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Heat transfer in blunt noses of hypersonic vehicles with coolant inside can be approximately considered as heat
conduction in hollow semi-sphere with aerodynamic heating on the outer boundary and enhanced cooling on
the inner boundary. Theoretical investigations of temperature field in hollow semi-spheres were carried out
by solving the two-dimensional axsymmetric conduction equation, which could be transformed into Legendre
equation when the separation of variables is applied. However, for such a semi-sphere flying at hypersonic
speed, the distribution of heat transfer rates as an outer boundary condition is so complex that the integration
in the Legendre solution is nearly impossible to be completed. In this paper, a 4th order Legendre polynomial,
derived by the method of undetermined coefficients, was adopted to approach the local similarity solution of
hypersonic aerodynamic heating and simplify the integration process, by which an approximate solution could
be set up for the temperature field. The approximate solution is also validated by comparing the analytical results
with data fromnumerical simulations, inwhich the conduction equation is solvedwith the improved Richardson
scheme. Both analytical and numerical results are compared to each other and match quite well.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

For hypersonic vehicles, serious aerodynamic heating is a great
barrier. Both heat transfer rates at local positions and their integration
over surface and flight time are considered to be governing factors for
the design of thermal protection systems (TPS) [1]. Usually, it is diffi-
cult for researchers to get a clear figure on such a physical phenome-
non due to the complexity of aerodynamic heating by hypersonic
flow and conduction inside the structure. During the last two decades,
numerical simulations have led to some better understanding of phys-
ical mechanisms and applications in engineering, such as the coupling
of aerodynamic heating and structural conduction, enhanced convec-
tive cooling et al. However, as effective ways for scientific researches,
it is usually not easy for numerical simulations or experiments to show
the regularity between parameters, such as temperature field, flow
field, dimension, and heat transfer rates et al. In the latest decade,
plenty of investigations were dedicated to regenerative cooling of
hypersonic vehicles, and the most typical examples are thermal pro-
tection systems for propulsion systems, such as scramjets [2]. The
aerodynamic heating or heat transfer in engines due to combustion
will result in high heat flux into structure. If the structural tempera-
turewent too high, the performance ofmaterial, structure, and surface
coating, such as oxidation resistance, strength, cooling efficiency et al.,
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will get significant discounts, which may result in serious damage to
the vehicles. Usually, for regenerative cooling, fuel is used as coolant
to absorb the heat and lower the temperature of structure in
hypersonic air-breathing vehicles. During the cooling process, fuel
gets preheated and may lead to higher combustion efficiency due to
phase changing and fuel cracking happening during the fuel heating.

In this paper, the model was set as a hollow semi-sphere flying at
hypersonic speed with convective cooling inside, as shown in Fig. 1(a).
Thereby, the heat conduction in the semi-sphere is the main subject in
the following chapters. To simplify the investigations, the high temper-
ature environment generated by the hypersonic coming flow is replaced
by an aerodynamic heating distribution on the outer boundary, which is
an analytical form governed by the local similarity solution [3]. By as-
suming the inner convective cooling inside with efficiency high enough,
the temperature of the inner wall is much lower than the critical value,
whichmay result in discount of material and structural strength, oxida-
tion resistance, or ablation of surface coating. Therefore, the governing
equation and idealmodel can be shown as Eq. (1),which is also depicted
in Fig. 1(b)
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According to the hypothesis made before, the boundary conditions
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Nomenclature

An, Bn coefficients of series or polynomial
f(θ) normalized heat rate on outer boundary
g(θ) approximate normalized heat rate on outer boundary
M, M∞ Mach number of hypersonic incoming flow
Pn first class Legendre function
Qn second class Legendre function
qw aerodynamic heat rate distribution on outer boundary
r, θ axis of spherical coordinate system
r1,r2 inner and outer radius of hollow semi-sphere
T temperature field of hollow semi-sphere
Tn series form of T
Tw temperature distribution on inner boundary
x,y axis of Cartesian coordinate system
n natural number
i No. of the grid point for the finite difference method

Greek letters
Δt time step
Δx space step
Г Г function
α ratio between r2 and r1
β coefficient of parabolic equation
ε circumferential motion factor
ξ, η axis of computational space coordinate system
γ Euler number
γ∞ specific heat ratio of incoming flow
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Since the solution of Eq. (1) will be in form of the Legendre func-
tion [4], and the integration process is very difficult to operate, this
paper will find out an approximate analytical solution by using a 4th
order Legendre polynomial to approach the local similarity solution
for aerodynamic heating in hypersonic flight, which makes the
Fig. 1. Physical phenomenon and modeling: (a) schematic of blunt nose of hypersonic veh
integration process in the original analytical solution possible. Further,
the governing equations with boundary conditions as depicted in
Eqs. (2) to (4) was numerically solved by a finite difference method
with the improved Richardson scheme. Both analytical and numerical
solutions match with each other, so the approximate analytical solu-
tion can be considered as demonstrated and validated. Details and
further discussions about the applications of such a solution will be
represented in the following chapters.

2. Theoretical solution

The solution of Eqs. (1) to (4) is not very complex, which might be
found in some textbooks or reference books. For the convenience of
understanding and checking such a paper, a few key procedure of the
derivation process will be included in the following. With separation
of variables, the temperature field can be defined as T(r,θ)=R(r)Ф(θ),
and Eq. (1) could be transformed in to a typical eigenvalue problem
with two equations shown as follows
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where λ=n(n+1), and n=0,1,2…
Eqs. (5-a) and (5-b) can be solved individually with linear super-

position for the final solution. If the transformations as τ=cosθ and
φ(τ)=Φ(θ) were applied and substituted into Eq. (5-a), and the fol-
lowing equation could be obtained

d
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þ n nþ 1ð Þφ ¼ 0 ð6Þ

This equation is classic Legendre equation, and the generalized so-
lution in the neighborhood of τ=1(θ=0) can be stated as

φ τð Þ ¼ C1Pn τð Þ þ C2Qn τð Þ ð7Þ

where Pn(τ) and Qn(τ) represent the first and second class of Legen-
dre polynomials, respectively. The detailed expressions are listed as
following
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icles with coolant inside; (b) schematic of computational domain for heat conduction.
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In Eqs. (8-a) and (8-b), γ denotes the Euler number while ψ(n=1)
stands for the log scaled differential quotient of the Г function. Since
φ(τ) has a limitation at the position of τ=0(θ=π/2), the coefficient
for Qn(τ) can be derived as C2=0. Therefore, the solution of Φ(θ)
can be shown in form of series, like

Φn θð Þ ¼ Pn cosθð Þ ð9Þ

The differential calculus of Φn(θ) in Eq. (9) over θ can be obtained
by

dΦn

dθ
¼ dPn cosθð Þ

dθ
¼ −P′

n cos θð Þ sinθ ð10Þ

Hence, the boundary conditions stated in Eq. (2) can be written as

dΦ
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���� ð11� aÞ

and

dΦ
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¼ 0
���� ð11� bÞ

For Eq. (11-a), sinθ becomes 0 when θ=0, which means the
boundary condition at position of θ=0 can be satisfied permanently.
In contrast, the Legendre function cannot be analytic at the location
of τ=0(θ=π/2) due to the shortage itself. Hence, the constraint of
the boundary condition given in Eq. (11-b) is neglected here momen-
tarily for convenience of further discussions.

With transformation applied, the generalized solution of Eq. (5-b)
can be got

Rn rð Þ ¼ Anr
n þ Bnr

− nþ1ð Þ ð12Þ

Combining Eqs. (9) and (12), it will get the solution of the temper-
ature field in the form of series can be retrieved as shown in Eq. (13).

Tn r; θð Þ ¼ Rn rð ÞΦ θð Þ ¼ Anr
n þ Bnr

− nþ1ð Þh i
Pn cosθð Þ ð13Þ

where n equals 0, 1, 2…
Since the conduction Eq. (1) along with the boundary conditions

(Eqs. (2) to (4)) is linear, the superposition method can be applied
to construct homogeneous boundary conditions for the determination
of the coefficients in Eq. (13). Then the solutions under homogeneous
boundary conditions can be superposed with each other to obtain a
solution of the entire temperature field. In doing so, the boundary con-
ditions can be constructed as follows
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Substituting the generalized solution of Eq. (13) into Eq. (14-a),
the following coefficients can be obtained.
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Similarly, substituting Eq. (13) into Eq. (14-b) yields to
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With the coefficients determined, the series solution of the tem-
perature field can be stated as
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where α=r2/r1 denotes the ratio between outer and inner radii. How-
ever, as mentioned before, the Legendre function Pn(cosθ) cannot be
analytic when θ equals to π/2, and the boundary constraint was
neglected momentarily to enable solution. Therefore, the solution of
temperature field in Eq. (17) might differ from the physical solution
or reality, especially nearby the location of θ=π/2. Hence, the com-
parison between the analytical and numerical solutions will be
handled in the next chapter.

3. Numerical simulation

For convenience, the two-dimensional axsymmetric unsteady
heat conduction equation is applied to simulate the process. The
non-dimensionalized form in the Cartesian coordinate system can
be shown as

∂T
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y
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With the Jacobian transformation in curvilinear coordinate system,
Eq. (19) can be transformed into
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where

C1 ¼ ξ2x þ ξ2y
C2 ¼ η2x þ η2y
C3 ¼ 2 ξxηx þ ξyηy

� �
C4 ¼ ξxx þ ξyy þ ξy=y
C5 ¼ ηxx þ ηyy þ ηy=y

8>>>>>>><
>>>>>>>:

Heat conduction equations are typical parabolic equations, and
plenty of schemes can be chosen for discrete such as FTCS, BTCS,
Crank–Nicolson, improved Richardson scheme and so on. Most of
the schemes are unconditionally stable, and the authors considered
that the improved Richardson scheme is one of the most convenient
and simplest schemes for numerical solutions of high efficiency.

Richardson constructed the first finite difference approach for the
parabolic problem ut=βuxx in 1910, which is named as Richardson
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scheme [5]. Richardson applied the central differencemethod for both
temporal and spatial discretization, which can be written as

unþ1
i −un−1

i

2Δt
¼ β

un
iþ1−2un

i þ un
i−1

Δx2
ð20Þ

The schemehas a 2ndorder of accuracy for both time and space. How-
ever, O'Brien et al. [6] demonstrated that, the Richardson scheme could
not satisfy the von Neumann Stability Criteria in 1951. Du Fort and
Frankel [7] successfully made improvement to the original Richardson
scheme by replacing ui

n in the diffusion term with the average of uin−1

and ui
n+1. Furthermore, assuming σ=β△t/△x2, the difference scheme

can be rewritten as

unþ1
i ¼ 2σ

1þ 2σ
un
iþ1 þ un

i−1
	 
þ 1−2σ

1þ 2σ
un−1
i ð21Þ

This equation is named as improved Richardson scheme or Du
Fort-Frankel scheme, with 2nd order accuracy of both time and space.
Although there are three time levels appearing as (n−1), n and
(n+1), it is still considered to be an explicit method due to simple con-
struction shown in Eq. (21). Stability analysis demonstrates that this
scheme is unconditionally stable, which is of great significance for the
numerical treatment. The numerical algorithm is validated by solving
the heat conduction in a 90° sector annulus and comparing it with the
theoretical solution in Eq. (17), and the boundary conditions

Tjr¼r1
¼ 0;

∂T
∂r jr¼r2

¼ π
2
−θ

∂T
∂r jθ¼0

¼ ∂T
∂r jθ¼π=2

¼ 0
:

8>><
>>: ð22Þ

Fig. 2(a) shows the temperature distribution on the outer boundary
wall calculated by numerical simulation and theoretical formula, re-
spectively. The numerical and theoretical solutions match with each
other and indicate the credibility of the numerical algorithm. Fig. 2(b)
displays the residual error between adjacent time steps and shows
that a steady solution can be achieved by the numerical code with a
few time steps.

With such a numerical algorithm, the heat conduction in the hol-
low semi-sphere can be simulated easily and comparedwith the series
solution in Eq. (17). As mentioned at the end of the last chapter, the
Legendre function could not be analytic at θ=π/2, and the solution
may differ from reality at this location. Fig. 3 shows the comparison
Fig. 2. Validation of numerical algorithm: (a) comparison of outer boundary temperature distr
the convergence of numerical solution.
between the analytical and numerical solutions, for the range of θ
from 0 two 0.4π. Here, the analytical and numerical solutions match
with each other while the deflection is much more obvious between
them at the range from 0.4π to π/2. It is up to the relaxation of the con-
straint by boundary condition in Eq. (11-b) due to the shortage of the
Legendre function itself. However, heat transfer nearby the stagnation
region (θ=0) is more important than that in other positions and calls
for most of our attention. Hence, this analytic solution can still be used
for further analysis and might satisfying the requirement of actual
engineering applications. In the last comparison between analytical
and numerical solutions, the heat transfer at outer wall is represented
by qw(θ)=π/2−θ, which is very easy for the integration in the series
solution of Eq. (17) andmuch simpler than the hypersonic aerodynamic
heating distribution. Therefore, the practicability of the analytical solu-
tion greatly depends on the difficulty of integration process. To simplify
the integration, the hypersonic aerodynamic heating distribution
governed by the local similarity solution should be applied with some
special treatment.

4. Approximation of hypersonic local similarity solution

With the classic local similarity solution, the distribution of nor-
malized heat transfer rates over the surface of spheres flying at super-
sonic speed [3] can be calculated as follows

qw θð Þ ¼ F1 M∞; θð Þ 1þ 0:096
ffiffiffi
ε

p
1:068

� �
1−gw
1−gws

ð23Þ

where ε stands for circumferential motion factor, and gw and gws

stands for wall enthalpy and stagnation wall enthalpy, respectively.
In addition, the expression F1 in Eq. (23) can be given as

F1 M∞; θð Þ ¼ 2θ sinθ 1− 1
γ∞M
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2
þ 1− cos4θ

8

� �
þ 4
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2
∞

θ2−θ sin2θþ 1− cos2θ
2

� �

ð25Þ

where γ∞ and M∞ represent specific heat ratio and Mach number of
coming flow.
ibution between numerical and theoretical solution; (b) residual error ||Tn+1−Tn|| shows

image of Fig.�2


Fig. 3. Comparisonof outerwall temperature distributionbetweenanalytical andnumerical
solutions with r1=0.4, r2=0.5, Tw(θ)=0 and qw(θ)=π/2−θ.

Fig. 4. Comparison between similar solution f(θ) and its fitting approximate solution g(θ).
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At hypersonic speeds, the Mach number of the flow is usually
higher than 5, which could be written as M∞≥5. Therefore, Eqs. (24)
and (25) can be approximately simplified as

F1 M∞; θð Þ≈ 2θ sin θ cos2θ θ2− θ sin 4θ
2

þ 1− cos 4θ
8

� �−1
2 ð26Þ

While circumferential motion factor and the enthalpy of wall and
stagnation affect the amplitude of the absolute value, the function
F1(M∞, θ) plays a dominant role in governing the relative distribution
of the aerodynamic heating on the outer wall. Hence, the distribution
of normalized heat transfer rates for semi-spheres flying at hypersonic
speed, where qw equals 1 at the stagnation region, can be expressed as

f θð Þ ¼ 2θ sinθ cos2θ θ2− θ sin4θ
2

þ 1− cos4θ
8

� �−1
2 ð27Þ

Eq. (27) needs to be substituted into Eq. (17) so that the analytical
solution could be completed. However, if it was substituted into
∫
0

π
qw(φ)Pn(cosφ)sinφdφ directly, the integrationwill be very complex

and nearly impossible as the subscript n keeps on increasing and ap-
proaches infinite.With observation of such an integration, we can eas-
ily get

∫π

0
qw φð ÞPn cosφð Þ sinφdφ ¼ −∫π

0
qw φð ÞPn cosφð Þd cosφ ð28Þ

If qw(φ) could be replaced by a polynomial of cosφ, the integration
processwill be simple enough to handle. Since the coefficient calculated
by the integration may be 0 due to the orthogonality of Pn(cosφ),
Eq. (17) can be simplified to a polynomial expression. The order of the
polynomial expression will be equal to that of the polynomial expres-
sion of qw(φ). Hence, a 4th order polynomial of cosθ defined as g(θ) is
applied to approach the f(θ), and g(θ) can be written as

g θð Þ ¼ a1 cos θþ a2 cos
2θþ a3 cos

3θþ a4 cos
4θ ð29Þ

with the coefficients a1, a2, a3 and a4 calculated by the method of
undetermined coefficients. Since g(θ) coincides with f(θ) permanently
when θ=π/2, four other locations are chosen as reference points for
the approximation as stated below

g 0ð Þ ¼ f 0ð Þ ¼ 1
g π=4ð Þ ¼ f π=4ð Þ
g π=3ð Þ ¼ f π=3ð Þ
g 2π=5ð Þ ¼ f 2π=5ð Þ

8>><
>>: ð30Þ
With the system of linear algebraic equations solved, the following
equation is obtained

g θð Þ ¼ 0:0207 cos θþ 1:8855 cos2θ−1:2973 cos3θþ 0:3911 cos4θ ð31Þ

As an approximation by fitting with polynomial expressions, g(θ)
approaches to f(θ) and matches with it well, as shown in Fig. 4. There-
fore, the distribution of hypersonic aerodynamic heating governed by
the local similarity solution can be totally replaced by such an approx-
imate solution, which will lower the difficulty in completing the inte-
gration in Eq. (17).

Since both of the series solutions in Eq. (17) and g(θ) are polynomi-
al expressions of cosθ and g(θ) is just of the 4th order, g(θ) can also be
expanded in the form of the Legendre polynomials no more than the
4th order, which will lead to further simplification for the series solu-
tion and make the process more convenient. The expansion can be
shown as follows

g θð Þ ¼
X4
n¼0

AnPn cos θð Þ ð32Þ

with

P0 cos θð Þ ¼ 1
P1 cos θð Þ ¼ cos θ

P2 cos θð Þ ¼ 1
2

3 cos2θ−1
� �

P3 cos θð Þ ¼ 1
2

5 cos3θ−3 cos θ
� �

P4 cos θð Þ ¼ 1
8

35 cos4θ−30 cos2θþ 3
� �

8>>>>>>>>><
>>>>>>>>>:

The coefficients An in Eq. (32) can be determined by comparing
with the coefficients in Eq. (31), which results into

A0 ¼ 0:70762
A1 ¼ −0:75768
A2 ¼ 1:48049
A3 ¼ −0:51892
A4 ¼ 0:089394

8>>>><
>>>>:

ð33Þ

Based on this, the analytical series solution in Eq. (17) is just of the
4th order, and replaces the determination of coefficients by the integra-
tion ∫

0

π
qw(φ)Pn(cos φ)sin φdφ with some constants shown in Eq. (33).

The analytical solution can be approached by the assumptions and

image of Fig.�3
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Fig. 5. The temperature distribution on the outer boundary calculated by both analytical
and numerical solution with r1=0.4, r2=0.5, Tw(θ)=0 and qw(θ)=g(θ).

Fig. 6. Wall temperature at outer stagnation changes with increase of α when r1=1,
Tw(θ)=0 and qw(θ)=g(θ).
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modifications mentioned above, and the approximate solution for the
temperature field can be shown as

T r; θð Þ ¼
X4
n¼0

An
2nþ 1

2
r
r1

� �n

− r1
r

� �nþ1
� �

Pn cos θð Þ r2α
−n

nþ nþ 1ð Þα− 2nþ1ð Þ

ð34Þ

5. Discussions

The approximate analytic solution of heat conduction in hollow
semi-sphere flying at hypersonic speed with inner active cooling has
been set up with 4th order Legendre polynomial approaches the local
similarity solution of hypersonic aerodynamic heating. In order to vali-
date the approximate solution and perform further analysis of the heat
conduction, the distribution of temperature on the outer boundary and
heat transfer rate on the inner boundary, and comparison on these be-
tween analytical and numerical solutions will be shown as below.

5.1. Temperature on outer boundary

For hypersonic flight, the structure should afford the serious aero-
dynamic heating loads for the requirement of safety. The structural
temperature of the structure should be lower than a critical value,
which may result in damages to the performance of material, struc-
ture, and surface coating etc. Therefore, the temperature distribution
on the outer boundary needs to be paid more attention. The temper-
ature distribution on the outer wall can be given as

T

�����
r¼r2

¼
X4
n¼0

An
2nþ 1

2
α2nþ1−1

n α2nþ1 þ 1
	 
þ 1

r2Pn cos θð Þ ð35Þ

Eq. (35) indicates that the outer wall temperature is proportional to
the radius r2. Hence, the relationship between temperature and dimen-
sion of the structure is absolutely linear. However, the aerodynamic
heating is not independent on dimension of the structure, which could
be generalized as that the stagnation heat transfer rate is proportional
to r2−1/2. Therefore, the temperature on the outerwall boundary andeffect
of dimension need further discussions,which the authorswould not do in
this paper. The comparison between analytical and numerical results of
the outer wall temperature can be shown in Fig. 5, with the r1=0.4,
r2=0.5, and α=1.25. The analytical solution matches well with the
numerical simulation result and the deflection nearby θ=π/2 is not so
significant, which is totally different from that in Fig. 3. Thus, the idea
and method have been done in this paper to get another demonstration.

Usually, the temperature at the stagnation region is considered to be
an important parameter for the design of hypersonic vehicles. By
Eq. (35), we can set θ to be zero standing for the stagnation. With
Pn(1)=1, thewall temperature at the outer stagnation point can be de-
rived as

T

�����
r¼r2 ;θ¼0

¼
X4
n¼0

An
2nþ 1

2
α2nþ1−1

n α2nþ1 þ 1
	 
þ 1

r2 ð36Þ

Wall stagnation temperature of stagnation can be considered as a
special case of temperature distribution on the outer boundary. We
set the dimension of the inner radius r1=1, and show the tendency
of temperature change with r2=αr1. The analytical and numerical
results match with each other, which should be a demonstration of
the dimension effect, as shown in Fig. 6.

5.2. Heat transfer rate on inner boundary

As a part of thermal protection systems, active cooling systems as-
sumed before call us for more investigations on the heat exchange on
the inner boundary. Based on the discussions in the foregoing chap-
ters, the heat transfer rate on the inner boundary, defined as the par-
tial differential of temperature over radius, can be derived as follows

∂T
∂r

�����
r¼r1

¼
X4
n¼1

An
2nþ 1ð Þ2

2
αnþ2

n α2nþ1 þ 1
	 
þ 1

Pn cos θð Þ ð37Þ

With further observation of Eq. (37), it is easy to find out that the
heat transfer rate is dependent on the relative dimension α=r2/r1
rather than the absolute dimension of the hollow semi-sphere. It is
also necessary to figure out the heat transfer rate at the inner stagna-
tion region, which can be defined as

∂T
∂r

�����
r¼r1 ;θ¼0

¼
X4
n¼1

An
2nþ 1ð Þ2

2
αnþ2

n α2nþ1 þ 1
	 
þ 1

ð38Þ

The comparison of heat transfer rate at inner stagnation region be-
tween analytical and numerical results is shown in Fig. 7, where both
of themmatch well with each other. With an increase of α from 1.0 to
1.5, qws on the inner boundary increases to about 1.75. However, for
active cooling system, the structure should not be too thick, which
means α might not be higher than 1.2 and the corresponding qws on
the inner boundary is no more than 1.4. Therefore, it can be used to
analyze cases like this.
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Fig. 7. Heat transfer rate at inner stagnation changes with increase of α when r1=1,
Tw(θ)=0, qw(θ)=g(θ).
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6. Conclusions

This paper has set up an approximate analytic solution of heat con-
duction in hollow semi-spheres flying at hypersonic speed. The heat
conduction equation was solved by separation of variables and appli-
cation of the Legendre function, and the series solution is of course in
the form of the Legendre function. However, the integration in the
analytical solution can be hardly performed due to the complexity of
the local similarity solution of hypersonic aerodynamic heating.
With the observation of the analytical solution, a 4th order polynomial
of cosine function is applied to approach the local similarity solution,
which could be equivalently transformed into a 4th order series of
the Legendre function. Hereby, the approximation and transformation
make the integration in the analytical solution possible and easy, and
lead to an approximate analytical solution. With further validation by
numerical simulations, the approximate analytical solution was ob-
served tomatchwell with the numerical results and accordwith phys-
ical laws and phenomena. Furthermore, this paper primarily discussed
thewall temperature and heat transfer rate on outer and inner bound-
aries respectively, which could be considered as applications of the ap-
proximate analytical solution. In actual active systems, the boundary
conditions are very difficult to set up and modeled, especially the
inner boundary conditions. This paper just made some direct assump-
tion, a general form of temperature distribution on the inner wall, to
make the problem possible to be solved. However, the exact expres-
sion of the temperature distribution needs more discussion and vali-
dation case by case. They need more investigations for hypersonic
applications in the coming future.
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