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This paper presents a smoothed particle hydrodynamics (SPH) and element bending group (EBG) coupling
method for modeling the interaction of flexible fibers with moving viscous fluids. SPH is a well-developed
mesh-free particle method for simulating viscous fluid flows. EBG is also a particle method for modeling flexible
bodies. The interaction of flexible fibers with moving viscous fluids is rendered through the interaction of EBG
particles for flexible fiber and SPH particles for fluid. In numerical simulation, flexible fibers of different lengths
are immersed in a moving viscous fluid driven by a body force. The drag force on the fiber obtained from
SPH-EBG simulation agrees well with experimental observations. It is shown that the flexible fiber demonstrates
three typical bending modes, including the U-shaped mode, the flapping mode, and the closed mode, and that
the flexible fiber experiences a drag reduction due to its reconfiguration by bending. It is also found that the U4/3

drag scaling law for a flexible fiber is only valid for the U-shaped mode, but not valid for the flapping and closed
modes. The results indicate that the reconfiguration of a flexible fiber is caused by the fluid force acting on it,
while vortex shedding is of importance in the translations of bending modes.
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I. INTRODUCTION

An object immersed in a viscous fluid will experience a
drag force due to the interaction of the body and the fluid, if
the object moves through the fluid or the fluid flows around
the object [1]. How to accurately predict and effectively
reduce the drag is of great importance in both engineering
and sciences. In general, the drag is a function of the relative
velocity between the object and the fluid. For a rigid object,
the drag is proportional to the square of the velocity [1].
Therefore as the speed of a moving rigid body increases, the
drag force can increase significantly, which further hinders
the movement of the object. The drag also depends on the
shape of the object, and a streamline shape can result in small
drag. This can be seen from different designs for aircraft,
land, and underwater vehicles with streamline shapes. For a
flexible object, the drag may increase slower than the square
of velocity because of the reconfiguration of the object caused
by fluid forces [2–5]. As can be observed in nature, many
living organisms (e.g., trees, plants, seaweed, and coral beds)
can change their shape in moving fluids to reduce drag [6–9].
On the one hand, the reconfiguration makes the frontal area
presented to the flow become smaller, which can reduce the
drag. On the other hand, the reconfiguration makes the shape
of the object more streamlined, which can further decrease
the drag.

According to many experiments on plants and considering
the effect of reconfiguration, Vogel [2,6] concluded that the
fluid drag on a flexible object is lower than the square of
velocity, which can be described as

D ∝ Uβ, (1)
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where D is fluid drag, U is the velocity, and β represents
an exponent. In general, the exponent β has a value around
2 for a rigid body, while it has a value smaller than 2 for
a flexible object. Alben et al. [10,11] experimentally and
theoretically studied the drag reduction for a flexible fiber
immersed in a flowing soap film. Their results indicated a
transition from the U2 drag scaling for rigid fibers to a U4/3

drag scaling for flexible fibers, which shows that the value
of β for a flexible fiber is 4/3. By dimensional asymptotic
analysis, Gossellin et al. [12] obtained the same exponent
β = 4/3 for flexible fibers and rectangular flexible plates.
They also obtained the exponent β = 1 for flexible disks and
the exponent β = 2/3 for disks rolling up into cones in flows
[12]. Considering the posture-dependent drag and the restoring
force due to vegetation stiffness and buoyancy, Luhar and Nepf
[13] proposed a theoretical model to predict drag and posture
for plants and natural systems.

With the advancement of the computer hardware and
computational technique, it would be attractive to investigate
the interaction of flexible fibers with fluid flows by numerical
modeling. Numerical simulation of flexible fibers interacting
with fluid flows is usually a great challenge for conventional
grid-based numerical methods, as the fluid-flexible fiber inter-
action involves moving interfaces and deformable boundaries.
Due to the complexity of the problem, there is only a very lim-
ited amount of literature describing the numerical modeling of
flexible fibers interacting with fluid flows. Zhu and Peskin [14]
numerically studied the drag of a flexible fiber immersed in a
two-dimensional (2D) incompressible flow for Reynolds num-
ber in the range of 12.5–375 using the immersed boundary (IB)
method. They found that fiber mass had little effect on the drag
at a certain range. Zhu [15] investigated the vortex shedding
and drag coefficient of a flexible fiber for Reynolds number in
the range of 30–800. However, there are plenty of experiments
with flexible bodies at much higher Reynolds numbers.

The numerical difficulty in modeling fluid-flexible fiber
interaction is the treatment of moving interfaces and
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deformable boundaries. As such, a numerical approach that
can well treat moving interfaces and deformable boundaries
would be appealing in modeling fluid-flexible fiber interaction.
In this paper, we present such a numerical approach for
studying the drag reduction of flexible fiber immersed in
fluid for high Reynolds numbers as well as low Reynolds
numbers. The numerical approach is based on the coupling of
the smoothed particle hydrodynamics (SPH) method and the
element bending group (EBG) method.

SPH is a “truly” mesh-free particle method, which was first
invented to solve astrophysical problems in three-dimensional
open space [16,17] and later extended for many other problems
[18–20]. In SPH, the state of a system is represented by a set of
particles which possess material properties and interact with
each other within a range controlled by a weight function
or smoothing function [21,22]. As a Lagrangian particle
method, SPH conserves mass exactly. In SPH, there is no
explicit interface tracking for multiphase flows—the motion
of the fluid is represented by the motion of particles, and
fluid surfaces or fluid-fluid interfaces move with particles
representing their phase defined at the initial stage. The
mesh-free nature of SPH method removes the difficulties due
to the large deformations, since SPH uses particles rather
than mesh as a computational frame to approximate related
governing equations. Therefore SPH is well suited for fluid
flows with moving interfaces.

The EBG technique can also be regarded as a parti-
cle method. It was first proposed for modeling membrane
structures, which can be considered as elastic shells [23],
and was later extended to model red blood cell (RBC)
membranes [24,25]. A flexible fiber can also be considered
as a membrane structure. In the EBG model, an EBG consists
of two adjacent line segments connecting three neighboring
particles. Except for the tension force, the bending moment
needs to be considered when modeling the movement and
deformation of a flexible body. The bending moments on an
EBG can be converted into pairs of forces acting on the three
neighboring particles. Hence the EBG method can be attractive
in modeling the movement and deformation of flexible
bodies.

By coupling SPH with EBG, it is possible to model the
fluid-flexible fiber interaction. SPH particles are used to model
the viscous fluid flow governed by Navier-Stokes equations,
and EBG particles are used to model the dynamic movement
and deformation of flexible fibers. The interaction of the
neighboring fluid (SPH) and fiber (EBG) particles renders the
fluid-flexible fiber interaction. The idea of SPH-EBG coupling
was originally proposed by Hosseini and Feng [25] to simulate
RBC deformations in shear flows, and the reported numerical
results demonstrated good consistence with the experimental
observations.

The paper is organized as follows. In Sec. II, the phys-
ical model and methodology are described. In Sec. III,
numerical results and some discussions are provided, while
special interests are focused on the validation of the SPH-
EBG approach together with the visualization of the vor-
tex structure in particle methods, the morphology evolu-
tion of the flexible fiber, and the effects of flexibility on
the drag. The paper ends in Sec. IV with some further
remarks.

g
fiber x

y

FIG. 1. A sketch of the computational settings. The midpoint of
the fiber is fixed in the midline of the channel, while the two ends of
the fiber are free to move. The system is initially at rest and the flow
is driven by a body force g in the x direction. The periodic boundary
condition is implemented in the x direction, and there is a layer of
porous media at the flow inlet area.

II. PHYSICAL MODEL AND METHODOLOGY

A. Physical model

Figure 1 shows the computational settings for the physical
model. This is a 2D flow channel with a one-dimensional (1D)
fiber immersed in the flow. The midpoint of the fiber is fixed
in the midline of the channel, while the two ends of the fiber
are free to move. The upper and lower boundaries are solid
wall. The left and right boundaries are flow inlet and outlet.
The periodic boundary condition is implemented in the main
flow direction (x direction). In order to remove the flow effects
on inlet flow from outlet flow due to the periodical boundary
condition, a layer of porous media is deployed in the left end
(flow inlet) of the flume. The treatment of inlet and outlet
flow condition is further discussed later. In order to study the
influence of the flexibility on the drag scaling, both flexible
and rigid fibers were simulated.

In order to compare with experiments, the computational
settings are similar to the experimental setup used by Alben
et al. [10] and the key physical values are the same as those
in the experiment. The difference between our numerical
simulation and Alben et al.’s experiment is that the flow in our
simulation is a 2D, while the soap film used in the experiment
is a quasi-2D flow.

The length and width of the channel are 0.4 and 0.09 m,
respectively. The density and dynamic viscosity of the fluid
are 1000 kg/m3 and 0.004 N s/m2, respectively. It should be
noted that in 2D numerical simulations the flow quantities are
uniform in the out-of-plane direction. The flow thickness can
be regarded as 1 m. The thickness of soap film used in the
experiment [10] is within the range of 1–3 μm. Therefore the
thickness of the 2D flow is 6 orders (1 m versus 106 μm) higher
than the thickness of soap film in the experiment. The rigidity
of the flexible fiber used in the 2D simulation is 2.8 × 10−3 J m,
which is also 6 orders higher than the rigidity of the flexible
fiber used in the experiment, that is, 2.8 × 10−9 J m. Three
flexible fibers and a rigid fiber are used in our simulations.
The lengths of the flexible fibers are 3.3, 5.0, and 8.0 cm,
respectively, and the length of the rigid fiber is 2.0 cm. The
density of the fiber is the same as the fluid, so the buoyancy
and the gravity of the fiber can offset.

The system is initially at rest and the flow is driven by a
body force g in the x direction (the flow direction). If the body
force g takes the value of the gravitational acceleration (i.e.,
9.8 m/s2), the mean velocity of the flow will increase very
rapidly at the initial stage, and then the velocity increment
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FIG. 2. (Color online) Mean flow velocity versus time for a rigid
fiber of length L = 2.0 cm and three flexible fibers of length L =
3.3, 5.0, and 8.0 cm.

will be smaller and smaller due to the growth of the drag
between the fluid and the fiber. The flow velocity will approach
a maximum value when the body force equals the drag on the
fiber and the viscous force from the channel walls. In order
to make the mean velocity of the flow increase slowly at the
initial stage, the magnitude of the body force g used in our
simulation varies with time t as follows:

g =
{

0.8 + 3t, t � 3
9.8, t > 3 , (2)

where the units of g and t are m/s2 and s, respectively. Driven
by this body force, the mean velocity of the flow is shown in
Fig. 2. It can be seen that the increase of each mean velocity is
roughly linear before it reaches a plateau except for the fiber
of length L = 5.0 cm; this is mainly caused by the flapping of
the fiber (see Sec. III).

B. SPH method for viscous fluid

In this paper the fluid flow is modeled by the SPH method,
which uses a set of particles to represent the state of the
simulated system. The particles possess individual material
properties, move according to corresponding governing con-
servation equations, and act as the computational frame for
field variable approximations. Specifically, in the SPH method,
for any function A(r) which is a function of the spatial position
r , the value of function A at a certain point a whose position
vector is ra can be approximated by the following integral
interpolation:

A(ra) =
∫

�

A(r)W (ra − r,h)dV , (3)

where W (ra − r,h) is a smoothing or kernel function; h

is a smoothing length which, if multiplied by a scalar
factor k which is determined by the kernel function, defines
the influence domain of the smoothing function; dV is a
differential volume element; and � is an integral domain.
The interpolation reproduces A exactly if the kernel is a δ

W

kh
a

abr
b

FIG. 3. Sketch of kernel interpolation of SPH particles. As
the distance between two particles increases, the mutual influence
between the two particles reduces.

function. In practice, the value of h determines the range of
the integral domain and the kernel W tends to the δ function as
the smoothing length h tends to zero. Kernels are normalized to
1 so that constants are interpolated exactly. In our simulations,
the smoothing length is equal to the initial particle spacing.

When representing a fluid domain with discrete SPH
particles, the interpolation is approximated by a summation
interpolation over the particles:

Aa =
∑

b

AbWab

mb

ρb

, (4)

where Wab = W (ra − rb,h); the indexes a and b denote labels
of particles, e.g., Aa denotes the value of quantity A at ra ,
and particle b has position rb, mass mb, density ρb, and
volume mb/ρb. The summation is over all particles, but in
practice it is only over near neighbors because the kernel W

vanishes outside its support domain (see Fig. 3). In this work
the commonly used cubic spline kernel function is used as
follows:

W (s,h) = αd

⎧⎨
⎩

(2 − s)3 − 4(1 − s)3, 0 � s < 1
(2 − s)3, 1 � s < 2
0, s � 2

, (5)

where s = r/h, r is the distance between two particles, and αd

is the normalization factor, with a value of 1/6h, 5/(14πh2),
and 1/(4πh3) in one-, two-, and three-dimensional space,
respectively.

The gradient of A can be obtained by differentiating Eq. (4)
as

∇Aa =
∑

b

mb

ρb

Ab∇aWab, (6)

where ∇aWab = W ′
ab rab/ |rab| is the gradient of the kernel

taken with respect to the position of particle a, and rab =
ra − rb.

It is shown in Eqs. (4) and (6) that SPH provides a numerical
approach for discretizing partial differential equations (PDEs).
For viscous fluid flows, the Navier-Stokes (N-S) equations are
written in Lagrangian form as

dρ

dt
= −ρ∇ · u, (7)

du
dt

= g − 1

ρ
∇p + μ

ρ
∇2u, (8)
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where ρ is fluid density, u is the velocity vector, p is pressure,
μ is the dynamic viscosity, and g denotes the body force
including the gravitational acceleration.

Applying SPH to Eqs. (7) and (8), the Lagrangian form of
the N-S equations can be written in the following discretized
SPH formulations:

dρa

dt
=

∑
b

mbuab · ∇aWab, (9)

dua

dt
= ga −

∑
b

mb

(
Pa

ρ2
a

+ Pb

ρ2
b

)
· ∇aWab

+
∑

b

mb(μa + μb)rab · ∇aWab

ρaρb

(
r2
ab + 0.01h2

) uab, (10)

where uab = ua − ub, rab = ra − rb, rab = |rab|. The term
0.01h2 is added to prevent singularities of the viscous term
when two particles approach each other infinitely. Details of
SPH formulations for the N-S equations can be found in more
SPH references [21,26].

In SPH, incompressible fluids can be treated as slight
compressible fluids using an artificial equation of state. In
this paper, the following equation of state [19] is used:

P (ρ) = c2(ρ − ρ0), (11)

where ρ0 is a reference density, and c is a numerical speed
of sound. In order to reduce the density fluctuation down to
1%, c is usually taken 10 times higher than the maximum fluid
velocity [19].

In order to model the surface tension effect, an artificial
interparticle force FI is added in the momentum equation
(10) as follows:

dua

dt
= ga −

∑
b

mb

(
Pa

ρ2
a

+ Pb

ρ2
b

)
· ∇aWab

+
∑

b

mb(μa + μb)rab · ∇aWab

ρaρb

(
r2
ab + 0.01h2

) uab +
∑

b

FI
ab

ma

, (12)

where FI
ab is the artificial interparticle force acting on particle

a due to particle b. The force is similar to the particle-particle
interaction given by Tartakovsky and Meakin [27] when
modeling surface tension and contact angles with SPH as
follows:

FI
ab =

{
sab

ma+mb

2 cos
(

1.5π
kh

rab

) rab

rab
, rab � kh

0, rab > kh
, (13)

where sab is the strength of the force acting between particles
a and b. In this paper, the value of sab is 5. It should be noted
that the force FI

ab used here is the force used in Ref. [27]
multiplied by a factor (ma + mb)/2. Therefore the last term in
Eq. (12) does not vary with particle mass, and even if particles
with different masses are used, the value of sab is the same for
all particles.

The force FI is repulsive with particle spacing rab <

kh/3 and attractive when kh/3 < rab < kh. For uniformly
distributed particles (i.e., particles in the interior domain),
the interparticle forces from neighboring particles will be
balanced. In contrast, for nonuniformly distributed particles
such as the particles around free surfaces, particles at the free

B
bcF

a b

Mb

c

b

BMb baF

B
bcFB

baF

FIG. 4. An EBG is made of two adjacent line segments con-
necting three neighboring particles. In the EBG model, the bending
moment is converted to pairs of forces acting on particles.

surface for example, the interparticle forces will no longer be
balanced. Thus the interparticle force FI acts as a surface
tension, which can be used to mimic the surface tension
effect on the soap film in Alben et al.’s experiment [10]. It
is also noted that FI can also help to remove a fake numerical
phenomenon with empty (or void) area behind the fiber when
it moves rapidly.

C. EBG model for flexible fiber

In this paper, the movement and deformation of a flexible
fiber is modeled by using the EBG model, which replaces
the fiber with particles. Fiber particles can interact with
neighboring fiber particles and fluid particles. In the EBG
model, bending moment is transformed to pairs of forces acting
on particles [23,25]. An EBG is made of two adjacent line
segments connecting three neighboring particles (see Fig. 4).

According to Newton’s second law of motion, the equation
for a flexible fiber particle can be written as follows:

m
du
dt

= T + FB + FD + g, (14)

where T denotes the tension acting on a fiber particle from
adjacent fiber particles, FB denotes the force due to EBG
bending moment, FD denotes the fluid force from neighboring
fluid (SPH) particles.

The tension can be calculated as

T ba = EA

(
rab

r0
ab

− 1

)
rab

rab

, (15)

where E and A are the Young’s modulus and the cross-
sectional area of the fiber, respectively, and r0

ab is the reference
distance between particles a and b. In order to reduce the length
fluctuation down to 1%, EA is taken 2 orders of magnitude
higher than the maximum tension along the fiber.

The force FB
ba acting on particle b from particle a due to

EBG satisfies the following equation:

Mb = rab × FB
ba (16)

or

FB
ba = Mb × rab

r2
ab

, (17)

where Mb denotes the moment acting on particle b (see Fig. 4),
which is defined as

Mb = EI
(
θb − θ0

b

)
rba + rbc

, (18)

where EI and θ is the bending rigidity and the deflection of
the flexible fiber, respectively. θ0

b is the reference deflection
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at particle b. The direction of Mb is determined by the
value of (θb − θ0

b ): it is clockwise if (θb − θ0
b ) is negative and

counterclockwise if (θb − θ0
b ) is positive.

The total force acting on particle b due to EBG can be
calculated as

FB
b = FB

ba + FB
bc − FB

ab − FB
cb. (19)

Note that in Eq. (19), in general, −FB
ab does not cancel

FB
ba and −FB

cb does not cancel FB
bc, which can be known from

Eqs. (17) and (18).

D. SPH-EBG coupling and time integration

In our numerical simulations, SPH particles are used to
model the fluid flow and EBG particles are used to model the
movement and deformation of the flexible fiber. For modeling
the fluid-flexible fiber interaction, it is natural to couple SPH-
EGB through allowing the interaction of neighboring fluid
and fiber particles. As fluid and fiber particles are regarded as
neighboring particles, it is natural to include fiber particles in
Eq. (10) when calculating forces acting on fluid particles. In
other words, for a fluid particle with both neighboring fluid
and fiber particles, the total number of particles in summation
consists of the total number of neighboring fluid particles and
the total number of fiber particles. The force on a fiber particle
from a neighboring fluid particle is then the same as the force
on the fluid particle from the fiber particle, except for the
direction, which is the opposite:

FD
ba = ma

(
Pa

ρ2
a

+ Pb

ρ2
b

)
· ∇bWba

− ma(μa + μb)rba · ∇bWba

ρaρb

(
r2
ab + 0.01h2

) uba, (20)

where b is a fiber particle and a is a fluid particle. In Eq. (20),
the value of the dynamic viscosity μb of the fiber particle b is
taking the same value of the fluid particle a, and the pressure
Pb of a fiber particle is defined as

Pb =
∑

a

PaWba

ma

ρa

/ ∑
a

Wba

ma

ρa

, (21)

where the summation is over all neighboring fluid particles of
the fiber particle b.

The total fluid force on a fiber particle b due to fluid particles
in Eq. (14) is

FD
b =

∑
a

FD
ba, (22)

where the summation is taken over all the neighboring fluid
particles of the fiber particle b. As such, fiber particles can
be regarded as a special type of SPH particles. On one hand,
they can interact with regular SPH particles for fluids; on the
other hand, they can interact with each other as EBG particles
through taking account of the tension and bending forces.

When coupling SPH with EBG, one challenging problem is
the match of time integration in SPH and EBG when advancing
time, as the maximum time step for EBG time integration (e.g.,
the leapfrog scheme [28] in this paper) may be less than the
maximum time step for SPH time integration (also leapfrog
scheme in this paper) (e.g., an order of magnitude in the
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SPH, tSPH+dtSPH

Time integration for 
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tEBG= tSPH?

Stop 

Continue? 

Save data 

FIG. 5. Flow diagram of the SPH-EBG implementation. If the
time step dtEBG of the inner loop for EBG integration is smaller than
the time step dtSPH for SPH integration, the total time of one inner
loop for EBG integration should be equal to one time step dtSPH.

case of the current simulation). Therefore, the EBG and SPH
simulations are not able to be advanced together. If the time
step for both EBG and SPH takes the value of the maximum
SPH time step, the time integration for EBG particles is not
stable and will lead to the collapse of the simulation. If the time
step for both EBG and SPH takes the value of the maximum
EBG time step, the efficiency of time integration for SPH
particles will be very low, and the simulation will consume
very large computing time. In our work, the time integration
of EBG is nested in the time integration of SPH, as shown in
the flow diagram in Fig. 5. The SPH particles remain static
and the fluid force acting on an EBG particle due to SPH
particles remains the same during the entire inner loop for
EBG integrations. The EBG particles do not penetrate their
neighboring SPH particles during this inner loop of integration
if the time step dtEBG of the inner loop for EBG integration is
smaller than the time step dtSPH for SPH integration. Actually
the total time of one entire inner loop for EBG integration
should be equal to one time step dtSPH.

E. Boundary treatment

In SPH modeling of channel flows, the inlet and outlet flow
conditions are not easy to implement and are usually treated
as a periodical boundary condition. Particles near the right or
the left boundary interact with the particles near the opposite
boundary. A particle that leaves the simulation region through
the right or the left boundary immediately reenters the region
through the opposite boundary.

Although the periodic boundary condition is easy to
implement, the inlet flow will be the same as the outlet flow, and
this is different from practical situations. In order to remove
the influence of the outlet flow on the inlet flow, a layer of
porous media is set in the left end of the flume (see Fig. 1).
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This kind of boundary condition was used in SPH by Yang
and Liu [29] in modeling oil spill and boom movement, and
it showed good performances in damping wave energy and
vortices.

The flow in porous media in our simulations can be
described by the following equation [30,31]:

du
dt

= g − 1

ρ
∇p + ν∇2u −

(
νnw

Kp

+ Cf n2
w√

Kp

u

)
uy, (23)

where nw is the porosity of the porous media, u is the
magnitude of fluid velocity (e.g., u = |u|), Kp is the intrinsic
permeability, and Cf is the dimensionless turbulent resistance
coefficient. Kp and Cf can be determined as follows [30,31]:

Kp = 1.643 × 10−7 n3
w

(1 − nw)2

(
d

d0

)1.57

, (24)

Cf = 100

(
d

√
nw

Kp

)−1.5

, (25)

where d0 = 0.01 m. In all the following simulations in this
paper we take d = 0.001 m and nw = 0.9, then from Eqs. (24)
and (25) we have Kp = 3.2 × 10−7 and Cf = 46.3. uy denotes
that the damping term in Eq. (23) is used only in the y direction,
that is, in the x direction the last term on the right-hand side of
Eq. (23) is equal to zero. By using the layer of porous media,
the wave energy and vortices can be effectively absorbed and
the inlet flow can be adjusted uniformly.

III. RESULTS AND DISCUSSIONS

In this section, the interaction of flexible fibers with viscous
fluid is numerically investigated using the above-described
SPH-EBG model. Simulations with three flexible fibers of
length 3.3, 5.0, and 8.0 cm, and a rigid fiber of length 2.0 cm
were run, respectively. The system is simulated with initial
particle spacing of 0.1 cm, numerical sound speed 100 m/s,
and time step 1 × 10−6 s. Here 36 000 particles are used to
describe the fluid, and 34, 51, 81, and 21 particles are used
to describe the fibers of length 3.3, 5.0, 8.0, and 2.0 cm,
respectively.

A. Bending modes of flexible fibers

The shape of the fiber changes during the fluid-flexible
fiber interaction process. Figure 6 shows three typical bending
modes of flexible fibers, namely, the U-shaped mode, the
flapping mode, and the closed mode. It is shown that as the
flow velocity increases from zero, the fiber becomes more
bent and more streamlined. Thus the flexible fiber is folded
with a stable U shape [Fig. 6(a)]. For a U-shaped flexible
fiber, the two ends of the fiber approach each other slowly and
then swing slightly due to the appearance of vortex shedding.
Gradually increasing the flow velocity before a critical value
can produce a rich variety of fiber configurations because of
vortex shedding. Around this critical velocity, the ends of the
fiber will flap with large amplitude [Fig. 6(b)] which is similar
to a flapping flag [32,33]. When further increasing the flow
velocity, the two ends of the fiber may combine together and
form a closed structure [Fig. 6(c)]. This is different from the
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FIG. 6. Three typical bending modes of flexible fibers: (a) U-
shaped mode (L = 3.3 cm), (b) flapping mode (L = 5.0 cm), and
(c) closed mode (L = 8.0 cm).

numerical solutions obtained by Alben et al. [11]. In their
numerical solutions, the fiber bends and becomes progressively
more aligned with the far field flow as the flow speed increases,
and there is no fiber flapping and no closed fiber shapes.

Figure 7 shows the y coordinates of the endpoints of three
flexible fibers of length L = 3.3, 5.0, and 8.0 cm, respectively.
It is found that the flapping of flexible fibers is caused by vortex
shedding. For the three flexible fibers of different lengths,
vortex shedding all appeared at about 1.5 m/s flow velocity.
However, the fiber does not flap immediately when vortex
shedding appears. From Fig. 7 it can be seen that the fiber
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FIG. 7. (Color online) The y coordinates of the two endpoints
vs velocity for flexible fibers with different lengths: (a) L = 3.3 cm,
(b) L = 5.0 cm, and (c) L = 8.0 cm.
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FIG. 8. (Color online) Comparisons of smoothed and un-
smoothed drag for the flexible fiber of length L = 3.3 cm.

began to flap at about 5.5, 3.1, and 1.8 m/s flow velocity for
fibers of length 3.3, 5.0, and 8.0 cm. Thus a longer flexible fiber
is easier to flap when the rigidity of the fiber stays unchanged.

B. Drag scaling

In particle modeling of fluid-fiber interaction, vortices at
different scales are frequently generated and shed, which
leads to flow fluctuation and flexible fiber oscillation. As
such, the obtained numerical results may also experience some
oscillations. In order to obtain small fluctuations, the numerical
data of fluid drag are smoothed as follows:

Ds =
∑

t DtW
t
st∑

t W
t
st

, (26)

where Ds denotes the smoothed fluid drag at time s; Dt denotes
the unsmoothed fluid drag at time t ; and Wt is a smoothed
kernel which has the same form as the kernel function shown
in Eq. (5), but with variables of different means and values:

Wt (st ) =
⎧⎨
⎩

(2 − st )3 − 4(1 − st )3, 0 � st < 1
(2 − st )3

, 1 � st < 2
0, st � 2

, (27)

where st = (s − t)/ht , and ht denotes a smoothed length of
time that determines the time length of the smoothed kernel.
Figure 8 compares the smoothed and unsmoothed drag for a
flexible fiber of length L = 3.3 cm. As shown in Fig. 8, the
smoothed curve retains some tiny fluctuations, because the
smoothed length of time ht takes the value of 0.01 s. If ht

takes a larger value, the smoothed curve will be smoother. In
the following contents, the drag and the coefficient of drag are
all smoothed, while other data are not smoothed.

Figure 9 shows the fluid drag per unit profile length (which
means the frontal length presented to the flow) versus flow
velocity together with experimental observations from Alben
et al. [10] for the rigid fiber of length L = 2.0 cm and the
flexible fiber of length L = 3.3 cm. It is shown that the
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FIG. 9. (Color online) Numerical results compared with the ex-
perimental results from Alben et al. [10]. The fiber of length
L = 2.0 cm is a rigid fiber, and the corresponding converted thickness
of the flow is 2.1 μm. The fiber of length L = 3.3 cm is a flexible fiber,
and the corresponding converted thickness of the flow is 1.6 μm.
The thickness of soap film used in the experiment is in the range of
1–3 μm.

numerical results agree very well with the experimental results
for both the rigid and flexible fibers. It is demonstrated that
the presented SPH-EBG coupling approach is effective in
modeling both rigid and flexible fibers.

It should be noted that in order to compare with exper-
imental data, the numerical data of drag in Fig. 9 obtained
from SPH-EBG simulations are converted to the size of the
experimental data as follows:

D∗ = D δ/δ0, (28)

where δ0 = 1 m denotes the thickness of 2D flow, δ is the
converted thickness, D∗ is the converted drag, and D is the
drag from 2D simulations. The thickness of the soap film in
the experiment [10] is in the range of 1–3 μm, but the thickness
is not exactly known for each case. In fact, the thickness of
the film is not exactly the same everywhere in the flow and
it is also not a constant with respect to time [11,34]. The
converted thickness is selected in the range of 1–3 μm by
comparing the converted drag with experimental drag. The
converted thickness of the flow for the rigid fiber of length
2.0 cm is 2.1 μm, and the converted thickness of the flow for
the flexible fiber of length 3.3 cm is 1.6 μm, respectively.

In order to study the drag scaling of fluid drag for fibers, the
numerical drag is fitted using the function D = αUβ , where α

is a coefficient and β denotes the exponent to which the drag
must be raised to be proportional to flow velocity. For a rigid
fiber of length L = 2.0 cm (see Fig. 10), the fitted value of β is
2.10, which is very close to the theoretical value of 2. Figure 10
shows the variations of the drag with respect to fluid velocity
for a rigid fiber of length L = 2.0 cm. As shown in Fig. 10,
there is a drag translation at flow velocity about 1.7 m/s. It is
found that this drag transition happens when vortex shedding
appears. If we fit the data in a piecewise manner, the exponent
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FIG. 10. (Color online) Fluid drag per unit profile length vs flow
velocity for a rigid fiber of length L = 2.0 cm. At a flow velocity of
about 1.6 m/s, there is a drag transition because of vortex shedding.

values are different before and after vortex shedding. The value
of β is 1.96 before and 1.98 after vortex shedding, respectively,
closer than the total fitted value of 2.10 to the theoretical value
of 2.

Figure 11 shows the log-log plots of fluid drag for the
rigid and flexible fibers. It is shown in Fig. 11 that drag
scaling is not valid when the flow velocity is smaller than
about 0.2 m/s because of viscous force and numerical error.
Although the drag acting on the rigid fiber changes obviously
when vortex shedding appears (see Fig. 10), the drag scaling
stays unchanged [see Fig. 11(a)]. It is also shown that the U 4/3

drag scaling law for flexible fibers is only valid for a certain
range of flow velocity [see Figs. 11(b)–11(d)]. When the flow
velocity is bigger than about 3 m/s [see Figs. 11(c) and 11(d)],
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FIG. 11. (Color online) Log-log plots of fluid drag per unit profile
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FIG. 12. (Color online) Drag coefficient versus flow velocity for
the rigid fiber of length L = 2.0 cm and three flexible fibers of length
L = 3.3, 5.0, and 8.0 cm.

fluid drag acting on a flexible fiber is proportional to U 2, which
is the same as the drag scaling of a rigid fiber. This is because
the flexible fiber forms a closed shape (i.e., the closed mode
as mentioned in previous section) and it is not able to become
more streamlined through bending.

Figure 12 shows the drag coefficient versus flow velocity
for the rigid and flexible fibers. The drag coefficient is defined
as CD = FD/(ρLyu

2/2), where FD is drag force, ρ is fluid
density, Ly is the profile length of a fiber in flow direction, and
u is flow velocity.

For comparison, the drag coefficient of the rigid fiber with
length 2.0 cm is also given in Fig. 12. It can be seen that the drag
coefficient of the rigid fiber is bigger after the drag translation
at flow velocity of about 1.7 m/s due to vortex shedding. The
influence of vortex shedding on the drag coefficient of flexible
fibers is not as much as that of the rigid fiber. One possible
reason is that flexible fibers can flap with vortex shedding
while rigid fibers cannot.

It is shown in Fig. 12 that the drag coefficients of flexible
fibers reduce as the velocity increases, because flexible fibers
become more streamlined as the fluid velocity increases, which
is one of the main reasons for the drag reduction of flexible
fibers. It can also be seen that the drag coefficient of a longer
flexible fiber reduces more rapidly than that of a shorter one,
because a longer fiber is easier to bend than a shorter one
and a longer fiber forms a more streamlined shape. The drag
coefficient of a flexible fiber is nearly a constant after the fiber
forms a closed shape, e.g., after velocity of about 6.6 m/s for
the fiber of length 5.0 cm and about 3.5 m/s for the fiber of
length 8.0 cm.

C. The influence of vortex

In the classical SPH method, particles are treated as points
and a particle can only move from one point to another but
cannot rotate. In order to visualize the vortices behind a fiber,
the freedom of rotation of a SPH particle is released, which
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FIG. 13. (Color online) The streamlines and vortices of the flexible fiber of length L = 3.3 cm at different times (and velocities): (a) t = 0.1 s
(u = 0.091 m/s), (b) t = 0.3 s (u = 0.335 m/s), (c) t = 0.5 s (u = 0.616 m/s), (d) t = 1.0 s (u = 1.403 m/s), (e) t = 1.3 s (u = 1.988 m/s),
and (f) t = 1.5 s (u = 2.428 m/s). The lines are streamlines and the color shows the angular velocity of SPH particles.

means that an SPH particle can rotate if there is a moment
of force acting on it. The force moment on a particle due to
viscosity is defined as follows:

Mv
a = lv

∑
b

rb − ra

rab

Fv
abWab

mb

ρb

, (29)

where Fv
ab is the viscous force acting on particle a due to

particle b, and lv is viscous length, which defines the influence
domain of viscosity. The value of lv is in the order of the initial
particle spacing. The corresponding angular acceleration of

particle a is defined as

dωa

dt
= Mv

a

Ia

, (30)

where ωa and Ia denote the angular velocity and the
momentum of inertia of particle a, respectively. Then the
angular velocity of a particle can be obtained by integrating
Eq. (30).

It should be noted that in this paper the angular velocities of
particles are only used to show the vortex structures of the flow,
because the rotations of fluid particles are related to the fluid

FIG. 14. (Color online) The streamlines and vortices of the flexible fiber of length L = 5.0 cm at different times (and velocities): (a) t = 1.0 s
(u = 1.497 m/s), (b) t = 1.5 s (u = 2.671 m/s), (c) t = 2.0 s (u = 3.644 m/s), (d) t = 3.0 s (u = 5.103 m/s), (e) t = 3.8 s (u = 6.573 m/s),
and (f) t = 3.85 s (u = 6.586 m/s). The lines are streamlines and the color shows the angular velocity of SPH particles.
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FIG. 15. (Color online) The streamlines and vortices of the flexible fiber of length L = 8.0 cm at different times (and velocities): (a) t = 1.0 s
(u = 1.609 m/s), (b) t = 1.3 s (u = 2.198 m/s), (c) t = 1.6 s (u = 2.780 m/s), (d) t = 1.7 s (u = 2.992 m/s), (e) t = 1.8 s (u = 3.271 m/s),
and (f) t = 1.85 s (u = 3.455 m/s). The lines are streamlines and the color shows the angular velocity of SPH particles.

vortices [35,36]. Although the angular velocity of a particle
is determined by the flow, it does not affect the flow, and the
rotations of the particles do not interact with each other.

Figures 13–15 show streamlines and vortices at different
times (and velocities) for three flexible fibers of length
L = 3.3, 5.0, and 8.0 cm, respectively. It is obvious that
during the flexible fiber–fluid interaction process, the shape
of the fiber changes because the fiber bends more and more
and forms a streamlined shape. As shown in Figs. 13–15, the
downstream flows are associated with vortices and curved
streamlines, while the upstream flows (especially at the
entrance) are even with straight lines. This clearly shows the
effectiveness of the inflow boundary treatment with a layer of
porous media in removing the influence on inlet flows from
the downstream flows when applying the periodic boundary
used in the flow direction.

In the initial stage, at low velocities two symmetric vortices
generate at the two ends of the fiber [Figs. 13(a)–13(c)]. As the
flow velocity increases, the width and length of the vortices
increase, especially the length in the flow direction. However,
at a certain velocity, the two symmetric vortices translate to
two rows of asymmetric vortices [Fig. 13(d)], which is the
so-called Kármán vortex street [37]. The vortex street will
finally reach a stable state as the flow field is well developed
[Figs. 13(e) and 13(f)].

Comparing the flexible fibers of length L =
3.3, 5.0, and 8.0 cm with each other, it is found that the
bending form of a longer fiber is more complicated. As the
vortex shedding becomes stronger, the flexible fiber can no
longer remain in U shape and starts to flap at a certain flow
velocity. Before a closed structure forms, the flexible fiber will
flap violently. The bending angle is greater than 90 degrees
and sometimes approaches even 180 degrees [see Figs. 14(e)
and 15(e)]. It is obvious that the flapping of a flexible fiber is
caused by vortex shedding. It can be expected that the flexible

fiber will remain in U-shaped mode as the flow velocity
increases if there is no vortex shedding.

It is an interesting work to study the influence of vortex
shedding on the drag of a flexible fiber. Zhu [15] numerically
studied the influence of three dimensionless parameters on the
structure of shed vortices for Reynolds numbers in the range
of 30–800. Vortex shedding and vortex-introduced vibration
of flexible fibers were investigated in detail in Refs. [15,38]
regarding other aspects.

IV. CONCLUSIONS

In this paper, a numerical approach is presented for
modeling the interaction of viscous fluids and flexible fibers.
The numerical approach is based on the coupling of the
SPH method and the EBG technique. As both SPH and
EBG are Lagrangian particle methods, the SPH-EBG coupling
approach is also a Lagrangian particle approach that is suitable
for modeling physics with moving and deformable features. In
the SPH-EBG approach, SPH particles are used to represent
the fluid, EBG particles are used to represent the flexible fiber,
and the fiber-fluid interaction is implemented through allowing
the interaction of neighboring SPH and EBG particles. The
SPH-EBG approach is applied to model the interaction of a
viscous fluid with rigid and flexible fibers of different lengths.

From the SPH-EBG simulations, three bending modes of
flexible fibers are observed, namely, the U-shaped mode,
the flapping mode, and the closed mode. For the U-shaped
mode, the flexible fiber becomes more streamlined as the flow
velocity increases. For the flapping mode, the flexible fiber
flaps with large amplitude due to strong vortex shedding. For
the closed mode, the two ends of the flexible fiber combine
with each other.

The numerical results show that fluid drags scaling on
both rigid and flexible fibers agree well with those from
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experimental observations [10], dimensional analysis [12], and
other numerical modeling [39]. However, the U 4/3 drag scaling
law for a flexible fiber is valid only for the U-shaped mode but
not for the flapping and closed modes. The drag scaling for
a flexible fiber in closed mode is the same as that for a rigid
body, e.g., the drag is proportional to the square of velocity.
The drag scaling for a flexible fiber in flapping mode seems
different for different fibers.

It is also shown that vortex shedding is of significant impor-
tance for the interaction of fluid and fibers. It led to a transition

of the fluid drag of the rigid fiber. It is also vortex shedding,
which causes different bending modes of flexible fibers.
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