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Abstract In many situations, the equations of state (EOS) found in the literature
have only a limited range of validity. Besides, different types of EOS are required
for different fluids of compressible multi-fluid flows. These inspire us to investi-
gate compressible multi-fluid flows with different types of equation of state (EOS).
In this paper, the oscillation-free adaptive method for compressible two-fluid flows
with different types of equation of state (EOS) is proposed. By using a general form
of EOS instead of solving the non-linear equation, the pressure of the mixture can
be analytically calculated for compressible multi-fluid flows with different types of
EOS. It is proved that it preserves the oscillation-free property across the interface.
To capture the interface as fine as sharp interface, the quadrilateral-cell based adap-
tive mesh is employed. In this adaptive method, the cells with different levels are
stored in different lists. This avoids the recursive calculation of solution of mother
(non-leaf) cells. Moreover, the edges are separated stored into two lists for leaf edges
and non-leaf edges respectively. Hence, there is no need to handle the handing nodes
and no special treatment at the interface between the finer cell and the coarse cell.
Thus, high efficiency is obtained due to these features. To examine its performance
in solving the various compressible two-fluid flow problems with two different types
of EOS, the interface translation and bubble shock interaction case with different
types of EOS are employed. The results show that it can adaptively and accurately
solve these problems and especially preserve the oscillation-free property of pres-
sure and velocity across the material interface.
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1 Introduction

In the past years, many works have been proposed for the modeling of compressible
two-fluid flows [1–15]. However, there are still some challenging issues such as the
modeling of compressible multi-fluid flows with different types of equation of state
(EOS) and the capturing of the interface as fine as sharp interface etc. The more
difficult one is to combine these two factors as well as preserve the oscillation-free
property.

To tackle the problems with different types of EOS, there are three main meth-
ods: front tracking method [1], ghost fluid method [2–4] and the fluid mixture or
diffuse interface methods [5–8]. Among them, the third one is the popular one that
can be easily implemented and needs not track the interface explicitly. The main
issues for this kind of method are the derivation of the variables to capture the in-
terface and the evaluation of the pressure of the mixture where the different fluids
co-exist. Shyue [5] uses the material based variables to track the interface in or-
der to preserve the oscillation-free property across the interface. Besides, it uses a
general EOS of the van der Waals and the stiffened gas EOS to calculate the mix-
ture pressure. However, it can only be used to model the two-fluid problems with
the van der Waals and the stiffened gas EOS. In his another paper [6], the mixture
pressure is calculated by the Mie-Gruneisen EOS where the parameters are a simple
summation of the correspondent two parameters of the EOS for each fluid. Thus, it
may not preserve the oscillation-free property. Besides, it can only be used to model
the two-fluid problems with the Mie-Gruneisen EOS (for example, the Cochran-
Chan EOS and the Jones-Wilkins-Lee (JWL) EOS). As compared to the Shyue-type
model [5, 6], the methods in [7, 8] only use the volume fraction of each fluid as a de-
pendent variable to capture the interface. Obviously, the transport equation does not
depend on the types of EOS. In [7], the mixture pressure is expressed as a volume
average of the pressure of each fluids. This will cause the oscillation of velocity and
pressure across the interface. While, the calculation of the mixture pressure in the
five equation model [8] is different from that in [7] although the five equation model
can be regarded as a reduced model of seven equation model. For the flows with
two different types of EOS, the mixture pressure is obtained by solving the nonlin-
ear algebraic equation with some type of iterative method [8] in order to preserve
the oscillation-free properties of the interface. This procedure is time-consuming.
Moreover, the numerical algorithm used in [8] is not very robust and there can be
some nonphysical overshot or undershot in the velocity or pressure profile.

To capture of the interface as fine as sharp interface, the adaptive mesh technique
is frequently employed. Although there are adaptive mesh methods, only several
works [3, 4, 9, 10] has been done on the extension and applications to compressible
multi-fluid flows. In order to deal with problems with different types of EOS, most
of them combines the idea of ghost fluid method. For example, [3, 4] presented
the work by combining the ghost fluid method and the Cartesian adaptive meshes.
However, it is not easy to be applied to problems with complex geometry due to the
use of structured meshes. Besides, as reported by Nourgaliev et al. [3], the coarse-to-
fine and fine-to-coarse inter-level transfer operators are very complicated and may
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violate the stability of the code. In order to be extended to the applications in the
complex geometry, Banks et al. [9] proposed a method by solving the ghost fluid
method on the adaptive Cartesian mesh methods with overlapping mesh. However,
the mass or momentum may not be conserved in all these adaptive methods since
ghost fluid method employs the level set method to track the interface.

In this paper, to tackle these two problems, the combination of the extended five-
equation fluid mixture model and the unstructured adaptive technique [10] is em-
ployed. Instead of solving the non-linear equation, we extend the work of Allaire
et al. [8] by using a general form of EOS. Thus, the pressure of the mixture can
be analytically calculated for compressible multi-fluid flows with different types
of EOS. Besides, instead of the Roe scheme for the Euler equations and a simple
upwind scheme for the interface transport equation employed in [8], the robust and
efficient HLLC scheme [10] is extended to solve the five equation model. To obtain a
stable second order extension in space, different interpolation variables are adopted,
which are different from the variables in [8]. The quadrilateral unstructured adap-
tive technique proposed by Zheng et al. [10], is incorporated in the computation. In
contrast to [3], there are no the coarse-to-fine and fine-to-coarse inter-level transfer
operators. Besides, it could be used for applications with complex geometry.

The rest of this paper is organized as follows. In the second section, based on the
proposed general form of EOS, the thermodynamic properties such as the pressure
of the mixture could be derived. The proof of the oscillation-free of this model is
also given in the second section. Then, in the third section, the numerical discretiza-
tion of the governing equations on unstructured adaptive meshes is presented. The
validation cases for compressible multi-fluid problem with different types of EOS
are provided in the fourth section. Numerical examples show that the present method
can adaptively and accurately solve multi-fluid flow problems with different types
of EOS as well as preserve the oscillation-free property of the pressure and velocity
profiles across the material interface.

2 Compressible Two-Fluid Flows

In this section, the compressible two-fluid flows that all pure fluid components can
be described by a single velocity and a single pressure function are considered. The
compressible multi-fluid flows [8] are governed by the conservation laws

∂t

∫
�

⎛
⎜⎜⎝

z0ρ0
z1ρ1
ρu
E

⎞
⎟⎟⎠ dV +

∫
∂�

⎛
⎜⎜⎝

z0ρ0u
z1ρ1u

ρu ⊗ u + P [I ]
(E + P)u

⎞
⎟⎟⎠ · ndS = 0, (1)

and a transport equation of the volume fraction of fluid,

∂z

∂t
+ u · ∇z = 0. (2)

Here, ρ is the mixture density, u the flow velocity, E the total energy (E = ρe +
0.5ρu2, [I ] the identity tensor, ρi and zi (z0 = z, z1 = 1 − z) the density and the
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volume fraction of fluid i respectively. P is the mixture pressure which is a function
of the densities and energies of all fluids P(ρ0, ρ1, ρe, z). The mixture density is
calculated by a volume averaging of the densities of each fluid,

ρ =
∑

i

ziρi . (3)

To close the system, the mixture pressure needs to be determined. It is evaluated
in an implicit way [8] by assuming that the pressure for each fluid is equal to each
other in the mixture and the mixture internal energy is a linear combination of the
internal energies of each fluid. That is,

pi(ρi, ρiei) = P, i = 0,1, (4)

and

ρe =
∑

i

ziρiei . (5)

2.1 Modeling with General Form of Equation of State

Due to the limited range of validity for a certain types of EOS, it is quite common
that several types of EOS for different fluids are involved in many practical applica-
tions of compressible multi-fluid flows. This inspires us to investigate compressible
multi-fluid flows with different types of equation of state (EOS). For these flows,
in Allaire et al. [8], some type of iterative method is required to solve the above
non-linear algebraic equation (4). This procedure is usually time consuming.

In this section, we propose a general algorithm on modeling the flows with dif-
ferent analytical types of EOS. Although there are different types of EOS, it could
be written in a general algebraic form of EOS,

pi(ρiei, ρ) = [
Γi(ρi) − 1

]
ρiei − Πi(ρi). (6)

Here, Γi and Πi are the functions to be determined according to the type of EOS.
Taken the general van der Waals gas EOS as an example, if we set,

Γi(ρi) =
(

γi − 1

1 − biρi

)
+ 1, (7)

and

Πi(ρi) =
[

1 −
(

γi − 1

1 − biρi

)]
aiρ

2
i +

(
γi − 1

1 − biρi

+ 1

)
ci, (8)

we have the general van der Waals gas EOS [5, 8],

pi =
(

γi − 1

1 − biρi

)(
ρiei + aiρ

2
i − ci

) − (
aiρ

2
i + ci

)
. (9)
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Similarly, it is easy to verify that this form of EOS is a general form of most of
the EOS, such as the van der Waals gas, the rarefied gas, the stiffened gas, the Tait’s,
and the Mie-Gruneisen materials EOS and so on.

According to Eq. (5) and the iso-baric assumption (4), the analytic pressure for
the mixture is obtained

P(ρ0, ρ1, ρe, z) = [�(ρ0, ρ1, z) − 1
]
ρe − ℵ, (10)

with

�(ρ0, ρ1, z) = 1 + 1/
∑

i

[
ziξi(ρi)

]
, (11)

ℵ(ρ0, ρ1, z) =
∑

i

[
ziξi(ρi)Πi(ρi)

]
/
∑

i

[
ziξi(ρi)

]
, (12)

ξi(ρi) = 1/
[
Γi(ρi) − 1

]
. (13)

2.2 Oscillation-Free Analysis

A physically consistent model should preserve the oscillation-free property if the
viscous, heat transfer and surface tension effects are neglected [5–15]. This oscil-
lation free property means that the velocity and pressure should stay continuous
across interfaces,

Δu = 0, ΔP = 0. (14)

Thus, in this section, we try to prove the preservation of oscillation-free of the
present model. The upwind discretization of Eq. (1) across interfaces reads,

δ

⎛
⎜⎜⎝

z0ρ0
z1ρ1
ρu
E

⎞
⎟⎟⎠ = −χΔ

⎛
⎜⎜⎝

unz0ρ0
unz1ρ1

ρuun + P n
un(E + P)

⎞
⎟⎟⎠ , (15)

where δ( ) denotes the time changes ( )n+1 − ( )n , un = u · n is the normal velocity
at the directional edge with the normal direction n, χ is the ratio of the time interval
to the space, and Δ() denotes the spatial changes.

Similarly, Eq. (2) can be discretized as,

δz = −χunΔz. (16)

For the interface evolution problem, there is no jump of densities and energies
for each fluid across the interface,

Δρi = 0, Δei = 0. (17)

By using Eq. (17) and Eq. (14), one can obtain,
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δ

⎛
⎜⎜⎜⎜⎝

z0ρ0
z1ρ1
ρ

ρu
E

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

−χunρ0Δz0
−χunρ1Δz1
−χunΔρ

uδρ

−χunΔE

⎞
⎟⎟⎟⎟⎠ . (18)

From Eq. (16) and the first two entries of the above equation (18), we have

δρi = 0. (19)

From the fourth entry of Eq. (18),

δu = 0. (20)

In order to have the oscillation-free property, it requires that

δP = 0. (21)

Besides, from Eqs. (4), (6), (19), and (21), we have

δei = 0. (22)

From Eq. (20) and the last entry of Eq. (18), we have

δ(ρe) = −χunΔ(ρe). (23)

According to Eqs. (5), (17), (19), and (22), it is easy to find that the discretization
of the internal energy (23) is equivalent to,

δzi = −χunΔzi. (24)

It is clear that Eqs. (24) is consistent with Eq. (2). These show that the present
model is oscillation-free.

Note that Eq. (23) is not guaranteed to be satisfied if the mixture pressure is
evaluated as the way in [7]

P(ρ0, ρ1, ρe, z) =
∑

i

zipi(ρi, ρiei). (25)

Thus, the model in [7] which uses Eq. (25) does not preserve of oscillation-free
property.

3 Discretization on Quadrilateral-Cell Based Adaptive Mesh

In order to capture the interface accurately, the unstructured quadrilateral-cell based
adaptive technique by Zheng et al. [10] is incorporated in the computation. Thus,
the numerical discretization of Eq. (1) and Eq. (2) should be performed on this
quadrilateral-cell based adaptive mesh.

In this method, in order to avoid the recursive calculation, the cells are separately
stored in different lists according to their levels (Fig. 1(a)). Thus, the solution can
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Fig. 1 The cells and edges in
adaptive mesh generation [10]

be obtained in a level by level manner so that the cells of high level are calculated
after the cells of low level. The set of Eq. (1) and Eq. (2) is only discretized at each
leaf cell c by the two stage Runge-Kutta schemes [10],

U(∗)
c = Un

c − α Resc

(
Un

c

)
, (26)

and

Un+1
c = 0.5

[
Un

c + U(∗)
c − α Resc

(
U(∗)

c

)]
, (27)

where U is the state vector (z0ρ0 z1ρ1 ρu Ez)T , Resc is the residual, and α is the
ratio between time step Δt and the area of cell c.

Besides, the edges are separated stored into two lists [10]: LeafEdgeList for leaf
edges and MotherEdgeList for non-leaf edges (Fig. 1(b)). Thus, the residual could
be calculated in an edge-based manner. That is, the residual (Resf 1→L) at the left
neighboring cell center (f 1 → L or cell C in Fig. 2) of a leaf edge f 1 is updated in
the following way,

Resf 1→L = Resf 1→L +Φf 1
(
U−,U+,nf 1

) · Δlf 1, (28)

and the residual (Resf 1→R) at the right cell center (f 1 → R or cell E in Fig. 2) of
this leaf edge f 1 is updated by

Resf 1→R = Resf 1→R −Φf 1
(
U−,U+,nf 1

) · Δlf 1, (29)

where Δlf 1 denotes the length of the edge f 1.
The numerical flux Φf in Eq. (28) and Eq. (29) is calculated by the Harten, Lax

and van Leer approximate Riemann solver with the Contact wave restored (HLLC)
scheme,

Φf

(
U−,U+,nf

) = 1

2

[
φ− + φ+ − sign(km)

(
U+ − U−)]

, (30)
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Fig. 2 Data structures for the
cells and edges

with

φj = F
(
Uj

) · nf + k#
j

(
Uj∗ − Uj

)
, j = −,+. (31)

Here, k#
j and Uj ∗

are the intermediate velocity and states respectively, and km is the
signal velocity [10].

It is clear that the calculation of the numerical flux only requires the left state
and right state of the edge. These two states are calculated according to Hermit
interpolation from the cell centers of both sides of the edge. So, in contrast to [3],
there is no need to handle the handing nodes and no special treatment at the interface
between the finer cell and the coarse cell.

In addition to the considering the convection numerical flux, the residual should
be updated in the following way in order to solve Eq. (2),

Resc,6 = Resc,6 −zn
c

∑
f

(un)f · Δlf , (32)

where (un)f is the normal velocity at the edge and is computed in an HLLC consis-
tent way [10].

Note that the numerical flux Φf is calculated once for each non-leaf edge which
has no sub-edges before the updating of the residual (Eqs. (28), (29), and (32)).
There is no need to calculate the numerical flux for a non-leaf edge. For example,
the right neighboring cell of non-leaf edge

−→
gh is the same as the right neighboring

cell of leaf edges f 1 and f 2, that is, f 1 → R = f 2 → R = −→
gh → R = E. Thus,

the residual at the right leaf cell center of this non-leaf edge
−→
gh is automatically

updated by the operations (Eq. (28) and Eq. (29)) of its two sub-edges f 1 and f 2.
This reduces the calculation of the numerical flux for the non-leaf edges as well as
keeps the conservation of the numerical flux.

4 Results

To demonstrate the ability of the present adaptive solver for compressible multi-
fluid flows with two different types of EOS, two cases with three different types of
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Fig. 3 Comparison of
interface shape at t = 0 s and
t = 0.12 ms

EOS, i.e., the van der Waals EOS, the stiffened gas EOS, and the Tait’s EOS are
used.

4.1 Interface Translation Problem

The interface translation problem is used to demonstrate the oscillation-free feature
of current solver for compressible two-fluid flows with two different types of EOS.
Note that there is no other fluid-mixture model which has shown the feature. To set
up the problem, one fluid with a circular shape surrounded by another fluid is put at
the center position of the domain. The surrounded fluid is modeled by the van der
Waals EOS (Eq. (9) with the parameters γ1 = 1.4, a1 = 5, b1 = 1 · 10−3). The inner
fluid is modeled by the Tait’s EOS (Γi(ρi) = γi , Πi(ρi) = γi(bi − ai)) with the
parameters as γ0 = 7.0, a0 = 0, b0 = 3.0 · 108. The radius of the circular interface
is (r0 = 0.16 m). The velocity and pressure are uniform (u = (1.0 · 103 m/s, 4.0 ·
103 m/s), P = 1.0 · 105 Pa) in the whole field. The initial densities are 1000 kg/m3

for the inner fluid and 50 kg/m3 for the surrounded fluid.
Since there are no shock and other perturbation in the flow field, it is expected

that the inner fluid with circular shape should move with the constant velocity. The
interface positions at t = 0 s and t = 0.12 ms are plotted in Fig. 3. It can be easily
observed that the shape of the interface at t = 0.12 ms is almost the same as the
initial one. Figures 4 and 5 display the pressure and velocity profiles. It is clear that
there are no oscillations around the interface. All these show that the current solver
can capture the interface accurately and preserve the oscillation-free property even
though the fluids move across the mesh with different mesh spacing.
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Fig. 4 Surface pressure
profile at t = 0.12 ms

4.2 Bubble-Shock Interaction

In this section, an bubble shock interaction with two different types of EOS is
considered [2, 5, 8]. Initially, a bubble gas with the radius 0.2 m is located at
the (0.7 m,0.5 m) of a water box with the domain [0,1.2] × [0,1] m2. Here, the
air is modeled by the van der Waals EOS and the water is modeled by the stiff-
ened gas EOS (Γi(ρi) = γi , Πi(ρi) = γiai ) with the parameters as γ1 = 4.4 and
a1 = 6.0 · 108. A left going planar shock wave with Mach number of 1.422 is
located at 0.95 m and travels in the water. The air (with density 1.2 kg/m3) and
the water (with density 1000 kg/m3) at the left of the shock position are at rest
u = (0 m/s,0 m/s) and atmosphere condition (P = 1.0 · 105 Pa). Thus, the density

Fig. 5 Surface velocity profiles at t = 0.12 ms
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Fig. 6 Mesh and density contour t = 0 s

Fig. 7 Mesh and density contour t = 0.1 ms

ratio (about 1000) and acoustic impedances (the density times the sound speed) ratio
(about 3965) are very high [5].

The simulation is performed on the adaptive mesh generated by a uniform back-
ground mesh (level is 0) of 6 × 5 with the finest resolution level of 6. The reflective
boundary conditions are employed at the top and bottom boundary, while the extrap-
olation boundary conditions are imposed at the left and right boundary. The results
of mesh and density contour at different time (0 s, 0.1 ms, 0.2 ms, and 0.4 ms) are
plotted in Figs. 6–9. It can be easily observed that the adaptive mesh can reflect the
main flow features such as shock wave, rarefaction and material interface etc.

It also shows that it is suitable for unsteady flows. As can be seen in Fig. 6, the
shock wave first propagates in the water. After the incident shock wave hits the bub-
ble, a pair of refraction waves are generated and reflected from the interface (Fig. 7).
As the shock wave propagates from the larger acoustic impedance medium of water
into the lower acoustic impedance medium of air, these refraction waves are rarefac-
tion waves. Besides, the shock wave also passes through the bubble and forms the
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Fig. 8 Mesh and density contour t = 0.2 ms

Fig. 9 Mesh and density contour at t = 0.4 ms

transmitted shock wave inside the bubble which is clearly captured by the adaptive
mesh (Fig. 7(a)). With the increasing of the angle of incident shock wave and the
interface, these refraction waves becomes the bifurcated Prandtl-Meyer wave. It at-
tenuates the incident shock wave and results in the curved incident shock near the
interface (Fig. 7(b)). Then the left-going shock wave continues to propagate through
the bubble and the reflected circular wave moves outward. When the right moving
circular wave hits the upper and lower boundary, the second reflected wave is gen-
erated (Fig. 8). The second reflected wave will interact with other waves to form a
complex flow. Two small vortices are found to attach the bubble as shown in Fig. 9.
The density and pressure profiles are plotted in Figs. 10, 11, 12, 13. It is clear that
our results agree well with those of Shyue [5] which are obtained from the curves
of [5] by using the software of Marisoft Digitizer.
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Fig. 10 Comparisons of profiles at t = 0.1 ms

Fig. 11 Comparisons of profiles at t = 0.2 ms

5 Conclusions

To tackle the challenging problems in compressible multi-fluid flows, an oscillation-
free solution adaptive solver is proposed in this paper. It not only adaptively and
accurately solves the problems with different types of EOS but also preserves the
oscillation-free of velocity and pressure across the interface. Two test examples have
been carried out to examine the performance of the present adaptive solver for multi-
fluid flows with different types of EOS. The three commonly used equations of state
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Fig. 12 Comparisons of profiles at t = 0.3 ms

Fig. 13 Comparisons of profiles at t = 0.4 ms

are involved in the calculations, namely, the van der Waals EOS, the stiffened gas
EOS, and the Tait’s EOS. Note that there is no other fluid-mixture model which
has shown the oscillation-free feature for the problems with different types of EOS.
Besides, the result of bubble shock interaction problem show that it could also be
applied to problems with large density and acoustic impedances ratios.
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