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Abstract A variational method using the principle of virtual work (PVW) is presented to formulate the 

problem of the microcantilever stiction. Compared with the Rayleigh–Ritz method using the arc-shaped or 

S-shaped deflection, which prescribes the boundary conditions and thus the deflection shape of a stuck 

cantilever beam, the new method uses the matching conditions and constraint condition derived from PVW 

and minimization of the system free energy to describe the boundary conditions at the contact separation 

point. The transition of the beam deflection from an arc-shape-like one to an S-shape-like one with the 

increase of the beam length is shown by the new model. The (real) beam deflection given by this new model 

deviates more or less from either an arc-shape or an S-shape, which has significant impact on the 

interpretation of experimental data. The arc-shaped or S-shaped deflection assumption ignores the beam 

bending energy inside the contact area and the elastic energy due to the beam/substrate contact, which is 

inappropriate as shown by this study. Furthermore, the arc-shaped or S-shaped deflection only 

approximately describes the deflection shape of a stuck beam with zero external load and obviously, the 

external load changes the beam deflection. The Rayleigh–Ritz method using the arc-shaped or S-shaped 

deflection assumption in essence can only be used to tell approximately whether stiction occurs or not. 

Rather than assuming a certain deflection shape and by incorporating the external load, the new method 

offers a more general and accurate study not only on the microcantilever beam stiction but also on its de-

adherence. 
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Introduction 

Stiction is one of the most widespread hazards 

threatening the reliable operation of the micro-

electromechanical systems (MEMS) devices [1, 2]. 

Stiction is often categorized as release-related stic-

tion and in-use stiction [1, 3]. The capillary force 

[1,2,4,6–9], electrostatic force [4,9–13], mecha-

nical load [14] and inertial forces [8] during the 

MEMS release or in-use stage can all be the 

actuation mechanisms to bring the devices into 

contact with one another or with the substrate. The 

system free energy of the device in contact 

consists of two parts: the mechanical energy and 

surface energy. Adhesion energy is defined as the 

reduction of the surface energy per unit area when 

combining two surfaces into one interface [15], 

which is also referred to as the surface interaction 

energy [1,2]. Once the external load is retracted, 

two things happen in terms of the 

 

system free energy: the increase of the mechanical 

energy due to the device deformation and the 

decrease of the surface energy due to adhesion. In 

terms of force, the device deformation generates a 

restoring force to try to pull the device back to the 

free-standing state; the tensile pressure around the 

contact separation edge [16, 17] due to adhesion 

tries to balance the restoring force and keeps the 

devices in a deformed state. The competition 

between the mechanical and surface energies 

determines whether stiction occurs or not. Here the 

stiction state is defined as an attachment state after 

the external/actuation load is retracted. Therefore, 

the external load does not appear as a parameter in 

many stiction studies [7, 8, 18]. The stable equili-

brium of a stiction state corresponds to a local 

minimum of the system total free energy [5,18] 
and there is no stiction if such local minimum does 

not exist [18]. The peel number of    [18], which 

is defined as a convenient way to tell whether 



stiction occurs or not, is given as follows for a 

cantilever beam 

    
   

   

    
                                                               (1) 

  is a constant.   ,   and    are Young’s modulus, 

thickness and unstuck length of the cantilever, 

respectively.   is the gap distance between the 

undeformed beam and substrate as shown in Fig. 

1(a).    is the adhesion energy. Stiction occurs 

when      and no stiction when      [18]. 

     corresponds to the cantilever equilibrium 

obtained by minimizing the system free energy as 

shown in Appendix A. The dimensionless peel 

number can also be viewed as the order of the ratio 

of the mechanical energy to the surface energy [2, 

19]. 

However, the inconsistency and unreliability 

of the experimental data obtained in the beam 

stiction test using above Eq. (1) have been noticed 

[1, 23]. Van Spengen et al. [1] concluded that “the 

surface interaction energy measurement using 

stuck beams needs considerably more research 

before we can conclude anything definite about the 

precise magnitude of the measured surface 

interaction energy”. Most of the previous studies, 

according to van Spengen et al. [2], have “never 

come further than a peel number”. A more com-

prehensive way of studying the beam stiction 

should include the effect of surface roughness [1, 2, 

23], whose distribution determines how two surf-

aces contact each other. A more accurate descript-

tion on the stuck beam deflection in essence only 

offers a better characterization of the nominal 

adhesion energy. However, it is still a valuable 

tool and allows us to observe trends [1]. The 

principle of virtual work (PVW) is used in this 

study to derive the governing equation and 

matching/boundary conditions of a stuck canti-

lever. Unlike that an arc-shape or an S-shape spe-

cifies the boundary conditions at the contact 

separation points, the matching conditions deter-

mine what kind of the boundary conditions should 

be formed at the contact separation point, which 

are neither hinged nor clamped. The model pre-

sented here incorporates the cantilever beam di-

mensions, adhesion and external load and shows 

how these quantities change the beam deflection 

shape rather than prescribing it. By doing so, a 

more general and accurate method of describing 

the stuck cantilever deflection is presented. 

1. Model Development 

The bending energy   , which consist of both 

unstuck and stuck parts, is the following 
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   of the energy stored by the elastic foundation 

due to the beam/substrate contact is given as 

follows: 

   
 

 
∫        
 

  
                                        (3) 

  is the gap distance between the undeformed 

beam and substrate as shown in Fig. 1(a) and   is 

the modulus of elastic foundation. Eq. (3) indicates 

that the potential energy is stored by a series of 

springs with stiffness  . 

 

The surface energy,   , is given as the 

following [5,7,18] 

                                                         (4) 

   is the beam width and      is the beam 

contact length.          is thus the 

contact/stuck area.    is the adhesion energy 

between the beam and substrate, which is also 
known as the surface interaction energy [1,2] and 

the Dupré work of adhesion [19]. It is noticed that 

   is negative, which physically means that the 

system free energy reduces when combining two 

sur-faces into one interface [15]. 

This reduction of surface energy is the 

mechanism responsible for the microstructure 

stiction. On the other side, the restoring force due 

to the mechanical energy (   and   ) tries to pull 

the beam back to the free-standing state.       ,      

the work done by   and  , is given as follows: 

       ∫    
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Here the nondimensionalization scheme is given 

as follows: 
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Fig. 1. (a) The schematic diagram of a stuck cantilever under a concentrated load   and a 

uniformly distributed load  .   is the beam length and   is the gap distance;    is the 

location of   and    is the separation point. (b) The arc-shaped and S-shaped deflections. 

     and    are the unstuck lengths of an arc-shape and an S-shape. 

 

Here   is defined as     √
 

    
 . By using the 

nondimensionalization scheme of Eq. (6) and 

applying the principle of virtual work (PVW) [25, 

26], i.e.,                    , the 

following dimensionless governing equations and 

matching/boundary conditions are obtained 

{
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At the separation point, a constraint condition can 

be derived as follows via a fracture mechanics 

approach 

         
√ 

 
                                                (10) 

Here   is defined as   
    

    
  . Eq. (7) is the 

governing equation, which consists of two fourth 

order differential equations. Therefore, there are 

eight unknowns due to the two fourth order 

differential equations plus that the separation 

point,   , is also unknown; there are nine 

unknowns in total. Eqs (8), (9) and (10) offer nine 

equations in total and the problem can thus be 

solved via Neewton-Rhapson method. The 

detailed procedures can be found in references [?].  
 

2. Results and Discussion 

Figure 2 compares the stiction shape derived by 

this new method with the arc- and S-shaped 

deflections, which are described by Eqs. (47) and 

(48) in Appendix A, respect-tively. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
     Clearly, our stiction shape is different from 

either arc-shape or S-shape. It is noticed that the 

beam predicted by our model separates from the 

substrate with the vertical displacement of 

  
√ 

 
        ; the vertical displacements at 

the separation points are h = 1 for both arc- and S-

shapes. The contact zone is now divided into two 
parts in terms of contact pressure: a zone around 

the beam free end (i.e.,       ) is with com-

pressive pressure and a zone around the contact 

separation point (i.e., the zone of         
       ) is with tensile pressure. This resembles 

the Johnson–Kendall–Roberts (JKR) contact 

scenario of two spheres: The inner circular zone is 

with compressive pressure and outer annulus zone 

is with tensile pressure [16,17]. In terms of force 

equilibrium, the tensile pressure due to adhesion in 

the zone around the contact separation point 

balances the restoring forces due to the beam 

bending and contact deformations. The beam 

length of      is smaller than     and   . 

Therefore, if either an arc-shape or an S-shape 

assumption is used to predict the beam stiction, the 

beam with       and        can not adhere to 

the substrate. In our computation, this       is 

the critical length and no stiction can occur with 

the length shorter than this value. Clearly, in Fig. 3 

the arc-shape deflection is a much better appro-

ximation than S-shape for the (real) beam stiction 

shape. 

Figure 3 compares the stiction shape (F = Q = 

0) of a slender beam with arc- and S-shapes. With 

the fixed values of     and       , the 

unstuck lengths,           and         of arc-

shape and S-shapes, respectively, remain unchang-
ed. Now the S-shape closely matches the deflect-

tion curve of the new model. There is only some 

small difference in the contact area. Again, with 

the fixed values of h and   the deflection curve of 

the new model separates from the substrate with 

the same vertical displacement of 0.929 3. But the 

unstuck length changes as       . The advent-

age of the new model is now standing out: rather 

than prescribing the boundary conditions at the 

separation point as done by the arc-shape and S-

shape, the new model configures its deflection 

through the matching conditions and constraint 

conditions. It is also worth emphasizing that 

though the stiction shape of the new model closely 

matches the S-shape, their unstuck lengths are 

different, which has significant impact on the 

interpretation on the adhesion energy measurement.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Summary 

A general approach of studying the micro-

cantilever stiction is presented. The principle of 

virtual work is used to derive the governing 

equation by assuming the deflection shape with a 

noncontact–contact configuration. The minimi-

zation of the system free energy results in the 

constraint condition, which determines the sepa-

ration point. This new approach shows that the 

deflection shape of a stuck cantilever beam is a 

function of the beam dimensions and mechanical 

properties, gap distance, adhesion, loading type 

and magnitude. The transition and change of the 

cantilever deflection shape are demonstrated by 

changing the beam dimensions and loadings. In 

comparison, the arc-shaped and S-shaped 

deflections only offer an approximation for the 

zero loading case, which deviates more or less 

from the one predicted by this approach. 

 

 
Fig. 2. Deflection comparison of a “chun-

ky” beam (       and       ), arc-shape 

and S-shape. 

 

 
Fig. 3. Deflection comparison of a slender 

beam (     and       ), arc-shape and 

S-shape. 



The difference of the deflection shapes has a direct 

impact on the calculation of the system energy and 

thus the interpretation of experimental data. In 

essence, this new approach offers a more accurate 

model on the stuck cantilever by not prescribing 

its deflection shape. 
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