
Interaction of Isentropic Compression Waves with a Bow Shock

Hongbo Lu,∗ Lianjie Yue,† Yabin Xiao,‡ and Xinyu Zhang§

Chinese Academy of Sciences, 100190 Beijing, People’s Republic of China

DOI: 10.2514/1.J052373

The interaction of isentropic compression waves with a bow shock is numerically investigated. The relative

intersection region size is introduced to characterize the convergence degree of isentropic compressionwaves. Among

the multiple parameters involved, relative intersection region size is a crucial factor in determining the occurrence of

the interference patterns, as well as the corresponding pressure and thermal loads. There exist two critical relative

intersection region sizes: the small one corresponds to the intersection region size being approximately equal to the

transmitted shock length in the case of Edney type IV interference, and the large one corresponds to the intersection

region size being close to the transmitted shock length in the case of Edney type III interference. When relative

intersection region size is lower than the small critical value, Edney interference patterns take place but their types

depend on the vertical intersection location. When relative intersection region size is greater than the large critical

value, none of the Edney interference patterns occurs. When relative intersection region size falls in between the two

critical values, part of Edney interference patterns occur and a subsonic jet is produced by the intersection of

isentropic compression waves with the strong portion of the bow shock. The maximum interference heating reduces

with relative intersection region size. Additionally, a dimensionless dependence of the maximum heat transfer

intensification was inferred for practical design and calculations.

Nomenclature

h = specific enthalpy
LAB = strong portion length of the undisturbed bow

shock
LS 0E 0 = specific intersection region size
Ma0 = undisturbed flow Mach number
P = static pressure
Pst = stagnation-point pressure at the freestream conditions
Pr = Prandtl number
q = wall heat flux
qst = stagnation-point heat flux at the freestream conditions
~q = maximum heat-transfer intensification
R = cylinder radius
RP = radius of curvature of the undisturbed bow shock at the

vertex P
ReR = Reynolds number based on the cylinder radius
Tw = 294.44 K, wall temperature
x, y = Cartesian coordinates of the undisturbed bow-

shock shape
yCV = vertical intersection location
β = shock angle
Δ = standoff distance of the undisturbed bow shock
δ = flow deflection angle
θ = angular coordinate
μ = Mach angle, viscosity
ρ = density

I. Introduction

S INCE the 1940s, achieving hypersonic flight has been a focus of
research in industry, academia, and government laboratories

around the world. Some hypersonic applications such as conven-
tional reentry vehicles are generally deemed mature in terms of the
established practices and the existent techniques relevant to
operational vehicles. However, there remain significant challenges
associated with hypersonics in light of both the performance and the
operability of existing and proposed hypersonic systems such as the
X-43/51 and the National Aero-Space Plane (NASP) [1,2]. A
fundamental design challenge of interest for high-speed vehicles is
the inherent aerodynamic heating, especially that produced by shock-
on-shock interactions [1–8]. During hypersonic flight, shock-on-
shock interactions are common in many aerodynamic configurations
such as launchers or propulsion systems. These shock interactions
can cause extremely high localized pressure and heat-transfer rates on
the vehicle surface. These features can alter the aerodynamic
characteristics of the vehicle and even lead to catastrophic failures. A
dramatic example of this effect was the airframe damage of the X-
15A-2 caused by shock interactions [7,8]. Another example from the
previous NASP is that the shock–shock heat flux on the scramjet
engine’s cowl leading edge was estimated by computational fluid
dynamics (CFD) in [9] to be as much as 5.67 × 108 W∕m2.
Shock-wave interference is one of the most challenging problems

of gas dynamics and has gained widespread interest [3,6,10–20].
Edney [3] formulated a detailed framework for the entire spectrum
of interference patterns and characterized six types of shock-
interference patterns (types I–VI) depending on the strength of the
impinging shock and the location of the intersecting point relative to
the curved bow shock. Some refinements to these classifications
have been developed subsequently, but the basic six patterns still
demonstrate the range of phenomena observed, where types I, II, and
V result in shock-wave–boundary-layer interactions, type VI
involves expansion-fan–boundary-layer interactions, type III results
in shear-layer impingement, and type IV is characterized by
supersonic jet grazing and impingement. These shock-interference
patterns generally produce a significant increase in pressure and heat-
transfer rate and lead to extremely high pressure and heat-transfer rate
gradients in highly localized regions where the shock-interference
pattern impinges on the surface. The extreme heat-transfer rate
gradient leads to a large temperature gradient and attendant
thermal stresses [10], which significantly reduce the service life
of the materials. A combination of analytical and experimental
investigations was conducted by Keyes and Hains [6] to predict the
pressure and heat transfer resulting from shock interaction using the
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oblique shock and Prandtl–Meyer (P–M) relationships. The results
showed that both the peak pressure and the heat-transfer rate were
sensitive to the upstream thermodynamic flow conditions, Mach
number, and geometry. Craig and Ortwerth [11] and Wieting and
Holden [12] expementally analyzed the influences of Reynolds
number, Mach number, and incident shock strength. Borovoy et al.
[13] examined the influence of the location of the impinging shock on
the surface heat transfer through a combined computational and
experimental study of type III and IV interactions. Sanderson et al.
[14] extended the experimental and analytical studies on the
influence of nonequilibrium dissociation on the type IV interaction
and correlated the peak heat-transfer rate by a function of both
freestreamMach number and flow deflection angle of the impinging
shock. Lind [15], Berry andNowak [16], andWang et al. [17] studied
the effect of body geometry on the interaction of an oblique shock
with a bow shock. Lind and Lewis [18,19] and Zhong [20] studied
characteristics of the type IV interference with various numerical
schemes. These researches suggest that type IV interference is
unsteady and produces the most serious pressure and heat transfer,
which increasewithMach number and impinging shock strength and
reduce with specific heat ratio.
Recently, type IV interference heating control by energy depo-

sition and magnetogasdynamic force has drawn much attention
among research communities. A series of numerical and
experimental investigations by Adelgren et al. [21], Kogan and
Starodubtsev [22], Kandala and Candler [23], Trumble and Candler
[24], and Yan and Gaitonde [25,26] were performed to examine the
effectiveness of energy deposition in improving shock structure and
thermomechanic loading caused by the type IV interaction. Their
work demonstrated that the energy deposition diminished effectively
the instantaneous peak pressure and heat fluxes. The electromagnetic
forceswere also introduced byGaitonde andMiller [27] to lower heat
loads on the surface under both electrodeless and electrode-based
conditions. However, these active control measures add complexity
to the overall system and augment the vehicle weight. Unfortunately,
the hypersonic cruisers and accelerators (particularly airbreathing
vehicles) are born with low thrust-minus-drag performance margins
across the operating envelopes of such vehicles [28]. Consequently,
some passive control methods such as aerodynamic surface
configurations have to be introduced to improve the performance and
feasibility of hypersonic vehicles.
Wieting [29] experimentally investigated the effect of sweepback

on the pressure and thermal loads of the shock interaction. The results
indicated that the peak pressure and heat flux on the surface reduced
with increasing sweepback. Wieting [30] and Hsu and Parpia [31]
studied the effect of dual impinging oblique shocks interacting
with a bow shock. In their work, concomitant jets or dual type IV jets
were observed, and the shock-interference heating was decreased by
the interaction of the noncoalesced dual impinging oblique shocks
with a bow shock. Thus, we conjecture that the interaction of the
noncoalesced isentropic compression waves (ICWs) with a bow

shock can also effectively reduce the peak pressure and heat flux
because the isentropic compression waves can be deemed a series of
weak shocks. This interaction usually occurs when the isentropic
compression waves from the inlet compression surfaces are designed
to converge on the cowl lip to optimize the performance of the inlet.
The interaction is characterized by the planar isentropic compression
waves interacting with a cylindrical leading edge oriented with its
axis parallel to the plane of the isentropic compression waves.
Nevertheless, few studies have been conducted to analyze this type of
interaction and the corresponding pressure and thermal loads. From a
practical point of view, it is desirable for inlet designers to be able to
predict this interaction and its effect. From an academic point of view,
it is desirable to understand this specific kind of interaction as a fluid
flow phenomenon to achieve the control of thermomechanics
loading. The objective of this paper is to elucidate with numerical
simulation the flow patterns, pressure, and thermal loads from the
interaction of isentropic compressionwaveswith a curved bow shock
in front of a cylindrical body.

II. Description of the Interaction

The interaction of isentropic compression waves with a bow shock
can be classified into two categories. One is the interference of
the noncoalesced isentropic compression waves with a bow shock
(sketched in Fig. 1a). For this category, we still know nothing about
its interference patterns, interference pressure, and thermal loads. The
other is the interference of the coalesced isentropic compression
waves with a bow shock (sketched in Fig. 1b) where a straight
coalesced shock wave forms before intersecting the curved bow
shock. This kind of interference is equivalent to an oblique shock
interacting with a bow shock, in which there may exist six shock-
interference patterns, as defined by Edney in [3].
From characteristics of the two categories, the flow patterns as

well as the pressure and thermal loads resulting from isentropic
compression waves interfering with a bow shock depend on not only
the location of the intersecting point relative to the curved bow shock
but also the size of the region in which the isentropic compression
waves intersects the bow shock. These geometric influencing factors
can be uniquely denoted by the position of the coalesced point
relative to the blunt body center, but this technique is confronted with
the difficulty to distinguish whether the isentropic compression
waves coalesce before intersecting the bow shock or not. For this
reason, a relative intersection region size (RIRS), i.e., the ratio of a
specific length of the isentropic compression waves intersecting the
bow shock to the strong portion length of the undisturbed flow bow
shock, is introduced to visually reflect the convergence degree of the
isentropic compressionwaves. Here the specific intersection length is
defined as the vertical height (LS 0E 0 in Fig. 2a) of the intersection
region under the condition that the angle bisector (the dash-dotted
line CVin Fig. 2a) of∠S 0CE 0 passes through the vertex point P of the
undisturbed flow bow shock. S 0, E 0 denotes the point of the starting

Fig. 1 Interference of isentropic compression waves with a bow shock.
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lineCS 0 and the ending lineCE 0 of the isentropic compressionwaves
intersecting the undisturbed flowbow shock, respectively. The strong
portion length of the undisturbed flow bow shock is denoted by the
vertical distance (LAB in Fig. 2b) between the upper sonic pointA and
the lower one B. Correspondingly, RIRS � LS 0E 0∕LAB. We view the
undisturbed flow detached bow shock as a hyperbola expressed by
the Billig relationship [Eq. (1)], which is given next [32]:

x � RP cot2 μ0
��

1� y
2 tan2 μ0
R2
P

�
0.5

− 1

�
− �R� Δ�

Rp∕R � 1.386 exp�1.8∕�Ma0 − 1�0.75� (1)

where

μ0 � arcsin

�
1

Ma0

�
Δ∕R � 0.386 exp�4.67∕Ma20�

Based on the bow-shock shape defined by Eq. (1), the Mach number
behind the undisturbed bow shock is obtained using the shock
relationship. Accordingly, the vertical coordinate of the sonic points
A and B and LAB are obtained. LS 0E 0 is obtained through solving the
vertical coordinates of the intersection points S 0 and E 0, which are
determined by the predefined position of the coalesced point C
relative to the cylinder center under the given conditions ofMa0, R,
and δ. From the definition of RIRS, it is found that the first category
shown in Fig. 1a corresponds to RIRS > 0, whereas the second
category shown in Fig. 1b corresponds to RIRS � 0. Another
geometric parameter characterizing the vertically intersecting
position is denoted by yCV∕R, where yCV is the vertical coordinate
of the point at which the dash-dotted line CV intersects the y axis, as
shown in Fig. 2a. Under the given conditions of Ma0, R, and δ,
the two parameters RIRS and yCV∕R can completely determine the
position of the isentropic compression waves relative to the
bow shock.
In this paper, a computational model is employed to investigate the

characteristics of isentropic compression waves interfering with a
bow shock in front of a blunt body, as shown in Fig. 3. The impinging

isentropic compression waves from an isentropic surface are
approaching from the lower-left quadrant of the flowfield, with the
flow approaching from the left. The isentropic surface is a streamline
solved with the aid of the P–M relationship according to the
approaching Mach number Ma0 and the flow deflection angle δ
across isentropic compression waves. The vertical distance HC

between the coalesced point C and the starting point of the isentropic
compression waves is controlled to avoid the impingement of the
distorted shock on the ramp wall. The blunt body is represented by a
cylinder with the radius equal to 3mm. The relative position between
the cylinder and the coalesced point of the isentropic compression
wave, characterized by RIRS and yCV∕R, is varied to study the
interference patterns, pressure, and heat-transfer rate.

III. Numerical Methods and Validation

A. Numerical Algorithm

The full Navier–Stokes equations for two-dimensional laminar
flow are numerically solved by the finite-volume method. The
numerical flux through each cell face is evaluated using a second-
order total variation diminishing scheme based on an approximate
Riemann solver named Harten–Lax–van Leer contact (HLLC).
The HLLC scheme can resolve the isolated shock and slip line
exactly while remaining positively conservative [33–35]. The
minmod limiter is used to suppress spurious oscillations near the
discontinuities while high-order accuracy is retained away from
the jumps. A second-order fully implicit scheme is employed to
discretize the time terms. In addition, the methods of multigrid and
dual time step are used to accelerate the convergence.

B. Validation

Acase study is conducted to guarantee the credibility of the present
numerical results. An interaction of a straight oblique shock with a
bow shock in front of a cylindrical body is selected to verify the flow-
pattern-capture ability and the heat-flux accuracy of the solver code.
The simulation conditions, taken from the experimental run 21 in
[12], are listed as follows: the freestreamMach numberMa0 � 8.03;
static pressureP0 � 868.739 Pa; static temperatureT0 � 122.11 K;

Fig. 2 Definition of the relative ideal intersection region size.

Fig. 3 Schematic diagram of the simulation model.
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Reynolds number based on the radius of the cylinder, ReR � 2.58 ×
105; the impinging oblique shock angle β � 18.1 deg; and wall
temperature Tw � 294.44 K. An Edney type IV pattern is obtained,
as shown in Fig. 4a, and the resultant pressure and heat flux
distributions along the angular position of the cylindrical wall θ are
depicted in Figs. 4b and 4c together with experimental results [12].
Figure 4a shows Mach contours from 0 to 8 in increments of 0.1 and
reveals that the main features of the type IV interaction are well
resolved. The type IV pattern is composed of a three-shock λ pattern,
inverted λ pattern, two strong vortex sheets, and a terminal shock.
Note that a supersonic jet bounded by the two vortex sheets is
embedded in the surrounding subsonic shock layer and ultimately
terminates at the surface. During the jet development, there are
successive isentropic-wave reflections from the two shear layers. At
the base of the jet, a normal terminal shock is formed due to the
extreme streamline curvature. The two shear layers turn rapidly
upward and downward, respectively, with the strong pressure
differential across the terminal shock. In Fig. 4b, the static pressureP
on the surface is nondimensionalized with respect to the stagnation-
point pressure (Pst � 73.15 kPa, experimental data) without shock
interaction in the same conditions. In Fig. 4c, the heat flux q on the
surface is nondimensionalized with respect to the stagnation-point
heat flux (qst � 0.7 MW∕m2, experimental data) without shock
interaction in the same conditions. Figures 4b and 4c indicate that
simulation results are in good agreement with the experiment data.

C. Computational Overview

The calculations are performed on a single domain shown in
Fig. 5a.According to the simulation conditions, the dimensions of the
solution domain are varied to ensure that the distorted shock induced
by the cylinder flows out at the downstreamboundary and are listed in
Fig. 5a. The lower boundary is mainly composed of the isentropic
wall and the ramp wall, at which the slip conditions are adopted to
guarantee that the isentropic compression waves are generated as
designed. The symmetry conditions are employed at the lower
boundary upstream the isentropic wall. At the upstream and upper
boundary, the uniform freestream flow conditions are applied,
whereas all variables were extrapolated at the downstream boundary.
At the cylindrical wall, no-slip and isothermal conditions are used.
The full domain is initialized by the uniform freestream flow
conditions.
To enhance the resolution of the interference patterns, the H-C grid

shown in Fig. 5a is employed, where the C grid is used in a portion of
the front face of the cylinder. Grid stretching is specially applied in
the normal direction near the cylindrical and isentropicwall. A survey
of the effects of grid refinement and the first mesh size (Δn) normal to
the cylindrical wall is conducted, and a sample is shown in Fig. 5b.
Based on the survey, the computations are ultimately performed
using about the total number of 0.15 million, 0.25 million, and 0.3
million grids at the approaching Mach numbers of 6, 7, and 8,
respectively. The corresponding first mesh size Δn is 1, 0.5, and

0.01 μm, respectively. Furthermore, the C grid includes 300 × 200
meshes in the radial (5R) and circumferential directions to well
resolve the flow structure within the bow shock. To ensure the
convergence, the heat flux at the frontal point of the cylinder is
monitored. When it almost reaches constant or continuous
repeatability, the solution is deemed converged.

IV. Numerical Results and Discussion

A series of RIRS, yCV∕R, and Mach numbers are examined to
investigate the flow characteristics aswell as the pressure and thermal
loads. The simulation is conducted for laminar flows with a perfect
gas of constant specific ratio (γ � 1.4) and a standard atmospheric
condition at 26 km altitude. The isentropic compression waves are
produced by an isentropic surface sketched in Fig. 3. The cylindrical
surface is assumed to be the condition of an isothermal-constant

Fig. 4 Comparison between CFD and experimental results for an Edney IV shock pattern.

Fig. 5 Computational domain and grid-refinement study.
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temperature of 294.44 K (Tw � 294.44 K). In the next discussion,
the pressure P on the cylindrical surface is nondimensionalized
by the stagnation-point pressure corresponding to the freestream
conditions, and the heat flux q on the cylindrical surface is
nondimensionalized with the stagnation-point heat flux correspond-
ing to the freestream conditions.

A. Effect of the Relative Intersection Region Size

In this part, the effect of RIRS is examined by keeping the vertical
location constant (yCV∕R � 0.45) under the conditions ofMa0 � 6,
ReR � 1.07 × 104, and δ � 12.5 deg. This vertical location
corresponds to the isentropic compression waves intersecting the
strong portion of the bow shock. Based on Eq. (1), we obtain the
strong portion length of the undisturbed flow bow shock LAB �
6.19 mm. Figures 6 and 7 show the flow patterns, the corresponding
pressure, and heat-transfer distributions for a set of RIRS. As
illustrated in Fig. 6a, an Edney IV interference pattern occurs when
the coalesced isentropic compression waves interact with the strong
portion of a bow shock. Correspondingly, the most serious heat

transfer up to 12.1 times is created by the jet impinging on the surface.
Amazingly, when RIRS is greater than 0 but small, a type IV
interference pattern also occurs (shown in Fig. 6b), but a significant
drop of 25% is observed in the heat transfer. Another noticeable
difference between Figs. 6a and 6b is the transmitted shock. The
transmitted shock in Fig. 6a is straight, whereas the one in Fig. 6b is
composed of two segments: curved (SE) and approximately straight
(ET). With a further increase of RIRS, a transonic jet emerges, as
shown in Fig. 6c.When RIRS rises to 0.45, a subsonic jet is detected,
as shown in Fig. 6d. The corresponding peak heat-transfer
amplification reduces to 2.59.AsRIRS increases to 0.68 or larger, the
interference pattern cannot be identified (e.g., as illustrated in Figs. 6e
and 6f). The corresponding peak heat transfer also drops remarkably.
These phenomena indicate that RIRS is a key factor governing

the occurrence of the interference pattern. The Edney type IV
interference occurs at a small RIRS, whereas the interference pattern
disappears at a larger RIRS. These different flow patterns are
attributed to a pressure jump across the isentropic compressionwaves
in a limited flow space. To clearly elucidate the mechanism, a

Fig. 6 Mach contours for yCV∕R � 0.45,Ma0 � 6, ReR � 1.07 × 104, and δ � 12.5 deg.
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physical flow pattern extracted from Fig. 6b is shown in Fig. 8a. The
transmitted shock ST is composed of two segments: curved SE and
straight ET. When the length of the curved part SE is much smaller
than the total length of the transmitted shock ST, state 3 in Fig. 8a can
be deemed as a uniform flow. Thus, the shock polar graphic of the
solution to the oblique shock equations can be employed to solve the
flow parameters of the states in Fig. 8a. The corresponding map
solution is illustrated in Fig. 8b for Ma0 � 6, δ1 � 12.5 deg, and
γ � 1.4. State 1 is determined by the flow deflection angle across the
isentropic compression waves δ1 � 12.5 deg and is on the curve
ICW plotted using the P–M relationship. Accordingly, we can obtain
the polarMa1. The intersecting point of the polarMa0 and the polar
Ma1 is states 2 and 3 because P3 � P2. The downstream conditions
enforce a strong shock solution between states 0 and 2. Similarly,
states 4 and 5 are calculated by referring to the intersecting point of
the polarMa3 with the strong shock solution part of the polarMa1.
Ultimately, state 5 is obtained by the known parameters ofMa3 and
P5∕P3. The remaining states, states 6 and 7, can be calculated using

P −M relationships with P6 � P2, P7 � P4 and Pt6 � Pt7 � Pt5.
It is indicated from Fig. 8b that the Mach number controls the width,
height, and slope of the symmetric heart-shaped shock polar.
When theMach number reduces, the polar becomes taller and higher.
This tendency leads to a strong shock solution for states 2 and 4.
As a result, the pressure match is bound to produce type III or IV
interference (when the shear layer stemming from point S is
impossible to reattach to the wall, then type IV interference occurs).
With increasing RIRS, the curved part length of the transmitted

shock increases, and the flow of state 3 becomes nonuniform but with
approximately constant pressure P3. As with the analysis of the map
solution mentioned previously, the map solutions of the flow state
behind the transmitted shock SE for Ma0 � 6, δ1 � 12.5 deg, and
γ � 1.4 are a part of the polarMa0, the portion between the critical
point and point 3 in Fig. 8b. Here the solutions of the flow state in
front of the shock SE are a portion of the ICW between the bottom
point and point 1, as illustrated in Fig. 8b. The flow state 3 at point S
behind the transmitted shock corresponds to the critical point. It is

Fig. 7 Corresponding pressure and heat flux distributions on the cylindrical surface for yCV∕R � 0.45,Ma0 � 6,ReR � 1.07 × 104, and δ � 12.5 deg.

Fig. 8 Type IV interference arising from ICWs interfering with a bow shock.
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observed from the map that the flow deflection angle decreases
gradually from the critical point to point 3. This tendency implies
that, from S to E, the pressure ratio across the transmitted shock
reduces, and the Mach number behind the transmitted shock
increases under the conditions of P3 ≈ P2. As a result, the average
Mach number of state 3 reduces with increasing RIRS at a constant
Ma0 and δ1, and the terminal shock graduallymoves upstream.When
RIRS increases to some extent, a transonic jet is observed, as shown
in Fig. 6c, where the flow in the jet decelerates to subsonic through
the compression waves, rather than the terminal shock . When RIRS
further increases to a transition point (LSE ∼ LST), a subsonic jet is
identified, e.g., Fig. 6d, where the flow behind the transmitted shock
is completely subsonic but its Mach number is much greater than the
neighbor zones’. With a further increase of RIRS to make the flow
space large enough to match the pressure jump, the distinguishable
interference pattern disappears (e.g., Figs. 6e and 6f). These
phenomena of the interference pattern varyingwith RIRS reveals that
the transmitted shock length is a critical scale of the intersection
region size accounting for the mutual interaction, which determines
the transition of the interference patterns. Furthermore, it is inferred
that the interference patterns must disappear once the isentropic
compression waves cover most of the front face of the cylinder (in
other words, the intersection region fully occupies the strong portion
of the detached bow shock, i.e., RIRS rises to the order of magnitude
of 1), where the flow space is large enough to match pressure-jump.

B. Effect of the Vertical Intersection Location

At a constant RIRS, the characteristics of isentropic compression
waves interacting with a bow shock depend on the vertical
intersection location. To detail this effect, only some typical
interference patterns are chosen next due to limited space, though a
variety of model configurations have been tested for a series of fixed
RIRS withMa0 � 6, δ � 12.5 deg.
Figure 9 shows Mach contours, pressure, and heat-transfer rate

distributions for RIRS � 0.21 at different vertical positions. The
interference patterns defined by Edney [3] are identified as the
intersection point moves from the lower to the upper parts of the bow

shock. Edney type II� interference observed in Fig. 9a occurs when
the isentropic compression waves cross beneath the lower sonic
point. The peak heat-transfer rate is smaller than the freestream
stagnation-point heat flux without interference due to the increasing
detached distance of the bow shock. Type III interference observed in
Fig. 9b takes place when the compression waves cross around the
lower sonic line. Type IV interference observed in Figs. 6b and 9c is
characterized by a supersonic jet embedded in the subsonic shock
layer and produces the most severe heat-transfer rate. The angular
position of the peak heat flux is located at the jet stagnation point.
Type IVa interference illustrated in Fig. 9d is characterized by a
supersonic jet grazing the surface. As the vertical intersection
position moves along the y axis for RIRS � 0.21, a maximum heat
flux occurswhen the type IV supersonic jet impinges perpendicularly
on the surface, just the same as the previous findingswith regard to an
oblique shock interacting with a bow shock.
Figure 10 shows Mach contours, pressure, and heat-transfer rate

distributions for RIRS � 0.45. In combination with Fig. 6d, it is
found that only part of the six Edney interference patterns occur as the
vertical intersection position moves along the y axis. Type II� and III
interference patterns illustrated in Figs. 10a and 10b occur as usual,
whereas type IV interference cannot be identified. Instead, a new
pattern shown in Fig. 6d is observedwhere a subsonic jet is embedded
in the shock layer. When the vertical intersection location moves
further upward, the subsonic jet turns upward and flows away from
the wall with the high pressure on the lower region, as shown in
Figs. 10c and 10d.
Figure 11 shows Mach contours, pressure, and heat-transfer rate

distributions for RIRS � 0.91. Little difference is observed in the
flow patterns when the vertical position moves from the lower to the
upper parts of the bow shock. The shock wave in front of the cylinder
is composed of three parts; the first part is a detached bow generated
by the cylinder encountering with the freestream, the second is a
curved shock generated by the cylinder being exposed to the
isentropic compression waves, and the third is a detached shock
generated by the cylinder encountering with the flow behind the
isentropic compression waves. The heat-transfer rate distribution

Fig. 9 Mach contours, pressure, and heat flux distributions on the cylindrical surface, where RIRS � 0.21, Ma0 � 6, ReR � 1.07 × 104, and
δ � 12.5 deg.
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also exhibits a similar shape, but the peak-heat-flux varies with the
vertical intersection position. For yCV∕R � −0.22, 0.45, 1.12, and
1.78, the peak heat flux amplification is 1.22, 1.53, 1.89, and 1.68,
respectively. This tendency results from the effects of the distorted
shock wave and the different flow conditions around the cylinder.

Referring to the results obtained in Sec. IV.A, we outline the
overall effects of RIRS and yCV∕R in Fig. 12. If the transonic jet is
classified as a special Edney type IVinterference, the plane of yCV∕R-
RIRS can be divided into three zones. The first dividing line (RIRS1
in Fig. 12) corresponds to the boundary of the absence of the Edney

Fig. 10 Mach contours, pressure, and heat flux distributions on the cylindrical surface, where RIRS � 0.45, Ma0 � 6, ReR � 1.07 × 104, and
δ � 12.5 deg.

Fig. 11 Mach contours, pressure, and heat flux distributions on the cylindrical surface for RIRS � 0.91, Ma0 � 6, ReR � 1.07 × 104, and
δ � 12.5 deg.
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type IV pattern when the intersecting vertical location moves from
the lower to the upper parts of the bow shock. The second dividing
line (RIRS2 in Fig. 12) corresponds to the boundary at which none of
the Edney interference patterns occurs when the intersecting vertical
location moves from the lower to the upper parts of the bow shock.
When RIRS < RIRS1, the interference is similar to shock-on-shock
interaction. The flow patterns, pressure, and thermal loads depend on
the vertical intersection location. When RIRS1 < RISRS < RIRS2,
the interference is deemed as a special intermediate form, with the
occurrence of a subsonic jet instead of a supersonic jet. The vertical
intersection location also affects significantly the characteristics of
this transition interference. When RISRS > RIRS2, the interference
flow is simplified to a nonuniform flow with no distinguishable
Edney interference patterns. The vertical intersection location has
little impact on the flowpatterns. From the physicalmechanismof the
formation of interference patterns, we conjecture that RIRS1
corresponds to the intersection region size being approximately equal
to the transmitted shock length in type IV interference, and RIRS2
corresponds to the intersection region size being close to the
transmitted shock length in type III interference.

C. Characteristics of the Peak Heat Flux

The peak heat flux is the maximum heat-transfer rate on the
cylinder surface at the fixed geometric position of the isentropic
compression waves relative to the cylinder center. The peak heat-flux
amplification is plotted in Fig. 13 versus the vertical intersection
location for a set of RIRS. The amplification is defined as the ratio of
the peak heat flux to the stagnation-point heat flux with the same
Mach number and cylinder radius. In Fig. 13, the trend line is also
plotted to specifically underline the effect of RIRS on the maximum
heat flux. For a fixed RIRS, the peak heat flux amplification increases
to reach a maximum before dropping back to a lower level as the
vertical intersection locationmoves from the low to the upper parts of
the bow shock. And this trend is particularly evident at small RIRS
(e.g., RIRS � 0.21, 0.47) because the Edney interference patterns
occur. In this situation, the maximum value is achieved when the

supersonic jet impinges perpendicularly to the surface and is far
larger than the stagnation-point heat flux without the interaction. It is
also observed that the maximum amplification reduces sharply with
increasingRIRS and reaches a very small valuewhenRIRS is up to an
order ofmagnitude of 1. For example, themaximumamplification for
RIRS � 0.91withMach number 6,RIRS � 0.97withMach number
7, and RIRS � 0.99 with Mach number 8 is 1.89, 2.41, and 2.74,
respectively. These results are close to the stagnation-point heat flux
under the flow conditions behind the isentropic compression waves
using the Fay–Riddell formula [36] written in the following form:

qst � 0.567Pr−0.6�ρwμw�0.1�ρstμst�0.4

× �2�Pst − P0��0.25�hst − hw�∕R0.5 (2)

The amplification predicted by Eq. (2) atMach numbers 6, 7, and 8 is
1.77, 1.95, and 2.13, respectively. These features reveal that the
mutual interaction between an isentropic compression waves and a
bow shock has little influence on the maximum thermal loads when
RIRS goes up to 1.

D. Correlation of Maximum Heat Flux and Degree of Convergence

As noted in Sec. IV.C, it is concluded that a maximum heat flux
would occur as the vertical intersection location moves from the low
to the upper parts of the bow shock. Table 1 lists the maximum heat-
transfer rates observed in the current work. To generalize our
numerical results, we infer a dimensionless dependence of the
maximum heat-transfer intensification ( ~q � qmax∕qst). Sanderson
et al. [14] made a dimensionless analysis of the heat-transfer
intensification from type IV shock interference. For a given gas, in the
absence of the effects arising from gas dissociation and turbulent
diffusion in the impinging jet, Sanderson regressed the dimensionless
heat-transfer intensification ( ~q) by the following expression:

� ~q − 1� ≈ 9.0�Ma0 − 1�0.88δ0.78 (3)

For the interaction of the isentropic compression waves with a bow
shock, RIRS is a key factor to determine the interference occurrence
and the interference patterns. Hence, the maximum heat-transfer
amplification ( ~q � qmax∕qst) in the current study must account for
the effect of RIRS, and the dimensionless form turns out to beFig. 12 Effects of RIRS and yCV∕R.

Fig. 13 Variation of peak heat flux with the vertical intersection location for a set of RIRS.

Table 1 Maximum heat transfer rates for a set of RIRS

Ma0 � 6 Ma0 � 7 Ma0 � 8

δ, deg RIRS qmax∕qst RIRS qmax∕qst RIRS qmax∕qst
12.5 0 12.12 0.22 8.52 0.23 9.21
12.5 0.21 8.98 0.47 6.36 0.48 6.65
12.5 0.45 5.32 0.72 3.53 0.84 2.87
12.5 0.67 2.27 0.97 2.41 0.99 2.74
12.5 0.91 1.89 1.21 2.15 1.14 2.34
12.5 1.14 1.84 — — — — — — — —

Ma0 � 6
8 0.13 5.57 0.22 4.51 0.72 1.69
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~q ≈ f�Ma0; δ;RIRS� (4)

On one hand, the interaction of the isentropic compression waves
with a bow shock is equivalent to the shock-on-shock interactionwith
RIRS � 0. Also, Fig. 14 shows that only a little difference exists in
the flow parameters across the isentropic compression waves and a
shock wave with the same approaching Mach number and flow
deflection angle. These features indicate that the dimensionless
expression involving RIRS should approach Eq. (3) in the limit
RIRS → 0. On the other hand, the maximum heat flux reduces
with increasing RIRS, as demonstrated in Sec. IV.C. Based on the
two features mentioned previously, we propose the following
multiplicative form for the relationship between relevant parameters:

� ~q − 1� ≈ ϕ0�Ma0 − 1�0.88δ0.78 exp�−ϕ1 · RIRS� (5)

Here, ϕ0 and ϕ1 are positive unknown constants. The previous
experimental data regarding an oblique shock interfering with a bow
shock are also used to regress the dimensionless relationship. These
data are listed in Table 2, including the benchmark data of Edney [3],
the extensive Mach–Reynolds number scaling experiments of
Wieting and Holden [12], and the nonequilibrium binary scaling data
of Sanderson et al. [14]. Proceeding with the conventional method of
logarithmic transformation and method of least squares for the
unknown parameters in Eq. (5), we obtain

� ~q − 1� ≈ 8.54�Ma0 − 1�0.88δ0.78 exp�−2:31 · RIRS� (6)

with a 96.7% correlation coefficient and with the parameters up to
>95% level of statistical significance. A little discrepancy exists in
the constant coefficient between Eqs. (3) and (6) in the limit
RIRS → 0 due to the effects of statistical errors. The heat-transfer
enhancement is plotted against the regression Eq. (6) in Fig. 15,
which also presents 0 and �15% of the relative deviation between
experimental or numerical data and those calculated by Eq. (6). It is
noted that all the experimental and numerical data points almost fall
within the residual �15% variability bands, which are attributed to

the effects of Reynolds number, the freestream total enthalpy, and so
on. This feature implies that Eq. (6) can predict themaximum heating
resulting from the interference of an oblique shock or isentropic
compression waves with a bow shock, with fair accuracy. It can be
concluded from Eq. (6) that the maximum thermal loads reduce
exponentially with RIRS. This property indicates that the
interference heating can be significantly minimized by dispersing
the isentropic compression waves before intersecting the bow shock.

V. Conclusions

The interaction of isentropic compression waves with a bow shock
in front of a cylindrical body is explored to achieve a shock-
interference heating reduction by a modest modification of the wave
system. The relative intersection region size (RIRS) is proposed to
characterize this interaction and is defined as the ratio of a specific
intersection region size to the strong portion length of the undisturbed
flow bow shock. The effects of RIRS and the vertical intersection
position on the flow patterns, pressure, and thermal loads from
isentropic compression waves interacting with a bow shock are
numerically discussed. Characteristics of the peak heat transfer are
also investigated. Furthermore, a dimensionless dependence of the
maximum heat-transfer intensification was inferred to generalize the
current results. Some important conclusions are drawn.
Among the parameters involved, RIRS is a key factor governing

the characteristics of the interaction. The interaction can be divided
into three categories based on two critical RIRS. Edney interference
patterns occur at a small RIRS and type IV interference pattern
changes with an increase of RIRS.With increasing RIRS, flowMach
number downstream of the curved transmitted shock reduces, and
the terminal shock gradually moves upstream until a transonic jet
results. As RIRS increases to some value (RIRS1 corresponds to the
intersection region size that is approximately equal to the transmitted
shock length in the case of Edney type IV interference), the type IV
interference pattern transits to a special intermediate form where a
subsonic jet occurs instead of a supersonic jet, coupled with a
medium pressure and thermal loads. As RIRS exceeds another value
(RIRS2), none of the interference patterns takes place, which is
associated with a lower pressure and thermal loads. Here, RIRS2
corresponds to the intersection region size that is close to the
transmitted shock length in the case of Edney type III interference.
A maximum heat flux occurs when the vertical intersection

location moves from the lower sonic point to the upper sonic point of
the bow shock at a constant RIRS. This maximum value reduces
sharply with increasing RIRS. As RIRS is up to 1, the maximum
pressure and thermal loads are similar to those of the stagnation point
under the flow conditions behind the isentropic compression waves.
The dimensionless maximum heat-transfer enhancement is

derived as a function of the approaching Mach number, the flow
deflection angle, and RIRS. This formula can predict the maximum
interference heatingwith fair accuracy. Themaximum intensification
drops exponentially with RIRS. The pressure and thermal loads can
be minimized by a medium dispersion of isentropic compression
waves. Furthermore, the database of the interference heating is
provided for the design of practical vehicles.

Fig. 14 Comparison of flow parameters cross isentropic compression
waves and an oblique shock, whereMa0 � 6.

Table 2 Heat flux intensification induced by type IV shock
interference from previous studies

Reference Ma0 δ, deg Geometry Gas ~q

Edney [3] 4.6 5 Sphere Air 6.5
Edney [3] 4.6 10 Sphere Air 7.5
Edney [3] 4.6 15 Sphere Air 10
Edney [3] 7.0 5 Sphere Air 8
Wieting and Holden [12] 8.0 10 Cylinder Air 13
Wieting and Holden [12] 8.0 12.5 Cylinder Air 18
Wieting and Holden [12] 8.0 15 Cylinder Air 25
Wieting and Holden [12] 6.3 10 Cylinder Air 11.5
Sanderson et al. [14] 9.9 9.8 Cylinder N2 13.5
Sanderson et al. [14] 6.3 7.7 Cylinder N2 7.5
Sanderson et al. [14] 5.3 6.9 Cylinder N2 6

Fig. 15 Comparison of previous data against those from Eq. (6).
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