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The question which type of signals can be determinately related to catastrophic rupture in hetero-
geneous brittle media still remains open. Here we report a specific precursor of catastrophic rupture, i.e.
a power-law singularity of responses, based on rock experiments. Our experimental observations show
that the singularity with power exponent — f5, where $=0.51 4+ 0.10 (mean + s.d.), appears ahead of
catastrophic rupture in some rocks, and the singularity does not appear at all for gradual failure. It is
indicated that the power-law singularity can emerge well only close to catastrophic rupture and thus it
could serve as a specific warning for catastrophic rupture. To address the potential forewarning of
imminent catastrophic rupture, a fitting process based on the data before catastrophic rupture was
developed to determine the two unknowns related to the occurrence, catastrophe point Ur and the
power exponent — f3,,. It is demonstrated that the power-law singularity appears only in the vicinity of
catastrophe, and that the power-law singularity does not occur for gradual failure.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Catastrophic events in geological media, such as the recent big
earthquakes in China (M8.0 2008), Chile (M8.8 2010) and Japan
(M9 2011), are a major concern of global public. Unfortunately, no
warnings were made before these big catastrophic events, since
the knowledge on reliable precursors prior to the catastrophic
rupture is still lacking [1-9]. It is well-known that in both Nature
and Science there have been special debates on whether or not
earthquakes can be predicted [1-3] and a NAS Colloquium
entitled “Earthquake prediction: The Scientific Challenge” has been
organized [4]. Additionally, as Main [3] asked, “How far should we
go in investigating the degree of predictability that might exist”?

Since then, to identify which type of signals could be uniquely
related to the occurrence of catastrophic rupture in geological
media has become a key to the problem. It is demonstrated
that the micro-events evolution could exhibit some scaling laws
[2] and the limiting distribution of the size of each episode
(distribution of the number of contributing cracklets) has
an asymptotic power-law distribution [10]. Also, a continuum
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damage mechanics model was introduced to explain temporal
scaling laws in brittle fracture and seismicity and revealed the key
role of occurrence and coalescence of microcracks [11]. It is also
stressed [11-13] that the critical behavior depends on micro-
scopic features, such as the geometry and type of the bonds.

A number of options, such as accelerated responses [6-8,
12,14-22], spinodal-like instability [23] and a first-order [24] or
second-order [25] phase transition, have been proposed to under-
stand the rupture in crust. In particular, a number of researchers
have found that the rupture is usually preceded by a power-law
time-to-failure in the cumulative Benioff strain, (tr—t)™, where t¢
is the time of failure. In particular, Sornette [26] found the mean
field value to be m=1/2 in a critical phase transition, but Rundle
et al. [23] demonstrated a value of m=1/4 in a spinodal transi-
tion. On the other hand, observational studies [8] indicated that
m~ 0.3 for large earthquakes. On the other hand, some recent
results [27,28] argued that whether or not Accelerating Moment
Release is a statistically significant precursor to large earthquakes,
and the existence of Accelerating Moment Release is still
debated [28]. Thus, the key issue is what sort of accelerated
criticality can specifically identify the occurrence of catastrophic
rupture [29-32].

To understand the mechanism of catastrophic rupture like
earthquake and investigate the way to forecast the catastrophe,
numerous rock experiments were conducted by many researchers
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in laboratory [33-37]. It was claimed that these model earth-
quakes should provide a better understanding of the mechanisms
that may lead to large seismic events in the real world [35-36].
Of course, there are some important differences between the
fracture of rock in compression experiments and an earthquake
rupture. It was stated [38] that the straining mechanism in the
laboratory for crystalline rocks occurs by local microcracking, and
natural seismicity occurs by shear on pre-existing faults, so the
quantitative behaviour may be significantly different in detail.
However, there are many similarities between the compression
test in lab and the compressional ones in the Earth. It has long
been recognized that acoustic emissions due to microcracking in
the laboratory could provide a useful analogue for the examina-
tion of earthquake sequences [38-40]. Furthermore, the stored
elastic energy might drive the unstable catastrophic rupture in
rock test in lab and Earth’s crust.

In this paper, we report a possible precursor of catastrophic
rupture, i.e. a power-law singularity of responses, based on rock
experiments. Our experimental observations show that a power-
law singularity, Ry, = du/dU o (1—U/UF)7/3“. where f,=0.51+0.10
(mean +s.d.) (—f, will be called the critical exponent), appears
ahead of catastrophic rupture and that the power-law singularity
does not occur for gradual failure.

2. Description of experiments

In our experiments, two types of rock samples (granite and
marble) with sizes of 16 x 20 x 40 mm> were compressed uni-
axially in the 40-mm direction by using an Instron 1195 testing
machine. The loading mode was displacement control with a
resolution of 0.15 pm, and the crosshead speed was 0.05 mm/min.
The displacement of the crosshead is the governing displacement U
that combines the deformation of the loading apparatus and the
deformed rock sample. Catastrophic rupture occurs at a critical
displacement Ur. The deformation u of the rock sample was
measured by an extensometer with a resolution of 1 um and an
offset load of 1 kN.

In our experiments, the deformation ur of the sample at the
catastrophic rupture point was approximately 0.2 mm, but the
total combined deformation Ur of both the sample and testing
apparatus at the catastrophic rupture point was about 2 mm
(A typical force-displacement curve of a rock test is shown in
Fig. 1) because the stiffness of the testing apparatus was much
lower than that of the sample.

Moreover, because the rupture of all rock specimens in our
experiments appeared to be catastrophic rather than gradual, we
also performed some tests on concrete samples showing gradual
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Fig. 1. A typical force-displacement curve of a rock test.

rupture as a comparison to validate the finding that the power-
law singularity appears specifically ahead of catastrophic rupture.

Each concrete specimen was a rectangular block, 160 mm high
and 60 mm x 60 mm in cross-section. Each specimen was cast in
an accurately machined steel mold. The components of the
concrete were silicate cement (28-day strength of 42.5 MPa), fly
ash, natural river sand and limestone coarse aggregate (5-10 mm
in size). The mixture proportion by weight was as follows:
cement:water:fly ash:fine aggregate:coarse aggregate=1:0.71:
0.43:2.71:3.71. The specimens were cured for 6 days in a fog
room at 20+ 2C and relative humidity (RH) >95%. Then, the
specimens were uniaxially compressed in the vertical direction
(160 mm) with a uniformly increasing displacement.

3. Characteristics of responses

There are many dependent variables, including deformation,
cumulative energy release, and damage, when a sample is loaded
with a controlling displacement U or a force. In our experiments,
we took the displacement U as the governing variable. Obviously,
the response that can be most easily and directly measured in
experiments is the deformation u of the sample. Also, R, may be a
good parameter to use as a measure of incremental slip.
For example it does not have the disadvantage of having to
analyse cumulative (and hence correlated) data such as the
cumulative slip, which can produce biased results [41]. In this
paper, we used the response function R,=du/dU of the sample
deformation u to examine the power-law singularity ahead of
catastrophic rupture. If the testing apparatus was infinitely stiff,
the deformation u of the sample would be equal to the boundary
displacement U, and its response R, would remain constant. As
shown in some theories in rock mechanics, there would be no
catastrophic rupture under absolutely stiff loading. In fact, under
certain conditions, catastrophic rupture may be triggered by
damage localization even in an absolutely stiff testing machine
[42-45]. However, it should be noted that the testing apparatus
used in the experiments is elastic (to simulate most practical
cases) with a stiffness of about 60 kN/mm, which is about 1/10 of
the intact sample stiffness; thus, catastrophic rupture appears
under certain conditions.

The curves of normalized force P/Ppax and response R,=du/dU
versus the normalized governing displacement U/Ur are shown in
Fig. 2a and b shows the evolution curve u/ug versus U/Ur of marble
1as an example, where the subscripts max and F denote the
maximum load and rupture, respectively. It is clear that all
samples showed a sharp increase in the response R,=du/dU
before catastrophic rupture as shown in Fig. 2c.

Now, let us have a close examination of the variations of the
load and sample deformation with increasing displacement U by
means of Figs. 2a and 3. It can be seen that, at a very early stage of
the compression test, the force-displacement curve is slightly
convex upward (see Fig. 2a; also see [46,47]). In this portion up to
about 30% Uf, the deformation-displacement (i.e., u-U curve) is
slightly concave downward (see Fig. 2b), and the responses
R,=du/dU decrease monotonically in the log-log plots of
R,~(1—U|Ug). This stage is related to the elastic closing of
cracks [47]. Later, an almost linear force-displacement relation
and a nearly linear u-U relation follows (see Fig. 2b), and the
response R,=du/dU correspondingly evolves slowly (see Fig. 2c).
Thus, the slope remains at a low value (see the insets of Fig. 3).
Fig. 3 also shows the log-log plots of the response R,=du/dU
versus the reduced displacement (1 — U/Ug) of five specimens. This
region ranges from 30% Ur to 70% Ur (see the insets in Fig. 3).
Then, in the third region, the slope of the force-displacement
curve decreases, and later, the deformation u of the sample
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Fig. 2. Responses observed in experiments. (a) The normalized force (P/Pmax)-
displacement (U/Ug) curves for ten rock samples. (b) The normalized deformation
(u/up)-controlling displacement (U/Ur) curves for Marble 1. (¢) The behavior of
responses R,=du/dU versus controlling displacement (U/Uf) for the ten rock
samples shown in Fig. 2(a).

increases rapidly until catastrophic rupture. This region is com-
prised of two portions: (I) the slope of the deformation-
displacement curve (i.e., the u-U curve) increases progressively
from a low value with increasing boundary displacement U; and
(I) the slope of the deformation-displacement curve (i.e., the u-U
curve) increases rapidly (Fig. 2b) and exhibits nearly linear
behavior in the log-log graph of R,~(1-U/Ug) as shown in
Fig. 3, namely, a power-law singularity. This should be attributed
to the accumulation and coalescence of microcracks and micro-
defects, as pointed out in previous studies [10,40].

One important issue at rupture is that no accumulated quan-
tity can physically tend to infinity at rupture [11,15,38]. Thus, any
critical behavior leading to the divergence of accumulation at

rupture would not be valid. In particular, to fully justify what kind
of critical behavior that will definitely appear ahead of cata-
strophic rupture becomes an urgent task. To do so, in the
following sections, we will more closely examine the evolution
of response R, experimentally.

First, let us focus on how fast the response R,=du/dU grows
with the controlling displacement U ahead of catastrophic rup-
ture. From the linear dependence in the left part of the log-log
plots in Fig. 3, we can see that the increase in the responses ahead
of catastrophic rupture can be described by a power-law singu-
larity,

Ry =du/dUoc (1-U/Ug) . 1)

In particular, it can be seen from Figs. 2 and 3 that the slope
decreases from almost zero at about 70% Ur, and the power
exponent — f3, becomes about —0.5 near catastrophic rupture. To
observe how the slope decreases, the evolving response is zoomed
into the last 5% of U/Uf, as shown in Fig. 4. It should be noted that
the linear fitting in Fig. 3 was made step by step, and the window
size in every fitting varies with increasing U, i.e., every fitting
starts from the same point (70% Ug) but ends at the individual
observation point. Fig. 5 shows the fitting results for five speci-
mens, and the average values of 3, are presented in Fig. 6. It is
obvious that the power-law exponent f3, vary from about zero to
almost 0.5, and the fitting error also decreases progressively when
the deformation evolves to catastrophic rupture. In particular, the
fitting error is very large when the observed points are far from
catastrophic rupture. Thus, the fitting results are dominated by
the rapid increase near catastrophic rupture. It should be men-
tioned that in a true prospective scenario neither of 5, and Uk is
known, and this will significantly degrades the forecasting power.
Bell et al. [48] have looked at this problem, discussed the
appropriate techniques to use in fitting data, and showed that
predictability was very much degraded in true prospective mode
when the failure time is not known. In Section 4, five rock
samples were used to demonstrate this process.

Clearly, the fitting of the critical power-law exponent is valid
only close to catastrophic rupture. Based on the experimental
data (Figs. 2 and 3), we found that a best-fitting of the critical
exponent —f, can be obtained within the last 4% of the
entire deformation range ahead of the catastrophic point Uf.
An unweighted least squares linear regression was performed to
find the exponents. The graphs of the best-fit f§, calculated by a
moving window (for a fixed window with a size of about 4% of the
entire deformation range) and the corresponding standard error
are presented in Fig. 7. It can be seen that the linear fitting errors
are very large when the sample deformation is far from cata-
strophic rupture, but the errors decrease rapidly near catastrophic
rupture. Thus, the linear fitting is effective just ahead of cata-
strophic rupture, i.e., the power-law singularity can only present
well close to catastrophic rupture.

Then, we fitted all experimental data for forty-three marble
and granite samples to the power law in the range of about three
orders of magnitude from U/Ur=0.96 to rupture (i.e.,—4<
log,o(1-U/Uf) < —1.4) and obtained the mean critical exponent
fu=0.51 with standard error +0.10 by taking an unweighted
mean. The mean value is defined as <f,>=

(1/43)[Z7 (Bu);+Z7°(Bu),). and the standard error is calculated by

2
\/(1/43)[223((ﬁu)i_ <Bu>)*+2((Bu);—<Bu>) 1 where i
and j are the number of granite and marble specimens, respectively.
The fluctuations, which were also observed in the experiments
reported by Guarino et al. [13,49], are partly due to the strong
oscillations of the control quantity near brittle rupture. The statistics
for the fitting of all 43 samples are shown in Table 1. It is clear that
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Fig. 3. Experimentally observed evolutions of the response R,. The insets of the figures are zoomed in around the second stage in deformation process which ranges from

30% Ur to 70% Ug.

our experimental results show a power-law singularity that always
appears in advance of catastrophic rupture, with some variations.
It should be noted that the range of 0.96Ur < U < Ur corresponds to a
time interval depending on a loading rate that could be long enough
for practically important cases under engineering conditions when
the interval of the accelerating nucleation is long enough.
To illustrate the fitting in detail, the experimental data and their
fittings for three samples are shown in Fig. 8.

On the other hand, Fig. 9 shows the experiment for concrete
which resulted in with no catastrophic rupture. Although there is
a part of the curve exhibiting a rapidly increasing response
(as shown in Fig. 9b), it should be noted that the increasing rate
of R, will decrease afterward, and the slope of the log-log curve of
Ry~1-U/Uw,),.. Will tend to zero at the maximum response
point, as shown in Fig. 9a and b. To further clarify the evolution
behavior of exponent, the fitting of the slopes of the log(R,,) versus

log(1—U/Ug,,,) curve and their standard errors for concrete were
performed with a moving window of fixed size 4% Uk, (as shown
in Fig. 9c). It is obvious that the response functions do not present
any critical power-law singularity ahead of the maximum
response point, but they tend to zero near the maximum
response point.

4. Short-term forewarning of catastrophic rupture

To address the potential forewarning of imminent catastrophic
rupture, a fitting process for the data before catastrophic rupture
was developed to look for the unknown parameters A, Ur and f,
yielding the best-fitting R, = A(Ur—U) . Five rock samples were
used to demonstrate this process. In every fitting, the data ranged
from 96% of U, to U, where U, is the boundary displacement,



S.-W. Hao et al. / International Journal of Rock Mechanics & Mining Sciences 60 (2013) 253-262

beyond which the data were assumed not to be available.
To justify the forecast possibility of the fitting process, a normal-
ized fitting function R, = A" (Uﬁ—U/Up> b was used, where U% is
the boundary displacement at the predicted catastrophe point
normalized by the true value of the catastrophe point Uf.

The Levenberg-Marquardt algorithm (LMA) was adopted to find
the optimal values of the parameters A", UZ and f3,, and the initial
values for the parameters were assigned as A’=1.0, UF=U,/Ur and
S.=0.5. Two fitting results for granite-21 are shown in Fig. 10. It can
be seen that when U,/Ur=0.99 rather than 1, the fitted results are
still not good because the error in f3, remains very large (i.e., the
power law does not work) as shown in Fig. 10a. However, when
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U,/Ur=1, the fitting error of f5, becomes much smaller, i.e., the
power law presents well, and the predicted value of U is close to 1,
as shown in Fig. 10b. Such results imply that the power-law
singularity appears only in the vicinity of catastrophe, and a short-
term forewarning of catastrophe might be possible.

To further validate the forewarning of catastrophic rupture in
terms of the present method, the fitted results for five samples
corresponding to different U, are shown in Fig. 11. When the
boundary displacement U, approaches the measured catastrophic
rupture Ug, the power law presents well, and the predictions of
catastrophic rupture are also good, as U? tends to 1 as shown in
Fig. 11b. Therefore, when the boundary of the available data U,
approaches Ug, the prediction improves. It can be seen that the
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experimental implies that the present approach may work well
for short-term forewarning of catastrophic rupture. For practical
applications, a more effective algorithm is still needed.

5. Discussions and conclusions

(1) Catastrophic rupture and its physical essence. Catastrophic

rupture can be described as the critical state, where an
infinitesimal increment of the external controlling variable
will result in a finite increment of the accumulation but an
infinite increase in its response. In essence, the evolution of
the macroscopic response depends on the micro-physical
properties and microdamage process of the sample, which
induces the sample-specificity of catastrophic rupture [50,51].
Generally, no testing machine is completely stiff. Moreover, in
testing heterogeneous materials, the occurrence of cata-
strophic rupture will depend not only on the stiffness of the
loading machine but also on the damage evolution and elastic
unloading in the heterogeneous specimen. The greater the

elastic unloading energy release coming from both the elastic
machine and the elastic unloading part of the sample, the
more prone the sample is to catastrophic rupture, and vice
versa. The catastrophic rupture (very localized) in granite and
gradual rupture (very diffuse damage) in concrete in our tests
are two typical cases.

The cross-check of experimental observations in rocks
demonstrates that the observed power-law singularity near
catastrophic rupture should be attributed to the interaction
between the heterogeneities at meso-scales. This deepens the
previous physical understanding of the transition from accu-
mulation and coalescence of microcracks and microdefects to
catastrophic rupture [11,40].

In spite of the complicated features of catastrophic rupture,
the experimental results demonstrate a common critical
power-law singularity of the macroscopic response ahead of
catastrophic rupture.

(2) Singular response but finite cumulative quantity. When

approaching catastrophic rupture, the singular power law
appears in the response, while the corresponding cumulative
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Table 1
The measured Values of 3, in rock experiments.
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Material of rock  No. of specimen  Fitted values of f,

and its standard error

Material of rock

No. of specimen  Fitted values of f,

and its standard error

Granite G-1 0.53 +0.05
G-2 0.43 +0.04
G-3 0.46 + 0.05
G-4 0.50 + 0.04
G-5 0.37 £ 0.06
G-6 0.40 + 0.06
G-7 0.41 + 0.06
G-8 0.43 +0.05
G-9 0.71£0.12
G-10 0.53 +£0.05
G-11 0.45 + 0.05
G-12 0.64 +0.08
G-13 0.55+0.09
G-14 0.62 + 0.06
G-15 0.72 +£0.05
G-16 0.41 £ 0.04
G-17 0.59 +0.03
G-18 0.38 +0.02
G-19 0.62 +0.03
G-20 0.65+0.03
G-21 0.59 +0.02
G-22 0.50+0.03
G-23 0.49 + 0.02

Mean value of f, and its standard error: 0.51 + 0.10

Marble

M-1 0.61+0.05
M-2 0.63 +0.04
M-3 0.52 +0.03
M-4 0.38 +0.03
M-5 0.47 +0.03
M-6 0.45+0.04
M-7 0.52 +0.05
M-8 0.52+0.03
M-9 0.69 + 0.05
M-10 0.72 £ 0.06
M-11 0.45+0.03
M-12 0.42 +0.02
M-13 0.46 + 0.02
M-14 0.50+0.03
M-15 0.44 +0.03
M-16 0.46 + 0.03
M-17 0.50 +0.03
M-18 0.42 +0.03
M-19 0.54 +0.03
M-20 0.48 +0.03
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Fig. 8. The log-log data (symbols) and fittings (solid lines) of the response
Ry=du/dU versus the reduced displacement for three samples.

(3

—

quantity should remain finite. As noted by Ben-Zion and
Lyakhovsky [15], any power law leading to an unrealistic
singular cumulative energy would be physically unreasonable
[38].

Governing variable. In general, provided a proper governing
variable is identified, a power-law singularity of responses
appearing in advance of catastrophic rupture can be unveiled.
However, for forecasting practice, it is more helpful to take
the time t as the independent variable, as in the well-known
power-law time-to-rupture of cumulative Benioff strain
release (1—t/tx)™. Therefore, a transformation from the
governing variable into time ¢ is needed in practice. However,
it should be pointed out that, for the time being, the present
observed power-law singularity (about —0.5) cannot be
simply compared to the power laws for the time to rupture
in earthquakes, as (t;—t)™, with m close to 0.3. Apart from the
huge differences between crust and rock samples in the
laboratory, the reasons are at least two-fold. First, the inde-
pendent variable used in the power law (t;—t)™ is time ¢,
whereas the observed power law singularity (—0.5) must be
referred to a controlling variable, such as the cross-head

(4)

displacement U in laboratory tests. Second, the dependent
variable in earthquakes is the Benioff strain, whereas in our
laboratory tests it is the deformation of the sample.
The interval of acceleration has been shown to decrease
systematically with respect to decreasing strain rate [52],
and thus the proportion of time for rapidly accelerating
nucleation may be much smaller in the Earth. Amoruso and
Crescentini [53] reported that even seconds before the 2009
L’Aquila earthquake in Italy, “strain is stable at the 10-12
level and pre-rupture nucleation slip in the hypocentral
region is constrained to have a moment less than
2 x 1012 Nm, i.e. 0.00005% of the main shock seismic
moment”. So the nucleation processes observed here may
be restricted in the Earth to a very small patch at the
nucleation depth (~10 km in this case) that in practice may
be undetectable. Thus, to correlate the observed power
singularity in the laboratory to real earthquakes, much more
work is badly needed, for instance, to explore the similarities
between experimental tests and seismic cycles.

Common power-law singularity but sample-specific threshold.
The reported power-law singularity A(1—U/Ur)~# includes two
opposite but interrelated features of catastrophic rupture: the
power-law singularity always appears ahead of catastrophic
rupture but the threshold Ur shows obvious sample-specificity.
The reason for this is that the transition from gradual accumula-
tion of damage to catastrophic rupture follows the same mode
(second-order asymptotic approximation appears to be valid in
the vicinity of catastrophic rupture) but the transition itself
(the threshold) strongly depends on the critical coalescence of
damage events in a specific sample.

In our experiments, the scatter of the responses appearing in the
vicinity of rupture may result mainly from two facts. The first is
that the testing machine cannot control loading well when
approaching catastrophic rupture, i.e., the governing displace-
ment U cannot be a smooth variable in practice, even if the
loading is quasi-static. The second is more inherent: the power-
law singularity usually describes the characteristics of quasi-
continuous evolution, however, the evolution appears as a
time-series of small (much smaller than the catastrophic event)
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discrete and intermittent events. Additionally, the value A in
response is sensitively dependent on a number of variables such
as loading modes, the stiffness ratio, localized damage and the

details of damage pattern.

(5) Loading modes. It is also important to note that Guarino et al.
[13,49] reported a power-law increase in the energy associated

with acoustic emissions prior to rupture in fiberboard panels
under rapid loading, and Turcotte and Shcherbakov [11] pre-
sented a discussion of the temporal scaling laws regarding time

delay based on specifying the kinetic equation for damage

evolution. However, the reported power-law singularity in this
paper is obtained when the rock specimens are subjected to
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monotonically quasi-static loading. Whether the results pre-
sented in this paper could be applied to the cases under creep
or rapid loading should be further investigated.

In summary, this paper reports a power-law singularity for
the responses prior to catastrophic rupture based on rock
experiments. Moreover, gradual rupture does not present such
a singularity, though its responses can increase before rupture.
Therefore, this power-law singularity will have significant poten-
tial applications in forecasting failure in rock and concrete under
engineering conditions.
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