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This paper presents a new continuum thermal stress theory for crystals based on interatomic potentials. The effect of finite 
temperature is taken into account via a harmonic model. An EAM potential for copper is adopted in this paper and verified by 
computing the effect of the temperature on the specific heat, coefficient of thermal expansion and lattice constant. Then we 
calculate the elastic constants of copper at finite temperature. The calculation results are in good agreement with experimental 
data. The thermal stress theory is applied to an anisotropic crystal graphite, in which the Brenner potential is employed. Tem-
perature dependence of the thermodynamic properties, lattice constants and thermal strains for graphite is calculated. The cal-
culation results are also in good agreement with experimental data. 
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1  Introduction 

A wide range of applications of nanostructure and nano-
material have been reported in refs. [1–4]. The characteristic 
length of the systems of nanomaterial and nanostructure is 
about several tens of nanometers, while nanoscale effects, 
such as quantum effects, material defects and surface effects 
become significant. As a result, classical continuum theory 
may not be directly applicable for nanosystems. Although 
the characteristic length is several tens of nanometers, the 
entire system could still be of the order of micrometers. In 
this case, ab-initial calculation, molecular dynamics or 
Monte Carlo simulation which can provide reasonable at-
omistic analysis is not suitable because of the expensive 
computation. 

In order to capture the essential features of atomistic 

physics while retaining the efficiency of continuum models, 
many multiscale methods and atomistic-based continuum 
theories have been proposed in refs. [5–11].  

Tadmor et al. [12,13] and Shenoy et al. [14] developed 
the quasicontinuum (QC) method which combines contin-
uum finite element method with atomistic physics. However, 
it is restricted to zero temperature. The QC method was 
extended to take into account the effect of finite temperature 
under local quasiharmonic approximation [15–17]. Shenoy 
et al. [15] presented a derivation of an effective energy 
function to perform Monte Carlo simulation in a mixed at-
omistic and continuum setting, namely, QC Monte Carlo 
(QCMC) method.  

Dupuy et al. [17] developed a coarse-grained alternative 
for molecular dynamics by employing the local quasi-
harmonic model (LQHM). Tang and Aluru [18] established 
a multiscale model based on finite element method for me-
chanical analysis of silicon nanostructures at finite temper-
ature. Within the framework of local quasiharmonic model, 
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Jiang et al. [19] studied bulk thermodynamic properties of 
graphite and diamond using their finite-temperature contin-
uum theory developed in terms of the interatomic potential. 
Tang et al. [20] and Zhao et al. [21] investigated three qua-
siharmonic models, namely, QHM (quasiharmonic model), 
QHMK (quasiharmonic model in reciprocal space) and 
LQHM.  

The purpose of this paper is to establish a continuum 
thermal stress theory for crystals at finite temperature di-
rectly from the interatomic potential with low computation-
al cost and high accuracy. The thermodynamic properties, 
lattice constants, thermal strains, elastic constants and con-
stitutive relation for copper and graphite are calculated re-
spectively. The results have been found in good agreements 
with the experimental data. 

2  A continuum thermal stress theory for cubic 
crystals 

The thermal properties of crystal materials may be analyzed 
by the lattice wave theory with vibration frequency ω. The 
concept of the thermal strain is introduced and the new 
thermal stress theory is proposed in this section. The char-
acteristic of new theory is to use the thermal strain instead 
of frequency of the lattice wave, which made it convenient 
in practical application [22,23].        

2.1  Vibration frequencies 

The force acting on atom i  equals  
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where ije  is the unit vector from atom i to atom j, ijr  is 

the bond length between atom i and atom j, i  represents 

the set of all atoms which interact with the atom i, ijf  is 

the interaction force between atom i and atom j, and totU  is 

the total energy stored in atomic bonds of the system. 
The dynamic equation of atom k is given by Tang and 

Wang [22] 
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where ju  is the displacement of atom j , I  is the se-

cond-order unit tensor, and   is the tensor multiplication 
operator. 

The solution to eq. (2) can be written as: 

 i( )e .jt

j j
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For a crystal with dimensions 1 1,N a  2 2N a  and 3 3N a  

along the three axes, 1a , 2a  and 3a  are the three basis 

vectors of Bravais lattice. The Born-Karman boundary con-
dition [24] is applied.  

Substituting eq. (3) into eq. (2), one obtains 
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where N  is the total number of atoms in the system.  
For copper, per unit cell contains only one atom. All at-

oms have the same magnitude, k j A A A . 

As a result, each copper atom interacts with 54 neighbors 
(including the nearest neighbors, second nearest neighbors 
up to fourth nearest neighbors).  

Hence for atom k  the characteristic equation can be 
written as: 
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2.2  Equilibrium at finite temperature 

The equilibrium bond length is a function of temperature T, 
i.e. 

 (0) ( )r r T , (6) 

where the superscript 0 denotes the state only subject to free 
thermal expansion. That is to say, the pressure acting on the 
volume element of the crystal equals zero, p  0. The quasi 

equilibrium distance (0) ( )r T  is determined by minimizing 

the Helmholtz free energy A , i.e. 
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where V is the volume, Bk  is the Boltzmann constant,   

is the Planck’s constant and j  is the vibration frequency 

of the atom system. 

2.3  Stress-strain relationship 

The thermal stress theory for crystals subject to arbitrary 
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deformation is presented in this section. The homogeneous 
deformation measures can be related to the motion of many 
atoms via the Cauchy-Born rule, which equates the strain 
energy to the energy stored in atomic bonds and the vibra-
tion energy. 

Figures 1(a)–(c) are the initial configuration, intermedi-
ate configuration and current configuration, respectively. 

The initial configuration is the state of undeformed solid 
at absolute zero temperature. The deformation gradient F* is 
the free thermal expansion as temperature rises to T. As a 
result, the intermediate configuration is in the zero-stress 
state. 

Since eF  is the elastic deformation gradient from the 
intermediate configuration to the current configuration, the 
second Piola-Kirchhoff stress can be determined by 
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where W is the strain energy density, eE  is the elastic 
Green strain tensor, and *V  is the volume at the interme-
diate configuration.  

The Cauchy stress takes the form: 

 Te ,
1 ( )e

e

e

U
V

 
 
 




E
σ F F

E
 (9) 

where V is the volume at the current configuration.  
The total deformation gradient is 

 * .eF = F F  (10) 

The thermal strain tensor, elastic strain tensor and total  

 

Figure 1  Schematic diagram of deformations. (a) is the initial configura-
tion. (b) is the intermediate configuration. (c) is the current configuration. 

strain tensor take the forms respectively 

 * *T *( ) / 2, E F F I  (11a) 
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Substituting eq. (10) into eq. (11c), one obtains 
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From eq. (12), one obtains  

 *T * * .e  F E F E E   (13) 

Let us consider the Polar decomposition of the tensor. 
The deformation gradients ,F  *F  and eF  can be re-

written respectively as: 
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where ,R  *R  and eR  are the rotation tensors; ,U  *U  

and eU  are the stretch tensors. Without loosing generality, 

one can assume * .R  I  Then from eq. (13), one can ob-
tain 
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Therefore, Cauchy stress in eq. (9) now becomes 

 
T

*T 1 * * 1

,

( ) ( )( ) ,

1 ( )e
e

e

e

eU
V

 

   
  
   

 




E U E E U

E
σ F F

E  (16) 

If the thermal strain *E  is small, one can get the fol-
lowing equation: 
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Eq. (17) is the new thermal stress theory. There are no 
temperature T and no thermal vibration frequency j  of 

any atom j appearing in eq. (17), but the thermal strain E* is 
found in eq. (17) instead. Compared to the previous thermal 
stress theory [22], eq. (17) is much more convenient and 
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effective in practical application.  
Eq. (11a) can be rewritten as:  

 * * 2[( ) ] / 2. E U I  (18) 

Then, we obtain the Taylor expansion of *U ,  
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If the thermal strain *E  is small, one can get the fol-
lowing equation:  

 * * . U I E  (20) 

3  Calculation results for copper 

3.1  EAM potential for copper  

In order to obtain valuable results, one should choose an 
accurate interatomic potential. The EAM potential proposed 
by Mishin et al. [25] for copper is adopted in this paper.  

3.2  Thermodynamic properties of copper  

The calculations are carried out for 10×10×10, 20×20×20 
and 100×100×100 unit cells with periodic boundary condi-
tions.  

3.2.1  Specific heat and bulk modulus 

The specific heat VC  is given in ref. [26] 
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where E is the total thermal energy; ( )s q  is the vibration 

frequency of the crystal lattice.  
Figure 2 shows the comparison of the present calculation 

results with the experimental data in ref. [27]. One can see 
that the present calculation results are in good agreement 
with experimental data for temperatures up to 400 K. For 
higher temperatures, anharmonic effect becomes a little 
more significant. 

According to 
0
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[28], the bulk modulus 

of crystal can be calculated, where 0V  is the volume prior 

to deformation and totU  is the total potential energy. 

The calculation result is 0K =138 GPa, which is in good 

agreement with experimental data 137 GPa [28]. 

 

Figure 2  (Color online) Temperature dependence of specific heat CV for 
copper predicted by eq. (21). The experimental data of copper [27] are also 
shown. 

3.2.2  CTE of copper 

According to the Grüneisen’s law, the coefficient of thermal 
expansion (CTE)   of copper is given by 
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where   is the Grüneisen’s parameter, 0K  is the bulk 

modulus of the crystal, V is the volume and VC  is the spe-

cific heat. For copper,   is a constant and taken to be 2.0.  

The calculation results for the coefficient of thermal ex-
pansion (CTE)   are shown in Figure 3. The present re-
sult agrees quite well with the experimental data [28] for 
temperatures up to 400 K.  

3.3  Thermal strain and lattice constant 

Two methods are used to calculate the thermal strain and  

 

Figure 3  (Color online) Temperature dependence of the coefficient of 
thermal expansion α for copper predicted by eq. (22). The experimental 
data of copper [27] are also shown for comparison. 
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lattice constant. In method 1, the thermal strain is given by 

 
0
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where T0 is often chosen to be room temperature, T is the 
thermal strain from temperature T0 to temperature T when 
the crystal is expanding freely.  

The lattice constant after thermal expansion is given by 
Jiang et al. [19]  
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Thermal strain can be expressed by 
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where (0) (293 K)r  is the quasi equilibrium distance at 
room temperature. 

The comparison of the present calculation result and ex-
perimental data for thermal strain is shown in Figures 4 and 
5. The calculated results of both methods are in good with 
the experimental data [29]. 

3.4  Elastic constants of copper 

The thermal strain tensor * ( )TE  for copper is given by 
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Figure 4  (Color online) Variation of thermal strain with temperature 
obtained through method 1 and method 2, and the experimental data [29] 
are also shown for comparison. 

 

Figure 5  (Color online) Variation of lattice constants with temperature. 
Calculation results predicted by method 1 and method 2 and the experi-
mental data [29] are shown for comparison. 

where *
T  is the normal thermal strain when the crystal 

expands freely from absolute zero temperature to T, 
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The stress-strain relationship of the anisotropic materials 
in the linear elastic range is defined by 
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where x , y , z , xy , yz , zx are the stress components, 

x , y , z , xy , yz , zx  are the strain components, and other 

21 parameters are the elastic constants which depend on 
temperature T . 

For single-crystal copper, we have  
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and the other parameters equal 0. 
There are only three independent elastic parameters, 

namely 11( )C T , 12 ( )C T  and 44 ( )C T . Then, two cases 

have been investigated to capture  three elastic parameters.  
In the first case, from the deformation shown in Figure 

6(a), suppose a volume element of copper crystal is subject 
to an elastic uniaxial strain 610x

  from the intermedi-

ate configuration to the current configuration as follow: 
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Figure 6  (a) Elastic stretch deformation Ee 
stretch from the intermediate 

configuration to the current configuration; (b) elastic shear deformation   
Ee 

shear from the intermediate configuration to the current configuration. 
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where e
stretchE  is the corresponding elastic strain tensor. 

The total strain tensor E  from the initial configuration 
to the current configuration is expressed as: 

 * * T *( ) e E E U E U . 

Substituting eqs. (29) and (26) into eq. (16), we have 
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where 1σ  is the corresponding stress tensor. 

The elastic constants can be expressed by  
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In the second case, from the deformation shown in Fig-
ure 6(b), suppose a volume element of copper crystal is 

subject to an elastic shear strain 62 10xy xy    , i.e. 
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Substituting eqs. (32) and (26) into eq. (16), we obtain 
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where 2σ  is the corresponding stress tensor.  

The 44C  is obtained as:  
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In Figure 7, our computational results indicate that the 
elastic constants of copper decrease with the increase of 
temperature. For comparison, some experimental results [30] 
are also displayed. From the good agreement we can once 
again expect that the prediction for the thermal strain T  in 

sect. 4.4 is quite accurate.  

4  Application of the thermal stress theory to 
graphite 

4.1  Vibration frequencies of graphite 

For graphite, the interaction of layer-layer is van der waals 
force which is quite small compared to the in-plane interac-
tion. As a result, the interaction of layer-layer is ignored in 
the dynamic equation of the carbon atom. Therefore gra-
phene can be a substitute for graphite when the vibration 
frequencies of the system are calculated. 

As is shown in Figure 8, that carbon atoms in graphene 
can be classified into two types A and B. 

For a two dimensional graphene crystal, wave vector q  

can be expressed as: 

 1 2
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where 1b  and 2b  are the basis vector of the reciprocal 

lattice. 

With the parameters  1 0.17R  nm,  2 0.2R  nm and 
the bond length at zero temperature equal to 0.142 nm re-

spectively, the cutoff function of carbon’s Brenner potential 
[31,32] is 

 
Figure 7  (Color online) Comparison of elastic constants C11, C12 and C44 
between the current analysis and the experimental data [30]. 
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Figure 8  (Color online) A schematic diagram of the atomic structure of a 
graphene with a representative atom 0, its three nearest-neighbor atoms 1, 
2, and 3, and six second-nearest-neighbor atoms 4, 5, 6, 7, 8 and 9. The 
open circles represent the carbon atom A, and the shaded circles represent 
the carbon atom B. 
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As a result, for one carbon atom A, it interacts with 3 
nearest neighbours B. The dynamic equations therefore can 
be expressed by 
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where A and B represent the two types of the atom, and i 
and   are serial numbers of the atoms. 

In graphene, A and B atoms have different amplitudes. 
The solutions of lattice wave are 
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Substituting eq. (38) into eq. (37), we get  

    T2 , , , , , ,x y z x y zm A A A B B B  I J 0  (39) 

where J  is a 6×6 matrix, and ,xA  ,yA  ,zA  ,xB  yB  and 

zB  are the components of the amplitudes of the atoms. 

The characteristic equation can be written as: 

 2 0.m  I J  (40) 

Hence we can get six vibration frequencies for each q. 

4.2  Specific heat and CTE of graphite 

4.2.1  Specific heat of graphite 

The VC  for graphite can be composed of two components 

[33]: 

 , ,

2 1

3 3V V a V cC C C  , (41) 

where ,V aC  is the in-plane specific heat at constant volume, 

,V cC  is the out-of-plane specific heat at constant volume. 

,V aC  and ,V cC  take the forms: 
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where ( )a
s q  is the in-plane frequency, ( )c

s q  is the 

out-of-plane frequency. 
Figure 9 shows the comparison of specific heat versus 

temperature for graphite, it is obvious that the predicted 
specific heat agrees very well with experimental data [27] 
for graphite. 

4.2.2  CTE of graphite 

Since thermal expansion of graphite is anisotropic, the ex-
pression of Grüneisen’s law for graphite is different from 
that for copper. As pointed by Morgan [33], in-plane CTE 
and out-of-plane CTE are the functions of ,V aC  and ,V cC : 

  11 12 , 13 ,

2 1
,

3 3
a c

a V a V cS S C S C CT
V V

 
      (43) 

 

Figure 9  (Color online) Temperature dependence of specific heat Cν for 
graphite predicted by eq. (49). The experimental data of graphite [27] are 
also shown. 
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 31 32 , 33 ,

2 1
( ) ,

3 3
a c

c V a V cS S C S C NT
V V

 
      (44) 

where 11 12 13, ,S S S and 33S are the elastic flexibility coeffi-

cients of the crystal; C and N are the parameters; V is the 
mole volume and equals 35.31 cm /mole ; We set a   

2.05 and rc=1.33 as the in-plane and out-of-plane Grüneisen 
parameters, respectively. 

According to refs. [33,34], at room temperature, we have 
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 (45) 

The present calculation results of in-plane and 
out-of-plane CTE are shown in Figures 10 and 11, respec-
tively, which are in good agreement with experimental data 
[27,35,36]. 

 

Figure 10  (Color online) Temperature dependence of in-plane CTE αa 
for graphite predicted by eq. (50). The experimental data of graphite [27] 
are also shown. 

 

Figure 11  (Color online) Temperature dependence of in-plane CTE αc 
for graphite predicted by eq. (44) based on Brenner potential. The experi-
mental data of graphite [35,36] are also shown. 

4.3  lattice spacing of graphite  

Since the CTE of graphite in a-direction and c-direction are 
different, the a-spacing and c-spacing of graphite are also 
different, which can be expressed as the functions of a  

and c , respectively: 
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where 0 0.24618a  nm, 0 0.66818c  nm [33]. They are 

lattice a-spacing and lattice c-spacing at absolute zero tem-
perature respectively. 

4.4  The constitutive relation of graphite  

From eq. (46), one can obtain the thermal strain in a-direc-          
tion ( )a T  and the thermal strain in c-direction ( )c T  as 

follow: 
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Then the thermal strain tensor *E  for graphite can be 
expressed as:  
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Now the Cauchy stress for graphite can be expressed as 
follows: 
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 (49) 

The above equation is identical to eq. (16), but the ther-
mal strain tensor E* in eq. (49) is different from the thermal 
strain tensor E* in eq. (26). The thermal strain tensor for 
copper is isotropic, while the thermal strain tensor for 
graphite is anisotropic. 

Let us compare the present constitutive eq. (49) with the 
conventional constitutive equation. Using the Helmholtz 
free energy, the Cauchy stress takes the form [19–22]: 
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i i
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where F is the deformation gradient.  
From eq. (49), we can see that the present constitutive 

equation is quite compact and efficient in comparison with 
eq. (50). In eq. (49), the thermal strain E* only depends on 
temperature T. Once we obtain the thermal strain E*, the 
stress tensor  can be directly derived from eq. (49). In eq. 

(50), all of the frequencies i  and its derivatives i
E

 

are dependent to the applied strain E. When the applied 
strain E increases or decreases, we should calculate all the 
frequencies and their derivatives again. Meanwhile, in order 
to guarantee the accuracy of the derivative of frequency 

i
E

, one should have a very accurate interatomic potential, 

which is a difficult task in practical application. 

5  Conclusion  

A continuum thermal stress theory for crystals at finite 
temperature is presented in this paper based on interatomic 
potential. The constitutive relation for cubic crystal copper 
and anisotropic crystal graphite is established via harmonic 
model and periodical boundary condition. The key idea is to 
introduce the thermal strain E*, which is independent of the 
applied strain E. Free thermal expansion is an intrinsic 
property of crystals, when the temperature T is rises. During 
free thermal expansion, the crystal is kept in case of stress 
free. Hence if the volume element of the crystal is stress 
free at the initial configuration, after free thermal expansion, 
the stress tensor  of the volume element of the crystal 
should be zero.  
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