dierence.
plicable [8], which implies that the lower limit is unphysical. There is some (minor) fierence between the surface dis-
This is the reason why Eq. (13) fails to compute the delamipjlacements in the concentrated force loading case and the
nation buckling load wheB is very small. Mexican hat deformation profile given by Eq. (13), and thus

(20)
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the elastic foundation modulus given by Eq. (4) is expectetbads, it has the problem of accurately describing stresses
to have some deviation from the exact one. Because an 426, 30, 31]. The post-buckling stresses around the delami-
bitrary and continuous surface displacement can be decomation edge are complex and have abrupt changes|[1, 2]. Al-
posed into Fourier series and each Fourier term has an é@hough the model includes geometrical nonlinearity of the
fective foundation modulus as described by Eq. (20), a morim, it may become less accurate in the post-buckling re-
accurate fectivek for the Mexican hat deformation profile gion where there is a large compression, which requires an
can be obtained by the method given by Biot [10]. Howeverelastica model [7]. In the post-buckling region, the film de-
the foundation modulus fierence is expected to be minor, formation and compression can drive further delamination of
as corroborated by the excellent agreement of our computéke film, and mixed mode analysis of fracture mechanics is
buckling loads with those computed by FEA [2]. As noticedrequired [3, 21]. Therefore, the model is advised not to be
above, the foundation modulusfidirence between two sig- used for the post-buckling analysis.

nificantly different buckling shapes is relatively small. Fur- )

thermore, the surface displacement due to a concentratégConclusion

load bears some resemblance to the Mexican hat shape: B%
decay rapidly with a rate proportional to*& [10]. Sec-
ondly, if the compressive load increases further (in the pos
buckling region) 42 can be larger than 1. Whef? > 1, the
following solution form holds [15]

hmodel, which treats the delaminated and the bonded parts
of a film as a whole, is presented to study the delamina-
ETon buckling. The dimensionless paramektis the key
to analyze the delamination buckling behavior. The Mexi-
can hat deformation shape gives a vivid image of how the
Wi = A; cos1€) + By sin(ri€) + Coé + Dy, film and the substrate interact, which is fully characterized
by the parameteB in certain range. Whet is (very)
-B<é<B, small, wrinkling may occur together with buclking; when
W, = A cosfo€) + By sin(raé]) (21) B is (very) large, a buckling-driven delamination of film can
) occur, which make® an increasing variable. The model
+Cz coszé) + D2 sin(rsél), can not handle these two scenarios. Although the model has
€] > B. some limitations, compared with numerical [1, 2] and im-
plicit [3] solutions, it provides a rather straightforward and
Now ry, rp, andrs change accordingly to, = 24 (4 > 0),  simpler analysis on the delamination buckling. The accu-
r, = /2412 +2VAA_1 andrs = /2A2 _oVA _1. As racy of the moo_lel is_also a_ssessed _by comparing the results
for B = 1.2, which is the case where Eq. (13) fails to com-With those obtained in previous studies.
pute the delamination buckling load as discussed above, FE&ppendix
gives the buckling shape of the Mexican hat and then th$he definitions of ‘
shape of concomitant wrinkling and delamination buckling parameters
in the post-buckling region [1]. In the concomitant scenariofi = [-r2 sin(r3B) cos¢1B) + r3 cos¢sB) cosf1B)
the Mexican hat deformation shape and sine wrinkling shape
coexist as shown in Fig.1c. Clearly, the solution form of
Eqg. (21) can not capture either of the buckling shapes. Thg =
possible reason is the nonlinearities of the substrate, which
are mainly caused by the following three mechanisms. (1} = [F2€0s{sB) cos{.B) + rssin(sB) cos¢.B)
T_he nonlinear strgin—displacement relgtion. Even before the  _y, cos¢;B) sing,B)]/[rze28],
film buckling load is reached, the nonlinear Green-Lagrange
strain tensor due to the finite deformatioffieet needs to be f; =
considered for a very soft substrate [2, 23]. (2) The nonlinear
stress-strain relation of the substrate, which is characterizelel= f1€2°[(r — %) cos{3B) + 2rar3 sin(rsB)]
by the neo-Hookean constitutive law [23] or the bilinear [24] +fae7"2B[(r2 — 12) sin(r3B) — 2r,rs cosfsB)],
and exponential [25] elastic foundation models. (3) The fact CBa o .
that the substrate respondsfeliently to tension and com- 16 = 2€#°[(12 = 3) COS{5B) + 2rars sin(rsB)]
pression [20,26,27]. With an increase of compression in  +f,e2B[(r3 - r2) sin(r3B) — 2r,rs cosf3B)],
the post-buckling region, the nonlinear reaction of the sub-
strate can stand out and even become dominant on the fdt-=
mation of buckling patterns [28, 29]. The elastic foundation
model adopted here is linear and fails to incorporate thest = fi + f2f7,
nonlinearities, which is responsible for the incapability off, - , + f,f,, (22)
Eq. (21) to capture either of the shapes in the post-bucklin%] _
region. Thirdly, because the elastic foundation model is in-1° ~ fs
troduced to study the response of the foundation surface tig, = —r,fs — rsfs,

+r1 8in(r3B) sin(ryB)]/[rze™"2E],

—r, sin(r3B) + r3 cosfsB)
rze28 ’

r, cosf3B) + r3sin(r3B)
rze 2B

s

-r2cosf;1B) - fs

fe ’

fg —rofs,
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f1o = —2rarsfe + (13 — r3)fs,

f13 = 2r2r3 fg + (r% - rg) fg,

0o(¢) = W’Z—(lf) = e"#[fgcosfa¢) + fosin(rsé)],
0:0) = "2 = [ 005¢8) + fusinao),
02(8) = W%T‘i(f) = e[z cosfsé) + fizsin(rsd)],

B
s, = Aif f (W2, — 442W2)dE = 44% Sin(41B),
| :
1
S, = . L (Wi, — 44°WE, + AWZ)de
= j; (03 — 44°@ + 4gd)dz,

l 8 2 2 2
R, = K‘l‘ fo (W2 W2, — A2Wi, )dé

B sin(4B) 53in(&18))
— 6 — _
=4 (2 Y & )

1 ”
Re= i | OWEWE —aWiyde = [ (gl - gy
1
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