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Glass transitions in monolayers of colloidal ellipsoids
Zhongyu Zheng∗ and Yilong Han†

∗Institute of mechanics, Chinese Academy of Sciences, Beijing, China.
†Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China

Abstract. Glass formers constitute of anisotropic particles was mainly studied by simulations in three dimensions with
incomplete phase diagrams. Here we studied the structures and the glassy dynamics for translational and rotational motions in
quasi-two dimensional (2D) suspensions of colloidal ellipsoids at the single-particle level. At high densities, ellipsoids with
large aspect ratio formed psuedo-nematic domains. Video microscopy revealed a two-step glass transition: rotational motion
first becomes glassy due to the inter-domain freezing, then translational motion become glassy at a higher density due to
inner-domain freezing. Between the two transitions, ellipsoids formed an "orientational glass". Below and near the respective
glass transition densities, the rotational and translational fastest-moving particles moved cooperatively and formed clusters
with power-law size distributions. The mean cluster sizes diverge in power law as approaching the glass transitions. The fast
translational particles concentrated in pseudonematic domains and form band-like clusters while the fast rotational particles
mainly located around domain boundaries and form branch-like clusters.

Keywords: glass transition, colloid, ellipsoid
PACS: 64.70.pv, 82.70.Dd

I. INTRODUCTION

Glass transition is one of the deepest and most impor-
tant unsolved problems in condensed matter physics.
Colloids have been proved as outstanding model sys-
tems for glass transition studies because single-particle
dynamics is measurable by video microscopy and im-
age processing. To date, significant insights about glass
transitions have been obtained from colloidal glasses
composed of spheres [1]. Much less effort has been
expended, however, to study of glasses composed of
anisotropic particles. In fact, anisotropic colloidal par-
ticles can better model glasses which are usually com-
posed of molecules with anisotropic shapes or interac-
tions. The simulation and theoretical studies on glasses
composed of anisotropic particles are also far less than
enough and even the phase diagrams of some simple
shaped anisotropic particles are not available. Molecular
mode-coupling theory (MMCT) predicts a kinetic phase
diagram of three-dimensional (3D) monodispersed hard
ellipsoids of revolution as a function of packing fraction
φ and aspect ratio p [2, 3]. It predicts a rotator phase at
small p (>1), a one-step glass transition at intermediate
p and a two-step glass transitions at large p. However
MMCT cannot predict nematic phase at very large p and
solid-liquid coexistence for hard spheres when p � 1.
A few simulations have briefly explored the glassy

dynamics of chains of hard spheres [4] and nucleation of
short hard rods in 3D [5]. A recent simulation explored
the dynamics around the glass transitions in 3D, but their
ellipsoids have small aspect ratios (p= 1.25 prolate and
0.8 oblate), hence the two-step glass transition with the

orientational glass was not able to be observed [6]. The
only simulation about phase behaviors of 2D ellipses
focused on the nematic order in small systems with 200
ellipses [7]. Glass transitions for anisotropic particles
in 2D have not been explored in theory, simulation or
experiment.
Recently there are a few experiments studies on col-

loidal glasses composed of anisotropic particles, but the
focuses are on their normal modes [8] and rheology prop-
erties [9] rather than the glass transition dynamics. To
this end, we carried out experiments about glass transi-
tions in colloidal glass constitute of ellipsoids under 2D
confinements which have the following advantages: (1) It
is one the the simplest glasses consisted of uniform sized
particles. Note that monodispersed disks in 2D can only
form crystals even at the fastest quenching rate. Hence
bidispersed or highly polydispersed spheres have been
used in experiments [10, 11, 12], simulations [13] and
theory [14] for 2D glasses. In contrast, we found that
monodispersed ellipsoids of intermediate aspect ratio are
excellent glass formers in 2D because their shape can ef-
fectively frustrate crystallization and nematic order. (2)
The trajectories of all the particle in the region of inter-
est can be tracked, which are difficult to be measured in
three dimensional systems. (3) Rotational motion can be
measured for ellipsoids, but not for spheres. We discov-
ered that translational and rotational motions have differ-
ent glass transition points with an intermediate "orienta-
tional glass" phase [15].
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FIGURE 1. Making ellipsoids by stretching spheres.

II. SAMPLE PREPARATION AND
IMAGE ANALYSIS

The ellipsoids were synthesized by stretching poly-
methyl methacrylate (PMMA) spheres [16, 17], see
Fig. 1. PMMA spheres were added into an aqueous
polyvinyl alcohol (PVA) solution (12% weight fraction)
in a Petri dish. After water was evaporated at room tem-
perature, the solid PVA film was stretched at 130◦C
which is above the glass transition temperatures of PVA
(Tg= 85

◦C) and PMMA (Tg= 105
◦C) so that the PMMA

spheres could be deformed into ellipsoids. After cooling
to room temperature, the PVA was dissolved and washed
for more than five times in deionized water and ellip-
soids were obtained. Since ellipsoids are stretched from
spheres with uniform surface charge densities, ellipsoids’
tips are expected to have higher surface charge density
than the waist, but quantitative charge distribution is un-
known. Nevertheless, the charge on ellipsoid should be
effectively screened out due to the Na+ ions released
from glass walls in such thin sample with high surface-
to-volume ratio and the 3 mM sodium dodecyl sul-
fate (SDS) added to stabilize ellipsoids. The total ionic
strength is more than 3 mM and the corresponding Debye
length is less than 20 nm. Hence ellipsoids can be con-
sidered as moderately hard particles. Isolated ellipsoids
in a dilute monolayer can be well fitted by 2D Gaussian
functions with semi-long axis a and semi-short axis b
as fitting parameters [18]. The two batches of ellipsoids
are used: (1) aspect ratio p = 6 with the semi-long axis
a = 3.33 μm and the semi-short axes b = c = 0.56 μm;
(2) aspect ratio p= 9 with the semi-long axis a= xxx μm
and the semi-short axes b= c= 0.xx μm. From the vari-
ance of fitted a for ∼200 particles, we found that the
polydispersity of the long axis is 5.6%. In the paper, we
will mainly use the data about ellipsoids with p = 6 to
illustrate most of the results.
To prepare the 2D sample, a tiny droplet of 0.5 μL sus-

pension was placed on a glass slide and then a coverslip
is placed on. The glass surfaces were rigorously cleaned
so that the droplet can spread into a thin film by capil-
lary force and particles did not stick to the surfaces. Then
the 12×15× 0.1 mm3 glass cell was sealed with epoxy
glue. The area fraction φ ≡ πabρ , where ρ is the num-

(A) (B)

FIGURE 2. (A) A typical particle-tracking result of the 2D
suspension of colloidal ellipsoids (the area fraction φ = 0.70).
The red elliptical contours represent the positions and orien-
tations of the ellipsoids obtained from image analysis, which
coincide well with the dark images of the real ellipsoids. (B)
In close packing, a third ellipsoid tends to insert into the two
neighbors and change their orientations, while rectangular rods
tend to align with the same orientation.

ber density averaged over all video frames. φ was tuned
by placing the cells vertically for particles to slowly drift
under gravity for several hours to one day. When the de-
sired area fraction was reached in the 0.01 mm2 chosen
area, the sample was placed horizontally for 2-3 hours
for equilibration. The area fraction and the correlations
are almost the same for 2-hour and 12-hour equilibration,
thus the systems are in metastable equilibrium without
obvious ageing effect.
We measured the central 0.01 mm2 area for 3 to 6

hours at each density. Light interference measurements
showed that the wall separation varied by only ∼30 nm
per 1 mm [17], so the walls could be considered as paral-
lel within the field of view. The fluctuation in the z direc-
tion appeared to be very weak and these heavy ellipsoids
always stayed in the focal plane. The area fraction re-
mained a constant during the whole observation period.
We measured 3-5 densities in one sample cell and to-
tally 12 densities in three cells. The wall separation is
a constant for different densities in one cell because we
chose a fixed observation area. The wall separations in
different cells were all about 1.5 μm from the particle
diffusion measurements and the interference color mea-
surements shown in ref. [19]. The particle tips occasion-
ally go above or below each other, which delays glass
transitions to∼ 2% higher area fractions. For brevity, we
nevertheless use 2D instead of quasi-2D. Twelve densi-
ties were measured in the range 0.20≤ φ ≤ 0.81. During
the three to six hours measurments at each φ , no drift
flow or density change was observed.
The thermal motion of the ellipsoids was recorded

using a charge-coupled device camera resolving
1392×1040 pixels at 1 frame per second (fps) for
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the highest five concentrations and at 3 fps for lower
concentrations. The center-of-mass positions and ori-
entations of individual ellipsoids were tracked using
our image processing algorithm [19], see the result in
Fig. 2a. The first step in the image processing algorithm
is to apply a spatial band-pass filter to remove the noises
in the image [20], then use the standard sphere-tracking
algorithm [20] to identify the position of ellipsoids.
However, one ellipsoid might be incorrectly tracked as
multiple spheres, i.e. multiple candidate positions of the
center of mass. The second step is to remove the wrong
candidate positions and roughly estimated the true posi-
tion of each ellipsoid in a 4a× 4a area centered around
each position. We created 18 4a× 4a masks; each mask
contains an ellipsoid with orientation 0◦, 10◦, · · ·, or
170◦, then found the largest total brightness of (mask ×
area) among the 18 total brightnesses. If the largest total
brightness was greater than a empirical critical value, it
was considered as an ellipsoid. In step three, the position
and orientation of ellipsoid obtained from step two is
further refined. The area was scanned pixel by pixel
and 1◦ by 1◦ with a 4a× 4b mask. The total brightness
of (mask × area) was calculated at each position and
orientation. Finally, we fit with a parabolic function and
interpolate the position of the maximum brightness and
obtain sub-pixel resolution. All ellipsoids in the field
of view can be captured well with our algorithm, see
the the image processing result shown by red ellipses in
Fig. 2a. The major tracking error was from the image
distortion due to the small tumbling motions in quasi-2D
confinement. From the intercept of the mean-square
displacement (MSD), we found the angular resolution
was 1◦ and the spatial resolutions were 0.12 μm and 0.04
μm along the long and the short axes respectively. At
high densities the ellipsoids spontaneously formed small
pseudo-nematic domains with branch-like structures
each involving about 102 particles, see Fig. 2a. .
In some of the data analysis, we projected step dis-

placements measured in fixed lab frame δxn to the step
displacement δ x̃n in the local body-frame attached on el-
lipsoid. As shown in Fig. 3 the two are related via a rota-
tion, δ x̃ni =Ri jδxn j, where

Ri j =

(
cosθn sinθn
−sinθn cosθn

)
(1)

is the rotation matrix with θn = (θ(tn−1)+ θ(tn))/2. In
practice, choosing θn = θ(tn−1) or θn = θ(tn) has little
affect on our results because θ barely changes in two
consecutive frames. We can construct total body-frame
displacements by summing over displacements in each
step: x̃(tn) = ∑n

k=1 δ x̃k, and from x̃(tn), we can construct
body-frame displacements for trajectories of duration t
at starting time τ0 via Δx̃(t) = x̃(t + τ0)− x̃(τ0) so that
transverse and longitudinal motions can be separately

tracked [18].

x

y δxi
a

δx̃i
δxi
θ

b δyi

δỹi

xi− 1

yi− 1

yi

xi
FIGURE 3. Transformation between the x-y lab-frame dis-
placements (δx, δy) and the x̃-ỹ body-frame displacements (δ x̃,
δ ỹ). The angle between two frames is θ(t).

III. STATIC STRUCTURE

We measure the static structures from the radial dis-
tribution function of center of mass gT (r) = 〈ρ(r′ +
r′, t)ρ(r, t)〉 and the angular correlation function gθ2 (r) =〈cos(2[θ(0)−θ(r)])〉 [7, 21], see Fig. 4. Here ρ(r) =
∑N

i=1 δ (r− ri) is the density, θ(r) is the orientation of
ellipsoid at distance r, and 〈〉 is the ensemble and time
average. g2θ (r) ≡ 1, 0 and -1 for parallel, random and
perpendicular arrangement, respectively. In Fig. 4(a), the
angular correlation increases with φ . At high φ , gθ2 (r) ex-
hibit exponential decay at large distances and algebraic-
like decay at short distances, indicating random orien-
tations across domains and quasi-nematic orders within
domains. g2T (r) develops a few peaks at r = 2.4b,4.2b
and 6b at high densities, corresponding to the dense
packing configurations of side-by-side (r � 2b), side-to-
tip (r � a+ b) and tip-to-tip (r � 2a = 6b). No obvious
structural change was observed near the glass transition
point.
We did not observed nematic phase or semetic do-

mains found in 3D spherocylinders [5] because 1) the
elliptical shape facilitates particles changing orientation
and forming branch-like structures at high densities,
while rectangular rods tends to keep the orientational or-
der [22], see Fig. 2b; 2) The 5.6% polydispersity pro-
motes glass formation. 3) Long-wavelength fluctuations
are stronger in 2D than in 3D, which can more eas-
ily break the long-range order as described by Mermin-
Wagner theorem. Ellipsoids with p ∼ 6 appeared to
be good glass formers, which can easily preempt any
isotropic-nematic (IN) phase transition [7]. In contrast,
the glass transition can be preempted by crystallization
for p � 1 in 2D, or by an IN transition for rods with
p > 25 in 3D [4].
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FIGURE 4. The angular correlation function gθ2 (r) and (b)
the radial distribution function gT

2 (r) in the 2D suspensions of
colloidal ellipsoids at different area fractions.

IV. DYNAMIC PROPERTIES

A. Structural relaxation

The translational relaxation was character-
ized by the self-intermediate scattering function
Fs(q, t) ≡ 〈∑N

j=1 eiq·(x j(t)−x j(0))〉/N where x j(t) is
the position of ellipsoid j at time t, N is the total number
of particles, q is the wave vector and 〈 〉 denotes a
time average. In Fig. 5(a), we chose qm = 2.3 μm−1
measured from the first peak position in the structure
factor at high density. At high φ , a two-step relax-
ation is developed in Fs(q, t) which is a signature of
dynamic heterogeneity when the liquid is approach-
ing the glass transition. The short-time β -relaxation
corresponds to diffusion within cages formed by neigh-
boring particles, and the long-time α-relaxation reflects
structural rearrangement involving a series of cage
breaking. According to mode-coupling theory (MCT),
Fs(q, t) = fq + hqG(t) holds at the initial stage of the
β -relaxation and Fs(q, t) = fq − hqG(t) holds at the
crossover time to the α-relaxation respectively. fq is the
plateau height, hq is the amplitude andG(t) is a universal
function called β correlator independent to q. Fs(q, t)
decays as the critical-decay law G(t) ∼ t−a at shorter
time and the von Schweidler law G(t) ∼ t−b at longer

FIGURE 5. (a) The self-intermediate scattering func-
tion Fs(q, t) at qm = 2.3 μm−1. (b) RT (t) = [Fs(q, t) −
Fs(q, t1)]/[Fs(q, t2)−Fs(q, t1)] for different q at φ = 0.77. (c)
The orientational correlation L4(t) for different area fractions.
(d) R(t) = [Ln(t)−Ln(t1)]/[Ln(t2)−Ln(t1)] for different order
n at φ = 0.70. Here t1 and t2 were chosen at 101 s and 1084 s
in (a) and 76 s and 936 s in (b). (e) The exponent β of the

fitting function e−(t/τ)β for the long-time Fs(qm, t) and L4(t).
(f) The fitted relaxation time τ(φ) ∼ (φc − φ)−γ . Solid sym-
bols: different choices of q in F(q, t) for translational motions.
Open symbols: different choices of n in Ln(t) for orientational
motions.

time. The exponent a and b are independent of φ and
q and characterize a particular system. So, Fs(q, t)− fq
can be separated or factorized into a q-dependent
and a t-dependent part. We can cancel q by defining
RT (t) ≡ [Fs(q, t) − Fs(q, t1)]/[Fs(q, t2) − Fs(q, t1)] =
[G(q, t) − G(q, t1)]/[G(q, t2) − G(q, t1)], where t1 and
t2 are two arbitrary times taken in the regime where
the two power laws hold. Fig. 5b shows that RT (t) for
different q at φ = 0.77 collapse and keep ordered around
the plateau region in Fs(q, t), which confirms the validity
of the MCT "factorization property" in the 2D colloidal
ellipsoid suspensions. The "factorization property" has
been observed in simulations of 3D Lennard-Jones
particles [23] and 3D hard ellipsoids [6], but not in 2D
systems before.
The rotational relaxation can be character-

ized by the orientational correlation function
Ln(t) ≡ 〈∑N

j=1 cosn(θ j(t)−θ j(0))〉/N where n is a
positive integer and θ j is the orientation of ellipsoid j.
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Ln(t) decays faster for larger n, and different choices
of n can yield the same glass transition point. n = 4 in
Fig. 5c was chosen so that Ln(t) can be better displayed
within our measured time scales. Interestingly, the "fac-
torization property" also exists in the rotational degrees
of freedom. Figure 5d demonstrates that the intermediate
regions in the rescaled orientational correlation functions
R(t) = [Ln(t) − Ln(t1)]/[Ln(t2) − Ln(t1)] also collapse
together for different order n in deeply supercooled
liquid. This scaling law for rotational motion has not
been predicted in the MMCT [2, 24] or observed in
experiments and simulations before. The factorization
property indicates that a t-dependent part should be
extracted from the Ln(t) around the plateau regions
independent of φ and n.
The α-relaxations at different φ follow the stretched-

exponential decay (Kohlrausch function) e−(t/τ)β where
τ is the relaxation time. Figure 5e shows that the fitted
exponent β decreases from 0.92 to 0.77 for Fs(qm, t)
and from 0.81 to 0.68 for L4(t) as φ increases from
0.40 towards the glass transition point. Lower value of
β corresponds to stronger dynamic heterogeneity, hence
the system is more dynamically heterogeneous and the
motions are more cooperative at higher φ .
In MCT, τ(φ) diverges algebraically as approach-

ing the critical point φc: τ(φ) ∼ (φc − φ)−γ where γ =
1/(2a) + 1/(2b) [25]. By fitting the critical-decay law
and the von Schweidler law, we obtained aT = 0.3±0.02
and bT = 0.63±0.02 for Fs(qm, t) and aθ = 0.32±0.02
and bθ = 0.65 ± 0.02 for L4(t). Consequently γT =
2.45±0.05 and γθ = 2.33±0.05 for the translational and
orientational correlations respectively. These values are
close to the γT = 2.3 measured for 3D ellipsoids [6]. In
Fig. 5f, τ−1/γ is linear in φ for different choices of q and
n. Interestingly, all the scalings show that the glass tran-
sitions are at φθc = 0.72±0.01 for rotational motion and
φ T

c = 0.79±0.01 for translational motion. This indicates
three distinct phases: liquid (φ < 0.72), an intermediate
orientational glass which is liquid-like in its translational
degrees of freedom but glassy in its rotational degrees of
freedom (0.72 < φ < 0.79), and the glass state for both
degrees of freedom (φ > 0.79).

B. Diffusion and dynamic heterogeneity

The diffusions are characterized by the translational
and rotational mean-square displacements: MSD||,⊥(t)≡
〈Δx2||,⊥(t)〉 along long- (||) and short- (⊥) axes in the

particle frame and rotational MSDθ (t) ≡ 〈Δθ 2(t)〉, see
Figs. 6a,b. The initial increase in MSDs reflects short-
time diffusion inside cages. The plateau in the interme-
diate time scale indicates that the motion is hindered by
the caging of neighboring particles. The rise up of the

FIGURE 6. (a) The translational MSDs along long- (||) and
short- (⊥) axes. (b) The rotational MSDs. The non-Gaussian
parameters of translational displacements along the long axis

(α ||
2 (t), solid symbols) and the short axis (α

⊥
2 (t), open sym-

bols). φ = 0.70,0.74,0.77,0.81 as labeled in the figures. (b)
The non-Gaussian parameters of rotational displacements.

plateau corresponds to cage breaking in the β -relaxation
and then crosses over to a long-time diffusion due to the
cage rearrangement. At high density, the plateau became
significantly flat and stretched which are the character-
istics of glass [26, 27], and its long-time rise up corre-
sponds to the activated hopping processes [28]. MSD||
is much larger than MSD⊥ for all densities and time in-
tervals, which indicates that motion along long axes are
dominate in both the short-time in-cage rattling and the
long-time caging breaking.
As approaching the glass transition, the dynamics not

only dramatically slow down but also become progres-
sively more heterogeneous, i.e. some regions may ex-
hibit much faster dynamics than others even though,
spatially, these regions may be very close. For hetero-
geneous dynamics, the step-size distribution is strongly
non-Gaussian. The degree of non-Gaussian behavior
is measured by the non-Gaussian parameters α2(t) =
〈Δx4〉/(3〈Δx2〉2)−1 of particle displacements Δx during
time t [26]. A distribution is Gaussian when α2 = 0 and
non-Gaussian when α2> 0. In supercooled liquids, parti-
cle motion is diffusive before it reaches its cage and after
many cage-breaking rearrangements. Hence the distribu-
tion of Δx is Gaussian at short and long times. At the
intermediate times, however, it becomes non-Gaussian
with long tails due to cooperative out-of-cage displace-
ments [26, 27, 29]. It can be observed from the chains
of long arrows in Fig. 7 about the translational displace-
ments. Such cooperative motion is strongest at time τ2
corresponding to the peak of α2(t), see Fig. 6. As φ in-
creases, the peak rises and shifts towards a longer time,
indicating growing dynamic heterogeneity and slowing

157 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

159.226.231.70 On: Thu, 12 Dec 2013 07:53:34



FIGURE 7. The cooperative motions represented by the
translational displacement vectors of ellipsoids during a 250 s
time interval at the area fraction φ = 0.70. The length of the
black lines denote the displacements of particles The red and
black dots at the two ends of each line represent the initial and
final positions of the centers of mass.

down dynamics respectively on approaching the glass
transitions. In contrast, the glass phase lacks cooperative
out-of-cage motions and all particles are caged, so α2(t)
exhibits no distinct peak and declines with time [26].
Such a sharp change has been regarded as a character-
istic of a glass transition [26]. Figure 6 clearly shows the
glass transitions at φθc = 0.72± 0.02 for rotational mo-
tion and at φ T

c = 0.79±0.02 for translational motion.
We also measured the long-time diffusion coefficients

for translational and rotational motions and compared
them with the relaxation times. Relaxation and diffusion
were decoupled in both translational and rotational mo-
tions. The ratio of the translational and rotational dif-
fusion coefficients deviates from a constant, which in-
dicates that the Stocks-Einstein (SE) relation and the
Stocks-Einstein-Debye (SED) relation breaks down at
different degrees of supercooling. SE or SED relation is
a form of the fluctuation-dissipation theorem (FDT) [30].
The breakdown of SE relation can be explained from the
coupling model based on the fact that β is larger for
translational diffusion than rotation [31, 32] as we ob-
served in Fig. 5e. Similar breakdown of SE has been ob-
served in hard spheres [30] and breakdown of SED has
been observed in a mixture of ellipsoids and spheres [33].

C. Spatial distribution of fastest particles

The dynamic heterogeneity can be directly visualized
from the spatial distribution of the fastest-moving par-
ticles [26], see Fig. 7. Colored particles in Fig. 8 fur-
ther show the distribution of the fastest-moving 8% of

the particles in supercooled liquid (φ = 0.70), orienta-
tional glass (φ = 0.77) and double glass (φ = 0.81). The
time intervals are chosen as τ2 for φ < φc and as the mid-
dle time of MSDs plateaus at φ > φc. 8% particles are
chosen because the non-Gaussian long tail of the distri-
bution of Δx(τ2) covers about 8% of the population. Dif-
ferent choices of t and the percentage yield the similar
results. Neighboring fastest-moving ellipsoids form clus-
ters and are labeled using the same color. Here two ellip-
soids are defined as neighbors if they overlap after being
expanded by 1.5 times and their closest distance does
not intersect a third particle. In the supercooled liquid,
most fast particles were strongly spatially correlated and
formed large extended clusters, see Fig. 8. This demon-
strates the α-relaxation occurs by cooperative particle
motion in both the translational and rotational degrees
of freedom: when one particle moves, another particle
moves closely following the first. The colloidal glasses,
in contrast, show no discernible α-relaxation, and the
fastest particles in β -relaxation are randomly dispersed
without forming large clusters [26], as observed in the
3D glass transition of colloidal spheres [26]. Figure 8
clearly depicts three regimes: both the translational and
rotational fast particles are distributed heterogeneously
with large clusters at φ < 0.72; the rotational fast parti-
cles are dispersed homogenously while the translational
fast particles form large clusters at 0.72< φ < 0.79; and
both types of fast particles are dispersed homogenously
at φ > 0.79.
The spatial distributions of translational and rotational

fast-particle clusters were anticorrelated. The fast trans-
lational tended to gather in the pseudonematic domains
to form band-like clusters, while the fast rotational par-
ticles mainly located in orientational-disordered regions
between these domains to form branch-like clusters. It is
sensible that the nematic orders within a domain facili-
tate the cooperative translation along the domain orien-
tation but hinder the rotational motion, while the orienta-
tional disorders near boundaries ease the cooperative ro-
tation but restrain the translational motion. As increased
towards the rotational and translational glass transitions
respectively, slow and fast particles more and more con-
centrated together to form a few larger clusters indicating
stronger rotational and translational heterogeneities. All
the phases in Fig. 8 contain some isolated fast transla-
tional and rotational particles; they are mainly distributed
at the domain boundaries with random orientations. In
contrast to the observed anti-correlations between fast
translational and rotational motions, the simulations of
supercooled liquids of modeled water with p � 1.4 [? ]
and dumbbells with p � 1.8 [? ], in which the pseudone-
matic domains are absent, showed coupled translational
and rotational relaxations with a one-step glass transi-
tion. Hence the dynamic heterougeneity strongly depend
on the structure which is largely dictated by particle

158 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

159.226.231.70 On: Thu, 12 Dec 2013 07:53:34



Rotational motion

area fraction φ

φ= 0.70 

clusters at domain 

boundaries

Translational motion 0.72

φ = 0.77 φ = 0.81

0.79

φ = 0.77 φ = 0.81φ= 0.70

clusters within domains

(A) (E)(C)

(B) (F)(D)

FIGURE 8. The spatial distributions of the fastest-moving 8% of the particles (labeled in colors) in translational (a, c, e) and
rotational (b, d, f) motions. Ellipsoids in the same cluster have the same color. (a, b) The same frame at φ = 0.70 (supercooled
liquid); (c, d) The same frame at φ = 0.77 (orientational glass); (e, f) The same frame at φ = 0.81 (double glass) with ∼5500
particles.

shape.
The cluster sizes of the fast particles, Nc, exhibit

a power-law distribution P(Nc) ∼ N−μ
c as shown in

Figs. 9a, b. The fitted exponents μ for translational and
rotational motions change dramatically near their respec-
tive glass transitions see Fig. 9c. The μθ ,T = 2.0± 0.2
for supersaturated liquids is close to the μT = 2.2± 0.2
estimated for hard spheres [26] and the μT = 1.9±
0.1 for Lennard-Jones particles in 3D [29], while the
μθ ,T = 3.2± 0.1 for glasses is close to the μT = 3.1
estimated for hard spheres in 3D [26]. Hence μ � 2.5
might characterize such glass transitions in general. Fig-
ure 9d shows the weighted mean cluster size 〈Nc〉 =
∑N2

c P(Nc)/∑NcP(Nc) [26, 29] at different densities.
Both 〈Nθ

c 〉 and 〈NT
c 〉 diverge on approaching the corre-

sponding φc: 〈Nc〉 ∼ (φc − φ)−η with fitted ηθ = 0.81
and ηT = 0.75, indicating growing cooperative regions
of mobile particles and corresponding to increasing dy-
namic heterogeneity. Similar scaling and ηT have been
observed in a Lennard-Jones system [29], but the mech-
anism is not clear.
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FIGURE 9. The probability distribution functions for the
cluster size of (a) translational and (b) rotational fastest-moving

particles. The lines are the best fits of P(Nc) ∼ N−μ
c . (c) The

fitted exponents μθ for rotational motions and μT for trans-
lational motions. The vertical dotted and dashed lines repre-
sent the glass transitions for rotational and translational mo-
tions respectively. (d) The weighted mean cluster size 〈Nc〉 ∼
(φc −φ)−η where φθc = 0.71 and φT

c = 0.79.
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V. SUMMARY AND DISCUSSION

We conclude that a monolayer of colloidal ellipsoids
with aspect ratio around 6 to 9 exhibit two glass transi-
tions with an intermediate orientational glass. The two
glass transitions in the rotational and translational de-
grees of freedom correspond to inter-domain freezing
and inner-domain freezing respectively. The nematic or-
der within a domain facilitates translational relaxation
while the orientational disorder near domain boundaries
promotes rotational relaxation. Fast translational parti-
cles are responsible for the out-of-cage diffusion, while
fast rotational particles are responsible for domain trans-
formations such as splitting, merging and rotating. All
of the measurements consistently showed that the glass
transitions for ellipsoids with p = 6 confined between
two walls are at φθc = 0.72 for rotational motion and
at φ T

c = 0.79 for translational motion. For longer el-
lipsoids with p = 9 (a = 5.9 μm, b = c = 0.65 μm),
φθc = 0.64± 0.02 and φ T

c = 0.73± 0.02 were observed
in the two-wall confinement. This suggests that the in-
termediate regime between φθc and φ T

c increases with the
aspect ratio. When aspect ratio becomes very large, how-
ever, we can expect that glass transitions gives the way
to nematic transition even though nematic phase cannot
be predicted by MMCT. When aspect ratio is small, el-
lipsoids cannot form psuedo-nematic domains. Conse-
quently the translational and rotational motion should be-
come glassy at the same point without the orientational
glass phase. When aspect ratio is very close to 1, ellip-
soids should pack into crystals as 2D hard disks but with
random orientational order, i.e. rotator phase.
Approaching the glass transitions, the structural re-

laxation time and the mean cluster size for cooperative
motion diverge, a typical feature of a glass transition
[34, 25, 29]. Interestingly, the translational and orienta-
tional cooperative motions are anticorrelated in space,
which has not been predicted in theory or simulation.
A similar two-step glass transition has been observed in
a 3D liquid-crystal system and explained as the freez-
ing of the orientations of the pseudo-nematic domains
and the freezing of the translational motion within do-
mains [35]. Here we directly observed the conjectured
pseudo-nematic domains in ref. [35]. These results at
single-particle resolution shed new light on the formation
of molecular glasses, especially at low dimensionality.
Ellipsoids provide aspect ratio as a tuning parameter

to explore various effects on fragility, structure and dy-
namic heterogeneity. In particular, how does dynamics
heterogeneity couple with static structure is an impor-
tant question, but the effect is often too subtle to be de-
tected. We observed several novel connections between
structure and the dynamic heterogeneity as they becomes
prominent when the aspect ratio p > 2.5. Glass with-
out psuedo-nematic domains at small p and orientational

glass with psuedo-nematic domains at large p exhibit re-
markable opposite behaviors, but also share some com-
mon features. These results will be reported in the future
paper.
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CORE Nř 25265WL.

REFERENCES

1. G. Hunter, and E. Weeks, Rep. Prog. Phys. 75, 066501
(2012).

2. R. Schilling, and T. Scheidsteger, Phys. Rev. E 56,
2932–2949 (1997).

3. M. Letz, R. Schilling, and A. Latz, Phys. Rev. E 62,
5173–5178 (2000).

4. G. Yatsenko, and K. Schweizer, Langmuir 24, 7474–7484
(2008).

5. R. Ni, S. Belli, R. van Roij, and M. Dijkstra, Phys. Rev.
Lett. 105, 088302 (2010).

6. P. Pfleiderer, K. Milinkovic, and T. Schilling, Europhys.
Lett. 84, 16003 (2008).

7. J. A. Cuesta, and D. Frenkel, Phys. Rev. A 42, 2126–2136
(1990).

8. P. Yunker, Z. Zhang, and A. G. Yodh, Phys. Rev. Lett. 104,
15701 (2010).

9. R. C. Kramb, R. Zhang, K. S. Schweizer, and C. F.
Zukoski, Phys. Rev. Lett. 105, 055702 (2010).

10. H. König, R. Hund, K. Zahn, and G. Maret, Eur. Phys. J.
E 18, 287–293 (2005).

11. Z. Zhang, N. Xu, D. T. Chen, P. Yunker, A. M. Alsayed,
K. B. Aptowicz, P. Habdas, A. J. Liu, S. R. Nagel, and
A. G. Yodh, Nature 459, 230–233 (2009).

12. P. Yunker, Z. Zhang, K. B. Aptowicz, and A. G. Yodh,
Phys. Rev. Lett. 103, 115701 (2009).

13. R. Speedy, J. Chem. Phys. 110, 4559 (1999).
14. M. Bayer, J. M. Brader, F. Ebert, M. Fuchs, E. Lange,

G. Maret, R. Schilling, M. Sperl, and J. P. Wittmer, Phys.
Rev. E 76, 011508 (2007).

15. Z. Zheng, F. Wang, and Y. Han, Phys. Rev. Lett. 107,
65702 (2011).

16. C. Ho, A. Keller, J. Odell, and R. Ottewill, Colloid. Polym.
Sci. 271, 469–479 (1993).

17. Y. Han, A. Alsayed, M. Nobili, and A. G. Yodh, Phys.
Rev. E 80, 011403 (2009).

18. Y. Han, A. Alsayed, M. Nobili, J. Zhang, T. Lubensky,
and A. Yodh, Science 314, 626–630 (2006).

19. Z. Zheng, and Y. Han, J. Chem. Phys. 133, 124509 (2010).
20. J. C. Crocker, and D. G. Grier, J. Colloid Interface Sci.

179, 298–310 (1996).
21. T. Kirchhoff, H. Löwen, and R. Klein, Physical Review E

53, 5011 (1996).
22. V. Narayan, N. Menon, and S. Ramaswamy, J. Stat. Mech.

Theor. Exp. p. P01005 (2006).
23. T. Gleim, and W. Kob, Eur. Phys. J. B 13, 83–86 (2000).

160 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

159.226.231.70 On: Thu, 12 Dec 2013 07:53:34



24. T. Franosch, M. Fuchs, W. Götze, M. R. Mayr, and A. P.
Singh, Phys. Rev. E 56, 5659–5674 (1997).

25. W. Gotze, and L. Sjogren, Rep. Prog. Phys. 55, 241
(1992).

26. E. R. Weeks, J. C. Crocker, A. C. Levitt, A. Schofield, and
D. A. Weitz, Science 287, 627 (2000).

27. W. Kegel, et al., Science 287, 290 (2000).
28. C. Angell, Journal of Physics and Chemistry of Solids 49,

863–871 (1988).
29. C. Donati, S. C. Glotzer, P. H. Poole, W. Kob, and S. J.

Plimpton, Phys. Rev. E 60, 3107–3119 (1999).
30. D. Bonn, and W. Kegel, J. Chem. Phys. 118, 2005 (2003).
31. K. Ngai, J. Phys. Chem. B 103, 10684–10694 (1999).
32. K. Ngai, Philos. Mag. 87, 357–370 (2007).
33. D. Chakrabarti, and B. Bagchi, Phys. Rev. Lett. 96,

187801 (2006).
34. W. Götze, and L. Sjögren, Phys. Rev. A 43, 5442–5448

(1991).
35. H. Cang, J. Li, V. Novikov, and M. Fayer, J. Chem. Phys.

119, 10421 (2003).

161 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

159.226.231.70 On: Thu, 12 Dec 2013 07:53:34


