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a b s t r a c t

To reveal the mechanism of a void-dominated fracture process in bulk metallic glasses, a theoretical
description of void growth undergoing remote hydrostatic tension is presented. Special attention is
focused on cavitation instabilities and dynamics of a dynamic void growth process. The critical stress
for cavitation instabilities is derived theoretically, which is validated by numerical simulations with a
finite difference method. To characterize the dynamic void growth process, a dimensionless number is
proposed, which embodies the competition of inertial effects, loading rate effects and viscous effects. It
is found that inertial effects can induce vibration of the void growth rate at the rise stage of loading his-
tory and impede the growth at the steady stage. In addition, to study the void growth at the early stage of
a void-dominated fracture process, quasistatic cases without inertial effects are examined. It is shown
that the void growth rate strongly depends on the evolution of free volume concentration.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

In polycrystalline alloys, ductile fracture is attributed to nucle-
ation, growth and coalescence of micro-voids. To understand a
void-dominated fracture process, the void growth has been widely
investigated over the last few decades. Hill (1950) performed a
classical analysis of void growth under static loading, and obtained
an explicit expression between the applied internal pressure and
void radius. Carroll and Holt (1972) examined the collapse of a void
in a sphere of ideally plastic material under external pressure, and
indicated that the influence of elastic compressibility on void
collapse is very small. Based on the Carroll and Holt approach,
Johnson (1981) studied void growth in a rate-dependent material
under dynamic tensile loading to describe the spallation behavior
of solids. As research went further, more complicated cases of void
growth were considered and much attention was paid on a bifur-
cation phenomenon – cavitation instabilities. Ball (1982) recog-
nized the existence of cavitation instabilities. It was interpreted
as a bifurcation from a defect-free solid to a solid containing a void.
Horgan and Abeyaratne (1986) presented an alternative physical
interpretation for the phenomenon that was regarded as the un-
bounded growth of a pre-existing void. Huang et al. (1991) inves-
tigated cavitation instabilities in elastic–plastic materials under
hydrostatic tension and axisymmetric loading, and found that the
criterion for cavitation depends on a critical value of the mean
stress. Their investigation was subsequently extended to more
complicated cases where the initial void shape and the interaction
ll rights reserved.
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between voids were considered (Tvergaard, 2012; Tvergaard et al.,
1992; Tvergaard and Hutchinson, 1993; Tvergaard and Vadillo,
2007). To understand the effects of inertia, strain hardening and
rate dependence, Ortiz and Molinari (1992) studied void growth
in a power-law hardening material and indicated that inertia ef-
fects tend to dominate the long-term response of void growth.
Molinari and Mercier (2001) further proposed a multiscale model
to describe the behavior of porous materials. Taking the effects of
growing voids into account, the influence of micro inertial effects
on the microscopic response was addressed. Recently, Wu et al.
(2003a,b,c) made a comprehensive work on the dynamic void
growth with particular attention on thermal, inertial and rate-
dependent effects, and indicated that thermal effects are strongly
affected by initial void size, while inertial effects depend on the
void size and loading rate.

In contrast, research on the void-dominated fracture process in
bulk metallic glasses (BMGs) is still limited. For the unique disor-
dered atomic structures (Chen, 2008; Egami, 2011; Falk and
Langer, 2011; Greer, 1995; Greer and Ma, 2007; Greer and De
Hosson, 2011; Johnson, 1999; Spaepen, 2006; Wang, 2012), plastic
deformation is prone to be localized into thin shear bands in BMGs
(Argon, 1979; Dai and Bai, 2008; Dai et al., 2005; Gao et al., 2011,
2007; Han et al., 2009; Huang et al., 2002; Jiang and Dai, 2009,
2011; Joshi and Ramesh, 2008; Liu et al., 2005; Ruan et al., 2011;
Spaepen, 1977). Hence the fracture process (Chen et al., 2011;
Martin et al., 2008, 2006; Schuh et al., 2007; Trexler and Thadhani,
2010) of BMGs is usually undergoing highly localized deformation
via formation and rapid propagation of shear bands. In fact, BMGs
can also fail by nucleation, growth and coalescence of microvoids.
Bouchaud et al. (2008) conducted a quasistatic tension experiment
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Fig. 1. Schematic diagram of a single void in an infinite body under remote
hydrostatic tensile pressure. a is the void radius, papp the applied tensile pressure,
and rC the elastic-viscoplastic boundary which divides the matrix material into two
zones: the inner viscoplastic zone and the outer elastic zone.
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on a Zr-based metallic glass (Vit. 1) and typical dimple patterns
with diameter from 102 nm to micrometer scale were observed
on the fracture surfaces of tested samples. The mismatch between
two opposite fracture surfaces showed that the final fracture is
controlled by growth and coalescence of damage cavities. Jiang
et al. (2008, 2010a, 2010b) examined fracture patterns of Vit. 1
in compression, tensile and plate impact experiments. Fine
100 nm size dimples, nanoscale periodic corrugations and honey-
comb structures were observed on dynamic mode I fracture sur-
faces. Based on these fracture patterns, a new atomic motion unit
called as tension transformation zone (TTZ) was proposed to
understand the nucleation of nanoscale voids ahead of a crack
tip. Similar phenomenon has been observed in spallation experi-
ments (Escobedo and Gupta, 2010; Huang et al., 2011; Turneaure
et al., 2007; Zhuang et al., 2002). Huang et al. (2011) studied the
spallation behavior of a Zr-based metallic glass (Vit. 1) via plate-
impact experiments. Equiaxed cellular patterns with an average
diameter of 2 lm were found on the spall surface of recovered
samples, implying that the spallation is induced by nucleation,
growth and coalescence of microvoids. Moreover, this microvoid
dominated fracture process has been addressed in atomic scale
by molecular dynamics (MD) simulations (An et al., 2011; Arman
et al., 2010; Murali et al., 2011). Arman et al. (2010) investigated
the dynamic response of a CuZr metallic glass with MD simulations
and found that spallation process of this material is accompanied
by nucleation and growth of microvoids. To reveal the intrinsic
mechanism that governs the fracture process in brittle and ductile
metallic glasses, Murali et al. (2011) performed MD simulations on
two typical metallic glasses, FeP and CuZr. For the high degree of
atomic scale spatial fluctuations, even the brittle FeP glass can frac-
ture through nucleation and coalescence of multiple voids.

To understand the void-dominated fracture mechanism, re-
search on void growth in BMGs is important. Steif (1983) studied
an elliptical hole problem under plane strain tension to get insight
into ductile vs brittle behavior in BMGs. He found that the hydro-
static tension can decrease viscosity and alleviates the severe
stress conditions prevailing near potential cleavage flaws. Wright
et al. (2003) proposed a model of void formation in shear bands
of BMGs, and indicated that excess free energy exists in shear
bands and void nucleation is duo to the coalescence of free volume.
Their work addressed that the free volume concentration has a
remarkable influence on the void growth rate. Bouchbinder et al.
(2008) investigated cavitation instabilities in BMGs. Based on the
athermal shear transformation zone theory (Bouchbinder et al.,
2007a,b), they predicted the existence of fast cavitation modes
accompanied by extensive plastic deformation. These pioneer
works provide the important information for understanding the
void growth in BMGs. However, there are still some basic questions
that have not been answered. As BMGs are pressure sensitive solids
with the unique plastic deformation mechanism, what is the crite-
rion for cavitation instabilities? What are the dominant factors that
determine the void growth rate? And how does the free volume
dynamics affect a void growth process?

In this paper, we investigate the growth of a single void in BMGs
under remote tensile loading to understand the void-dominated
fracture process. An elastic-viscoplastic constitutive law with an
internal parameter, free volume concentration, is adopted. The
critical stress for cavitation instabilities is determined theoreti-
cally, and is validated numerically with a finite difference method.
In order to reveal the dominant factors that influence the growth
rate, we investigate the dynamic void growth under transient load-
ing. A dimensionless inertial number is presented to characterize
the dynamic void growth process, and numerical simulations were
carried out to quantify the effects of dominant factors. In addition,
to study the void growth at the early stage of a void-dominated
fracture process, quasistatic cases without inertial effects are
examined, and the influence of free volume dynamics on growth
rate is discussed.

2. Basic model

Let us consider a spherical void of radius a in an infinite metallic
glass under the remote hydrostatic tensile pressure papp, as shown
in Fig. 1. The void grows as the hydrostatic tensile pressure is ap-
plied. It is assumed that the void remains spherical throughout
the growth process. Once the void surface yields, the elastic-visco-
plastic boundary is considered as a spherical surface propagating
outwards. Then, according to continuum mechanics, the equation
of motion is written as:

drr

dr
þ 2

r
ðrr � rhÞ ¼ q€r ð1Þ

Compared with conventional polycrystalline alloys, where the
carrier of the plastic deformation is a dislocation-like defect, the
fundamental carriers of plastic deformation of BMGs are shear
transformation zones (Argon, 1979; Falk and Langer, 1998; Pan
et al., 2008) or flow defects (Spaepen, 1977, 2006). Thus, to de-
scribe the matrix material surrounding the void, an elastic-visco-
plastic constitutive law is adopted as:

eij ¼
sij

2l
if sþ Qp 6 ŝ� ðC1T=TgÞ1=2 ð2Þ

_eij ¼
_sij

2lþ
sij

2g
if sþ Qp P ŝ� ðC1T=TgÞ1=2 ð3Þ

where eij is the strain tensor, sij is the stress deviator, l is the shear
modulus, and g is the viscosity. To characterize the pressure sensi-
tivity in plastic flow, the yield criterion of BMGs suggested by Sun
et al. (2010) is used. In this criterion, s = (rh � rr)/2 is the maximum
shear stress (rh and rr are the principle stresses), p = (rr + 2rh)/3 is
the hydrostatic pressure, Q is the pressure sensitivity coefficient and
the term ŝ� ðC1T=TgÞ1=2 represents the yield strength (ŝ is the bar-
rier shear resistance of a STZ, C1 is a coefficient that reflects the tem-
perature dependence of strength, T is the temperature, and Tg is the
glass transition temperature).

To apply the conventional flow equation to multiaxial stress
states, Steif (1983) modified the flow equation presented by
Spaepen (1977), and defined the stress dependent viscosity as:
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g � se

_cp
¼ se

2f exp � DGm

kBT

� �
sinh seX

2kBT

� �
exp � 1

n

� � ð4Þ

where se ¼
ffiffiffiffi
J2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sijsij=2

p
is the effective shear stress, _cp is the

plastic strain rate, f is the frequency of atomic vibration (�Debye
frequency), DGm is the activation energy, kB is the Boltzmann con-
stant, X is the atomic volume, and n is the concentration of free vol-
ume (n = vf/vv⁄, here vf, v and v⁄ are, respectively, the free volume, a
geometric factor and the effective hard-sphere size of an atom).

The free volume concentration is adopted as an order parame-
ter, which is a function of the radius r in the current configuration
and the time t. Following Huang et al. (2002) and Dai et al. (2005),
the free volume evolution equation is written as:

@n
@t
¼ Dr2nþ Gðn; T; s;pÞ ð5Þ

where D is the diffusion coefficient of free volume concentration
and G(n, T, s, p) is the net generation rate of free volume, the explicit
expression of which was presented by Spaepen (1977) and is mod-
ified here to cover the free volume dependence on pressure

Gðn; T; s;pÞ ¼ 1
v f exp �1

n

� �
exp �DGm

kBT

� �
2kBT
nv�S cosh

seX
2kBT

� �
� 1

� �
� 1

nD

	 


þ X _p
vv�j ð6Þ

where S is the effective shear modulus (S ¼ 2ð1þmÞl
3ð1�mÞ with m being Pois-

son’s ratio), nD the number of diffusive jumps necessary to annihi-
late a free volume equal to v⁄, and j the bulk modulus. Eqs. (5)
and (6) indicate that there are three different processes which can
change the local free volume concentration, including diffusion,
annihilation and generation. In BMGs, the free volume can be redis-
tributed by diffusion until it is spatially uniform. The annihilation of
free volume is caused by the atomic rearrangement. Here the gen-
eration of free volume is slightly different from the conventional
expressions. In addition to the extra free volume created by a shear
stress squeezing an atom into a hole smaller than itself, the contri-
bution of volume dilation is considered to take the mean tensile
stress effects into account (Flores and Dauskardt, 2001).

As shown in Fig. 1, this is essentially a 1-D problem. So the prin-
ciple strain can be written as

er ¼
@ur

@r
ð7Þ

eh ¼
ur

r
ð8Þ

where ur is the displacement. If the matrix material is incompress-
ible, the principle strains satisfy

er þ 2eh ¼ 0 ð9Þ

In fact, the assumption of incompressibility is at odds with the
dilation-induced increase of free volume (Steif, 1983). Neverthe-
less, it does not affect our results. The influence of volume dilation
can be divided into two parts: the contribution to the displacement
field and the decrease of viscosity. The former could be neglected
because the elastic compressibility is so small that the displace-
ment field can be determined from the expansion of the void alone
(Carroll and Holt, 1972). But the latter must be taken into account
as the viscosity closely depends on the free volume concentration
and even very small dilation will induce a remarkable increase of
free volume.

In the present framework, the thermal effects are not consid-
ered. We think that the role of thermal softening in void growth
is similar to that in shear bands (Dai and Bai, 2008; Jiang and
Dai, 2009). Although both thermal softening and free volume soft-
ening can induce the decrease of viscosity in BMGs, the former is
not the primary cause. For the small scale of voids (<1 lm), heat
can hardly accumulate in the matrix material. This issue has also
been addressed in conventional polycrystalline alloys. As pointed
out by Tong and Ravichandran (1995), the effects of thermal soft-
ening is relatively small for the dynamic void growth in viscoplas-
tic materials. Wu et al. (2003b) also indicates that the thermal
diffusion is strongly affected by the initial void size. The smaller
the initial void size is, the more it approaches the athermal case.
Their numerical results show that the void growth of 1 lm radius
case is similar to the athermal case.
3. Cavitation instabilities

3.1. Analytical results

As BMGs are pressure sensitive materials, the criterion of cavi-
tation instabilities should be different from the traditional ones. To
get out this criterion, let us consider the quasistatic case. Then in
the spherical coordinates, Eq. (1) can be simplified as the equation
of equilibrium, that is

drr

dr
þ 2

r
ðrr � rhÞ ¼ 0 ð10Þ

with the boundary conditions

rr jr¼a ¼ 0 and rr jr¼1 ¼ papp ð11Þ

If the applied loading is sufficiently high, the void surface yields
and the matrix material around the void is divided into two zones:
the elastic and viscoplastic zones. In the elastic zone r P rC ,
according to the classic elasticity theory, the stress components
and radial displacement can be obtained as

rr ¼ papp � 4½ŝ� ðC1T=TgÞ1=2 � Qpapp�r3
C

3r3 ð12Þ

rh ¼ papp þ 2½ŝ� ðC1T=TgÞ1=2 � Qpapp�r3
C

3r3 ð13Þ

ur ¼
½ŝ� ðC1T=TgÞ1=2 � Qpapp�r3

C

3lr2 ð14Þ

In the viscoplastic zone a 6 r 6 rC , as BMGs are regarded as
viscoplastic materials, the yield criterion must be obeyed when
the viscous flow stops. So in this zone, the equilibrium equation
becomes

drr

dr
¼ �12Qrr þ 12ŝ� 12ðC1T=TgÞ1=2

ð3þ 4QÞr ð15Þ

Using the boundary condition at r = a and the continuous condi-
tion of radial stress rr across the elastic-viscoplastic boundary, we
can obtain

papp ¼ ŝ� ðC1T=TgÞ1=2

Q
� 3½ŝ� ðC1T=TgÞ1=2�a12Q=ð3þ4QÞ

Qð3þ 4QÞr12Q=ð3þ4QÞ
C

ð16Þ

To calculate the void radius a, the equation of incompressibility
is used to provide additional information. Similar to Hill’s analysis
(Hill, 1950), the elastic-viscoplastic boundary rC is taken as
the scale of ‘‘time’’, and the velocity v of a particle means that
the particle is displaced by an amount vdrC when the elastic-visco-
plastic boundary moves outwards a further distance drC. Thus, we
have

v ¼ @ur=@rC

1� ð@ur=@rÞ ð17Þ

and Eq. (9) is rewritten as
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@v
@r
þ 2v

r
¼ 0 ð18Þ

On the elastic-viscoplastic boundary, v can be calculated from
Eqs. (14) and (17), that is

v jr¼rC
¼ ŝ� ðC1T=TgÞ1=2 � Qpapp

l
ð19Þ

Solving Eq. (18) with the boundary condition Eq. (19), leads to

v ¼ ½ŝ� Qpapp � ðC1T=TgÞ1=2�r2
C

lr2 ð20Þ

On the inner surface, v = da/drC, so the relation between a and rC

is

da
drC
¼ ½ŝ� Qpapp � ðC1T=TgÞ1=2�r2

C

la2 ð21Þ

Then, combining Eqs. (16) and (21) yields

a3

A3 ¼
ŝ� ðC1T=TgÞ1=2 � Qpapp
h i

r3
C

lA3

þ 1� 3ŝ� 3ðC1T=TgÞ1=2

lð3þ 4QÞ

" #,
1� ŝ� ðC1T=TgÞ1=2

lð3þ 4QÞ

" #3

ð22Þ

Once cavitation instabilities occur, the relative void size goes to
infinity, i.e., a/A ?1 or A ? 0. Then, in terms of the void size, the
position of the elastic-viscoplastic boundary is

rC

a
¼ l

ŝ� Qpapp � ðC1T=TgÞ1=2

 !1=3

ð23Þ

Thus, with Eqs. (16) and (23), the critical pressure for cavitation
instabilities in BMGs is

papp
cr ¼

ŝ� ðC1T=TgÞ1=2

Q
� 1

Ql4Q=3

3ŝ� 3ðC1T=TgÞ1=2

3þ 4Q

 !ð3þ4QÞ=3

ð24Þ

Using the material parameters (Sun et al., 2010)
ŝ� ðC1T=TgÞ1=2 ¼ 823:2 MPa and l = 35.3 GPa for a typical metallic
glass Vit. 1, the critical pressure for cavitation instabilities versus
the pressure sensitivity coefficient is shown in Fig. 2. The cavitation
pressure decreases as the pressure sensitivity coefficient increases
(the actual pressure sensitivity coefficient for Vit. 1 is 0.158).
Fig. 2. The cavitation pressure as a function of pressure sensitivity coefficient.
Because the pressure sensitivity stimulates the yield of a material
under hydrostatic tensile loading, cavitation instabilities prefer to
occur in solids with a higher pressure sensitivity coefficient.
3.2. Numerical results

As a comparison with the theoretical result, the full set of Eqs.
(2)–(11) are solved numerically with the finite difference method
(FDM). To avoid dealing with an infinite time-dependent domain,
a time-dependent coordinate transformation (Bouchbinder et al.,
2008) is applied

x ¼ aðtÞ
r

ð25Þ

Thus, integration of equations in the time-independent finite
domain x e (0,1) is allowed. This transformed space domain is uni-
formly discretized with 1001 nodes, while the time domain is dis-
cretized with 100001 nodes. Each result is checked to make sure
that it will not change with increasing the node number.

Fig. 3 shows the history of hydrostatic tensile loading which is
applied on the outer boundary (x = 0). For comparison with rele-
vant works (Ortiz and Molinari, 1992; Wu et al., 2003b), a similar
form of the applied pressure is adopted. As displayed in Fig. 3, the
loading history is divided to two stages: the rise stage in which the
applied pressure increases linearly until the desired loading ampli-
tude pS is achieved after a rise time ta, and the steady stage in
which the loading is held constant at pS during the hold time tS.
A typical metallic glass Vit. 1 is chosen as a model material in this
paper, and its mechanical and physical parameters derived from
other literatures (Faupel et al., 2003; Jiang and Dai, 2009; Jiang
et al., 2008; Lu et al., 2003; Yang et al., 2006) are listed in Table 1.
For FDM simulations, the initial void sizes A and the loading ampli-
tudes pS are chosen based on experiments. As the diameters of ob-
served void/dimple patterns on fracture surfaces always lie
between 100 nm to 10 lm (Bouchaud et al., 2008; Escobedo and
Gupta, 2010; Huang et al., 2011; Jiang et al., 2008; Meng et al.,
2008; Qu et al., 2010; Zhuang et al., 2002), the initial void radius
A varies from 10 nm to micrometer length scale. Besides, according
to the predicted cavitation pressure (3.34 GPa for Vit. 1 in Sec-
tion 3.1), the loading amplitude pS is chosen ranging from 2 GPa
to 4 GPa. This range is close to the applied loading amplitude in
spallation experiments (Atroshenko et al., 2010; Huang et al.,
2011; Turneaure et al., 2007; Yuan et al., 2007).
Fig. 3. Loading history of applied tensile pressure. The loading history contains two
stages: the rise stage in which the applied pressure increases linearly until the
desired loading pS is achieved after a rise time ta, and the steady stage in which the
loading is held constant at pS during the hold time tS.



Table 1
Material parameters for Vit. 1.

Parameters Notation Value

Shear modulus l 35.3 GPa
Density q 6125 Kg m�3

Free-volume diffusivity D �10�16 m2 s�1

Average atomic volume X 20 A3

Activation energy DGm 0.2–0.5 eV
Frequency of atomic vibration f �1013 s�1

Boltzmann constant kB 13.8 � 10�24 J/K
Pressure sensitivity coefficient Q 0.158
Glass transition temperature Tg 638 K
Geometric factor v 0.105
Effective hard-sphere size of atom v⁄ 20 A3

Bulk modulus K 112.7 GPa
Effective shear modulus S 50.0 GPa
Jump number for annihilation nD 6

Fig. 4. Numerical results on void growth under different loading amplitudes. The
loading increases linearly after a same rise time ta of 40 ns, and is held at different
amplitudes: (a) pS = 2 GPa; (b) pS = 3 GPa; (c) pS = 4 GPa.
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In order to estimate the cavitation pressure via the numerical
method, the influence of loading amplitudes on the void growth
is examined. Consider three cases with the loading amplitude pS

ranging from 2 GPa to 4 GPa, but other parameters remain the
same. In each case, the initial void size A is 10 nm, the ambient
temperature Ti = 300 K, initial free volume concentration ni = 0.05,
and the loading rate q = 0.1 GPa/ns. Fig. 4 shows the numerical re-
sults of void growth under different loading amplitudes. Compar-
ing the three cases, a critical pressure papp

cr for unbounded growth
of voids exists between 3 GPa and 4 GPa. For the amplitudes of
2 GPa and 3 GPa, the growth of voids stops gradually after rapid
growth at the early stage. However, as the amplitude increases to
4 GPa, the void never stops growing while the applied loading is
held. This numerical result is in consistence with the analytical re-
sult in Section 3.1.
4. Dynamic growth of voids

4.1. Scaling of the governing equations

Different from the quasistatic cases, dynamic growth of voids
are more complicated. As the equation of equilibrium (Eq. (10))
is replaced by Eq. (1), inertial effects are introduced and other fac-
tors such as loading rate effects and viscous effects should be con-
sidered carefully. To reveal the dominant factor that controls the
void growth, usually one needs to scale the governing equations
first.
Among the governing equations, Eq. (1) is the most important,
because it contains an acceleration term, i.e. inertial term on the
right side which reflects the change of growth rate. To closely esti-
mate the term’s order of magnitude, we try to select proper scales
to obtain a dimensional factor. For the left side of Eq. (1), it is better
to choose the initial void radius A and the loading amplitude pS as
the scales of space and stress. It is worth noting that void growth is
a problem with variable boundary, when the void grows signifi-
cantly larger than the initial one, the current void radius a will be-
come more proper as the scale of space. But for right side of Eq. (1),
except for the scale of space A, an unknown scale of time still ex-
ists. If tk is denoted as the time scale, the scaled equation is

d~rr

d~r
þ 2ð~rr � ~rhÞ

~r
¼ qA2

=pS

t2
k

€~r ð26Þ

where ~rr ¼ rr=pS; ~r ¼ r=A, ~rh ¼ rh=pS, and ~€r ¼ €rt2
k=A. In this way,

qA2=pS
t2
k

is the proper estimation of the order of acceleration term.
Now, the question is in what time scale, a void growth process

is well scaled? To answer the question, we should find all the char-
acteristic time scales of physical processes that influence the void
growth first. As described in the governing Eqs. (1)–(5), there are
three basic processes existed: the outward flux of matter, the
deformation of matrix material and the evolution of free volume
concentration. In fact, as the viscous flow has already reflected
the influence of free volume concentration, only the former two
processes need to be considered. For the first process, selecting
the proper scales of force, mass and length, the characteristic time

scale is determined. Here we think that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qA2

=pS

q
is a proper esti-

mate for the characteristic time scale of outward flux of matter,

which has already existed in qA2=pS
t2
k

. For the second process, there

is a characteristic time scale of deformation existed. Since the
deformation rate of matrix material directly influences void
growth rate, this time scale is a proper choice for tk.

The deformation of matrix material consists of two parts: the
elastic part and the viscoplastic part. Thus, as a deformation time
scale, tk should characterize the two parts at the same time. With
the constitutive law, we can find an approximation for tk. For the
left side of Eq. (3), choosing ek = pS/2l as the scale of strain, we
obtain

_eij �
ek

tk
¼ pS=ð2lÞ

tk
ð27Þ

Similarly, choosing pS/ta as an estimation of _sij and pS as an esti-
mation sij, the right side of Eq. (3) can be written as

_sij

2l
þ sij

2g
� pS=ta

2l
þ pS

2g
ð28Þ

In order to find an uniform expression for tk, only the viscoplas-
tic part of the constitutive law is used here. Eq. (28) is also appli-
cable for the elastic region. Below the yield point, g can be
regarded as infinity, and the term pS/(2g) equals zero. Thus, Eq.
(28) is reduced to a form obtained by the elastic part of the consti-
tutive law (Eq. (2)). With Eqs. (3), (27) and (28), we have

1
tk
¼ 1

ta
þ 1

g=l
ð29Þ

As tk is determined, the dimensional factor used to estimate the
order of magnitude of the acceleration term can be obtained. Here
we define a dimensionless number which is the square root of the
dimensional factor, that is

Iinertia ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qA2

=pS

q
ta

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qA2

=pS

q
g=l

ð30Þ



Fig. 6. Detailed results of dynamic void growth at the rise stage. The rise time ta is
40 ns, and the loading amplitude ps is 4 GPa. Five cases are considered: (a) A
quasistatic case without inertial effects; (b) A = 100 nm, corresponding to the
dimensionless number I1 = 3.1�10�3; (c) A = 1 lm, I1 = 3.1�10�2; (d) A = 5 lm,
I1 = 1.6�10-1; (e) A = 10 lm, I1 = 3.1�10-1.
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where Iinertia is a dimensionless number similar to the Deborah
number and consists of three characteristic time scales: (1) the iner-
tial time scale tinertia ¼ A=

ffiffiffiffiffiffiffiffiffiffiffi
pS=q

p
, a characteristic time scale of the

outward flux of matter; (2) the loading time scale ta, which is just
the rise time of the loading history; and (3) the relaxation time scale
tr = g/l, a characteristic time for viscous flow. The three time scales
represent inertial, loading rate and viscous effects respectively.

4.2. Numerical results on dynamic void growth

Note that the inertial time scale tinertia consists of the initial void
radius A, the density q and the loading amplitude pS. To control the
dimensionless number Iinertia, it is convenient to change the initial
void radius A. We consider four dynamic cases with different initial
void radii which are 100 nm, 1 lm, 5 lm, and 10 lm respectively,
and a quasistatic case is presented as a comparison. In each case,
the loading amplitude is 4 GPa, the loading rate q = 0.1 GPa/ns,
the ambient temperature Ti = 300 K, and the initial free volume
concentration ni = 0.05. Fig. 5 shows the numerical results on dy-
namic void growth with different void radii under the loading of
4 GPa, and the detailed results at the rise stage are presented in
Fig. 6. According to the numerical results displayed in Figs. 5 and
6 and the interpretation of the dimensionless number Iinertia, the
void growth process in metallic glass can be divided into three
stages, each of which shows different characteristics and is con-
trolled by different part of the dimensionless number Iinertia.

As shown in Fig. 6, the first stage is the initial part of the rise
stage when most of the matrix material deforms below the yield
point. In this stage, a transition from smooth growth to vibrating
growth occurs as A increases from 100 nm to 10 lm. The larger
the value of A is, the higher vibration frequency and the larger
vibration amplitude is obtained. Then what is the reason for such
a vibrating growth phenomenon?

To understand this, we should examine the dimensionless num-
ber Iinertia during the first stage. As the applied loading is not very
high in this stage, most of the matrix material surrounding the void
deforms elastically. At this time, the relaxation time scale tr =1
since the viscosity g can be regarded as infinite. Thus the second
term of Iinertia is equal to zero, and Iinertia is simplified to I1 as follows

Iinertia ¼ I1 ¼
tinertia

ta
ð31Þ
Fig. 5. Dynamic void growth with different initial void radii under the same
loading. The rise time ta is 40 ns, and the loading amplitude ps is 4 GPa. Five cases
are considered: (a) A quasistatic case without inertial effects; (b) A = 100 nm,
corresponding to the dimensionless number I2 = 4.4 � 10�2; (c) A = 1 lm,
I2 = 4.4 � 10�1; (d) A = 5 lm, I2 = 2.2; (e) A = 10 lm, I2 = 4.4.
where I1 is controlled by the internal microscopic time scale tinertia

and the external macroscopic time scale ta. Since ta is a constant
during the whole rise stage, the variation of I1 is determined by
tinertia alone. As is defined above, tinertia ¼ A=

ffiffiffiffiffiffiffiffiffiffiffi
pS=q

p
, which is deter-

mined by the initial void radius when the loading amplitude keeps
constant. While A increases from 100 nm to 10 lm, I1 changes from
10�3 to 10�1, implying a higher order of the acceleration term. In
fact, during the dynamic void growth process, the current void ra-
dius usually deviates from a value that the system is in static equi-
librium, and the acceleration term can be regarded as a measure of
the deviation. Then the larger I1 is, the higher vibration amplitude of
void radius appears.

The change of I1 cannot explain the change in vibration fre-
quency. This vibration in void growth is actually the elastic oscilla-
tion of the void inner surface, similar to a spring-mass system.
With the theory of elastic mechanics, the characteristic period for
oscillation can be determined to be

T ¼ p

ffiffiffiffiffiffiffiffi
qa2

l

s
ð32Þ

where T is the oscillation period, q the density of matrix material, a
the current void radius, l the shear modulus. Eq. (32) shows that
the oscillation period is controlled by the current void radius alone,
because other parameters are the material properties. Therefore the
change of vibration frequency is due to the difference of void radii.
As illustrated in Fig. 6, the vibration frequency consists with the re-
sults predicted by Eq. (32).

Meanwhile, in Fig. 6, I1 = 10�2 seems to be a transition bound-
ary. When I1 > 10�2, strong vibration indicates that the inertial ef-
fects, impeding and promoting the growth rate alternatively,
dominate the void growth process. But when I1 < 10�2, the void
can grow smoothly with the increase of applied loading and the
growth rate is controlled by the loading rate effects.

To further study the vibration phenomenon, the influence of the
rise time ta on dynamic void growth is examined. We consider 3
cases with different values of ta which are 2 ns, 20 ns, and 200 ns
respectively, but other parameters remain the same. For each case,
the loading amplitude is 2 GPa, the initial void radius 1 lm, the
ambient temperature Ti = 300 K, and the initial free volume con-
centration ni = 0.05. Fig. 7 shows the void growth with different rise
time under the loading of 2 GPa. While I1 gets larger or the inertial



Fig. 7. Void growth with different rise time under the same loading amplitude of
2 GPa. The initial void radius is 1 lm. Three cases are considered: (a) ta = 2 ns,
corresponding to the dimensionless number I1 = 8.8 � 10�1; (b) ta = 20 ns,
I1 = 8.8 � 10�2; (c) ta = 200 ns, I1 = 8.8 � 10�3.

Fig. 8. Quasistatic void growth with different initial void radii under the same
loading. The rise time ta is 40 ns, and the loading amplitude ps is 4 GPa. Three cases
are considered: (a) A = 10 nm; (b) A = 100 nm; (c) A = 1 lm.
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effects are more dominant, the vibration amplitude of void growth
becomes higher. The transition boundary still lies at I1 = 10�2. For
the cases of I1 > 10�2, the inertial effects dominate the void growth
and the vibrating growth of void is obvious. For the cases of
I1 < 10�2, however, the vibration almost disappears. Moreover, as
the initial void radius keeps a constant, the vibration frequency
does not change, which is different from the cases shown in
Fig. 6. Another difference is the lower loading amplitude, resulting
in suppression of the viscous flow of matrix material. And then the
vibration disappears gradually, until the oscillation energy is com-
pletely dissipated.

The second stage is the latter part of the rise stage. While the
applied loading is higher than the yield strength, void growth be-
comes more complicated duo to the viscous effects. As shown in
Fig. 6, the vibration of void growth disappears promptly while
the growth rate increases a lot. Actually, with the increase of the
applied loading, viscous flow becomes easier as tr decreases fast
from1 to the magnitude of 10�9 s. Since tr is shorter than ta which
is the magnitude of 10�8 s, the second term of Iinertia gets larger
than the first term. Thus, Iinertia cannot be simplified to I1 any long-
er. The void growth is controlled by all the inertial, loading rate and
viscous effects. The viscous effects introduce extra energy dissipa-
tion for the oscillation of the void’s inner surface, therefore cause
the oscillation to decay in amplitude towards zero. Besides, the vis-
cous flow significantly increases the deformation rate of matrix
material, and then induces the void to grow faster. In fact, the sec-
ond stage can be regarded as a transition period when the loading
rate effects are gradually replaced by the viscous effects.

The third stage is the steady stage of the loading history. As the
applied loading stops increasing, the loading rate effects do not ex-
ist. Thus, Iinertia is simplified to I2 as

Iinertia ¼ I2 ¼
tinertia

tr
ð33Þ

Eq. (33) shows that, in the steady stage, the void growth is con-
trolled by the competition of inertial and viscous effects. To calcu-
late I2, the viscous coefficient influenced by the free volume
concentration, should be determined first. As the free volume con-
centration does not change a lot at this stage (details will be shown
in the following Section 4.3), the viscous coefficient nearly keeps
constant. Using g � 100 Pa	s, on the inner surface of the void, I2

can be obtained. As shown in Fig. 5, as I2 increases from 10�2 to
101, the growth rate decreases gradually. There is a boundary at
I2 = 1 among all the cases. If I2 < 1, the results are similar to the case
without inertia, implying that the viscous effects are more domi-
nant than the inertial effects. But as I2 keeps increasing across
the boundary, the growth rate slows down. The void growth is sig-
nificantly impeded as the inertial effects prevail.

According to Eq. (33), the boundary I2 = 1 determines a critical
void size, that is

Acr ¼
g

ffiffiffiffiffiffiffiffiffiffiffi
pS=q

p
l

ð34Þ

Once the radius is larger than the critical value, the inertial ef-
fects significantly reduce the void size. For Vit. 1 under the loading
amplitude of 4 GPa, Acr is 2.3 lm. In quasistatic tests, the reported
dimple diameter is usually less than 10 lm (Bouchaud et al., 2008;
Jiang et al., 2008; Qu et al., 2010). While in dynamic tensile exper-
iments, finer dimples or voids with diameters from 102 nm to 5 lm
were observed (Escobedo and Gupta, 2010; Huang et al., 2011;
Meng et al., 2008; Zhuang et al., 2002). It is likely that the inertial
effects impede the generation of larger voids during the fracture
process. The above results also prove that the inertial effects prefer
to work at the late stage of a void-dominated fracture process.
4.3. Free volume dynamics

For the early stage of a void-dominated fracture process in
BMGs, the void radius is usually less than 1 lm. This means that
the inertial effects can be neglected, and the viscous effects play
a dominant role. In BMGs, microscopic flow events are related to
free volume, which is thought to be their intrinsic defects
(Spaepen, 1977). Thus the ability of the materials to undergo viscous
flow depends closely upon the free volume concentration.

As indicated by Wu et al. (2003b), thermally diffusive cases are
strongly affected by the initial void size, because of the length scale
introduced by the thermal diffusion. Similar to the thermal diffu-
sion, free volume diffusion will introduce a length scale as well.
To address the influence on void growth, we consider four cases
with the initial void radius ranging from 10 nm to 1 lm, but other
parameters remain the same. For each case, the loading amplitude
pS is 4 GPa, the loading rate q = 0.1 GPa/ns, the ambient tempera-
ture Ti = 300 K, and the initial free volume concentration ni = 0.05.
Fig. 8 shows the numerical results of quasistatic void growth with
different void radii. Different from thermal diffusion cases pre-
sented by Wu et al. (2003b), each case is almost the same, therefore



Fig. 9. The history of void growth rate. The rise time ta is 40 ns, and the loading
amplitude ps is 4 GPa.

Fig. 10. The evolution of free volume concentration on the inner surface of the void.
The rise time ta is 40 ns, and the loading amplitude ps is 4 GPa. The terms plotted
are: (a) the total free volume concentration; (b) the diffusion term; (c) the shear-
created term; (d) the annihilated term; (e) the pressure created term.
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the initial void radius has no influence on void growth. As the free
volume diffusion coefficient is lower than thermal diffusion coeffi-
cient by about ten orders of magnitude, the contribution of free vol-
ume diffusion can be neglected.

Fig. 9 presents the history of growth rate (V ¼ _a=A) in the case
with the initial void radius of 10 nm. The growth rate changes con-
tinuously during the whole loading history. At the rise stage, it
holds constant at first and then increases promptly. For the elastic
response of matrix material and the linearly increase of applied
loading, the growth rate should keep constant. But when the ma-
trix material begins to yield, viscous flow induces a sharp increase
of growth rate. At the steady stage, it decreases rapidly first and
then increases gradually. As the growth rate is determined by the
viscous flow of the matrix material, the evolution of free volume
concentration should be further examined.

Fig. 10 shows the evolution of free volume concentration on the
inner surface of the void with the initial void radius of 10 nm. As
illustrated in Fig. 10, the diffusion term has little contribution to
the total free volume during the whole process for the extremely
low diffusion coefficient. At the beginning of the rise stage, the in-
crease of total free volume concentration is mainly attributed to
the volume dilation induced by hydrostatic tensile pressure. While
the applied loading continuously increases, stress relaxation in-
duced by viscous flow will slow down the increase rate of the pres-
sure created term. At the same time, however, the increase of the
shear-created term speeds up for the increasing shear stress. When
it enters the steady stage, due to the stress relaxation, the pressure
created term decreases and the increase of the shear-created term
slows down. The annihilated term which is not influenced by the
stress state increases at nearly the same rate. But in general, the total
free volume concentration does not change a lot at the steady stage.

As the evolution of free volume concentration is addressed, the
change in growth rate at the steady stage in Fig. 9 can be under-
stood. At the beginning of this stage, the growth rate drops
abruptly since the applied loading stops increasing (The increase
of elastic deformation stops). Then it drops gradually. For the free
volume concentration does not change a lot, this is caused by the
rapid decrease of stresses at the beginning of stress relaxation. In
the later part of the steady stage, both the viscosity and stresses
are relatively steady. The acceleration of growth rate is due to
the significant increase of void radius.
5. Conclusion

This paper presents a theoretical description of void growth
undergoing remote hydrostatic tension to understand the void-
dominated fracture process in BMGs. Based on theoretical analysis
of the material elastic-viscoplastic response, an explicit expression
of the critical pressure for cavitation instabilities is obtained. It is
shown that cavitation instabilities prefer to occur in solids with
higher pressure sensitivity coefficient. The theoretical results are
validated numerically by FDM simulations on quasistatic growth
of voids in BMGs.

For the dynamic void growth, a dimensionless number is pro-
posed to characterize the dominant factors. This dimensionless
number consists of three different time scales which are the iner-
tial time scale, the loading time scale and the relaxation time scale.
It reflects the competition of the inertial effects, the loading rate ef-
fects and the viscous effects. Via FDM simulations, we found that at
the rise stage of the loading history, the competition between the
inertial effects and the loading rate effects controls the growth pro-
cess. A transition boundary of I1 = 10�2 is observed, above which
the inertial effects are more dominant and the vibration of growth
occurs. While the viscous effects begin to work, the loading rate ef-
fects are gradually replaced, and the viscous effects will induce
higher growth rate and disappearance of vibrating growth. At the
steady stage, the competition between the inertial effects and the
viscous effects controls the growth process. A transition boundary
lies at I2 = 1. Above the boundary, the inertial effects become dom-
inant and the growth of void is obviously impeded. While below
the boundary, void growth is controlled by viscous effects. For
the void growth at the early stage of a void-dominated fracture
process (void radius less than 1 lm), it is found that void growth
rate is strongly influenced by viscous flow of the material which
depends on the free volume concentration. And the evolution of
free volume is mainly controlled by three processes which are
pressure induced generation, shear stress induced generation,
and annihilation, while the diffusion of free volume can be ne-
glected during the growth process.
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