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Spring constant regulate selectin-ligand bond dissociation
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Forced dissociation of selectin-ligand complex is crucial to such biological processes as leu-
kocyte recruitment, thrombosis formation, as well as tumor metastasis' ' . Although several as-
says and techniques, e. g., dynamic force spectroscopy (DFS), have been applied to probe
the complex at single-bond level, the discrepancies in the loading rate dependence of bond rup-
ture force were found in the assays, presumably due to the different pathways in energy land-
scape and binding kinetics of molecular complexes 2. However, the underlying mechanisms re-
main unclear.

Here an optical trap (OT) assay was used to quantify the bond rupture at r,< 20 pN/s with
low k( ~10-3-10-2 pN/nm) when P-selectin and P-selectin glycoprotein ligand 1 ( PSGL-1)
were respectively coupled onto two glass microbeads. Our data indicated that the bond rupture
force, f, retained the similar values when r, increased up to 20 pN/s. It was also found that f
varied with different combinations of k and v even at same r,. Most probable force, f*, was en-
hanced with spring constant when k < 47.0 x10 ~° pN/nm, indicating that the bond dissociation
at low r, is spring constant-dependent and that bond rupture force depends on both loading rate
and mechanical compliance of force transducer *'.

And we further quantified the dissociation lifetime of selectin-ligand bond with low stiffness
ranging from 3.5 x10° to 4.7 x 10 2 pN/nm. Our results indicated that bond lifetime yielded
distinct distributions with different probe stiffness, implying the stochastic feature of bond disso-
ciation. It was also found that the mean lifetime varied with probe stiffness and that the catch
bond nature was visualized at k=3.0 x10 "2 pN/nm.

Upon the experimental observations, we proposed that probe stiffness, k., affects the zero-
force reverse rate K and in turn alters the bond rupture force by regulating the diffusion of bond
complex. A Morse potential was applied to define the kinetics of forced dissociation of a bond
based on Kramers' rate theory * and Brownian dynamics. Theoretical calculations and Monte
Carlo simulations were conducted to study the kinetics of forced dissociation. Zero-force off-rate
K was estimated and probability distribution of bond rupture force P, and most probable rupture
force f* were predicted at varied probe stiffness, which were compared with those measure-
ments using OT assay. It was found that the probe stiffness dependence of K at relatively low
stiffness (k<1 pN/nm) is mainly attributed to the confined Brownian diffusivity when bonded
site is connected to a mechanical probe. Moreover, the simulations on dissociation kinetics are
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coincident with the aforementioned measurements, which provides the biophysical interpretation
on forced dissociation of a receptor-ligand bond.
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