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In this paper, a local space–time conservation scheme based on non-staggered grids is
introduced which is a variation of Space–Time Conservation Element and Solution Element
(CE/SE) scheme. It inherits most features and advantages of CE/SE method, including uni-
fied treatment of space and time, and high-accuracy resolution of hyperbolic conservation
equations. Moreover, Riemann solvers are not needed to capture shocks, and dimensional
splitting methods are not needed in the multi-dimensional schemes. The stability of the
present scheme is verified through von Neumann analysis. Moreover, several shock wave
problems including one-, two-, and three-dimensional cases are simulated by the present
scheme. By carefully comparing the present scheme’s numerical results with exact solu-
tions, experimental results, original CE/SE scheme’s numerical results and third-order
ENO scheme’s numerical results, it can be conclude that, the present scheme is efficient
and accurate.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

After several decades of development, there are several well-established methods in Computational Fluid Dynamics
(CFD), such as finite difference, finite volume, finite element, and spectral methods [1–4]. With the development of science,
scientific and engineering problems to be solved become more and more diverse and complex. Traditional numerical meth-
ods can not completely meet the needs of science and engineering. In recent years, some new high resolution methods have
emerged, such as Boltzmann Gas Kinetics (BGK) [5], Local Discontinuous Galerkin (LDG) [6] and Space–Time Conservation
Element and Solution Element (CE/SE) methods [7].

The CE/SE method was originally proposed by Chang and co-workers [7–14] which was a completely new numerical
framework for solving hyperbolic conservation equations. This new approach differs substantially in both concept and meth-
odology from the well-established methods. It has many nontraditional features and advantages, including unified treatment
of space and time, satisfying both local and global flux conservations in space and time, high accuracy for solving hyperbolic
conservation equations, and the simple mathematical treatment. Moreover, Riemann solvers are not needed to capture
shocks, and dimensional splitting method is not needed in the multi-dimensional schemes. Theoretical analysis and numer-
ical results demonstrate that the CE/SE method has quite high accuracy and resolution of strong discontinuity [9]. To date,
the CE/SE method has achieved great success in simulations of sound wave propagating [11], aero-acoustics [9,15], steady
. All rights reserved.
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viscous flow [16], complex supersonic flow [17], chemical reactive flow [14,18–20], magneto-hydrodynamics [12], multi-
material elastic–plastic flows [21], spall fracture [22] and so on.

In the CE/SE method, the space–time domain to be calculated is divided into non-overlapping conservation elements
(CEs) and solution elements (SEs). It is assumed that mesh variables are continuous in each SE, but discontinuities are al-
lowed across the boundaries of neighboring SEs. Taylor series is then used to approximate the mesh variables in SEs. Usually,
first-order Taylor series is applied to get a second-order accurate scheme [7], and high-order Taylor series is also applied to
get a high-order accurate scheme [23]. Mesh variables are calculated through a local space–time flux balance, which is en-
forced by integrating over the surfaces of a CE.

It is easy to discover that the CE/SE numerical scheme depends on the definitions of CE and SE. Different definitions of CE
and SE lead to different schemes. In Chang’s original scheme [7,8], the number of CEs is consistent with the number of un-
knowns designated by the scheme including the mesh variables and their spatial derivatives. Therefore, two CEs are needed
at each grid point to derive two discrete equations for U and Ux in a one-dimensional case. Similarly, three and four CEs are
needed at each grid point in two-and three-dimensional cases. Another two different definitions of CE and SE for the two-
dimensional case are proposed in Refs. [13,14] and [18–22]. In both of the two methods, only one CE at each grid point is
used to calculate the mesh variables, while the spatial derivatives are evaluated by a central differencing method.

In this paper, by adopting the core idea of CE/SE method, a local space–time conservation scheme is constructed based on
non-staggered mesh grids in time direction. And it is also extended to genuinely two-and three-dimensional cases without
using dimensional splitting methods. Moreover, a theoretical analysis about the present method is investigated. For verifying
the resolution and efficiency of the present scheme, it is applied to simulate some shock wave problems. The computational
results are also carefully compared with the results from experiments and other literature.

2. One-dimensional local space–time conservation scheme

To illustrate the main logic of the present scheme, the construction of the one-dimensional local space–time conservation
scheme is introduced at first.

2.1. Construction of the numerical scheme

Consider a standard hyperbolic conservation equation
Fig. 1.
definiti
stagger
@U
@t
þ @EðUÞ

@x
¼ 0: ð1Þ
Let x1 ¼ x, and x2 ¼ t be considered as the coordinates of a two-dimensional Euclidean space E2. Then because Eq. (1) can be
expressed asr �~h ¼ 0 with~h ¼ ðE;UÞ. Gauss’ divergence theorem in the space–time E2 implies that Eq. (1) is the differential
form of the integral conservation law
I

SðVÞ
h
*

�ds
*

¼ 0; ð2Þ
where SðVÞ is the boundary of an arbitrary space–time region V in E2, and ~ds ¼ dr~n with dr and ~n, respectively, being the
length and the unit outward normal vector of a boundary segment on SðVÞ.
Comparison of space–time mesh grids of the original CE/SE scheme and the present scheme. (a) The staggered mesh grids of space and time and
on of CE (rectangle ABCD) and SE (the interior of the space–time region bounded by the dashed curve) for the original CE/SE scheme; (b) non-
ed mesh grids of space and time for the present scheme.
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To proceed on, the region of space and time is divided into uniform rectangles, as seen in Fig. 1(b). The grid points signed
with � are used to store mesh variables and their spatial derivatives. And that signed with � are auxiliary nodes which are
mesh grids of neighboring elements in space and time. Obviously, the mesh grids are non-staggered in the time direction. On
the contrast, the mesh grids for original CE/SE method are interlaced with each other as shown in Fig. 1(a).

To get a high-order accuracy scheme, the mesh variables and their spatial derivatives at each grid point are calculated
separately. Mesh variables are calculated through a local space–time flux balance, which is enforced by integrating Eq. (2)
over the surfaces of a space–time element. With respect to rectangle ABCD in Fig. 1(b), the outward unit normal vectors
of AB, BC, CD and DA are (�1,0), (0,1), (1,0) and (0,�1). It can be shown that Eq. (2) is equivalent to
I

ABCD

~h � ~ds ¼ �
Z

AB
Eðx; tÞdt þ

Z
BC

Uðx; tÞdxþ
Z

CD
Eðx; tÞdt �

Z
DA

Uðx; tÞdx ¼ 0: ð3Þ
The form of Eq. (3) depends on the form of Uðx; tÞ and Eðx; tÞ on each boundary line of rectangle ABCD. Here, the simple
first-order Taylor series are applied to approximate them, i.e.
U�ðx; t; j;nÞ ¼ ðUÞnj þ ðUxÞnj ðx� xjÞ þ ðUtÞnj ðt � tnÞ; ð4aÞ
E�ðx; t; j;nÞ ¼ ðEÞnj þ ðExÞnj ðx� xjÞ þ ðEtÞnj ðt � tnÞ: ð4bÞ
Substituting Eqs. (4a) and (4b) into Eq. (1), one gets
ðUtÞnj ¼ �ðExÞnj : ð5Þ
Eqs. (4) and (5) imply that the variables needed to be calculated are U and Ux at each grid point, because E is a function of U.
To construct an explicit scheme, points A, H, D, D and A are consider as the Taylor series’ reference points on lines AB, BC,

CD, DF and FA. Then Eq. (3) can be written as
�
Z

AB
En�1

j�1
2
þ ðEtÞn�1

j�1
2
ðt � tn�1Þ

h i
dt þ

Z
BC

Un
j þ ðUxÞnj ðx� xjÞ

h i
dxþ

Z
CD

En�1
jþ1

2
þ ðEtÞn�1

jþ1
2
ðt � tn�1Þ

h i
dt

�
Z

DF
Un�1

jþ1
2
þ ðUxÞn�1

jþ1
2
ðx� xjþ1

2
Þ

h i
dx�

Z
FA

Un�1
j�1

2
þ ðUxÞn�1

j�1
2
ðx� xj�1

2
Þ

h i
dx ¼ 0: ð6Þ
Define Sn
j ¼ Dx

4 ðUxÞnj þ 2Dt
Dx En

j þ Dt2

Dx ðEtÞnj , then Eq. (6) can be reduced to
Un
j ¼

1
2

Un�1
j�1

2
þ Un�1

jþ1
2
þ Sn�1

j�1
2
� Sn�1

jþ1
2

h i
; ð7Þ
Supposing that mesh variables are continuous in the space time element, the continuous conditions at points B and C im-
ply that
Un
jþ1

2
¼ Un

j þ ðUxÞnj
Dx
2
¼ Un�1

jþ1
2
þ ðUtÞn�1

jþ1
2
Dt; ð8aÞ

Un
j�1

2
¼ Un

j � ðUxÞnj
Dx
2
¼ Un�1

j�1
2
þ ðUtÞn�1

j�1
2
Dt: ð8bÞ
According to the two equations, two different values of ðUxÞnj are derived, i.e.
ðUxÞnþj ¼
2 Un

jþ1
2
� Un

j

� �
Dx

¼
2 Un�1

jþ1
2
þ ðUtÞn�1

jþ1
2
Dt � Un

j

h �
Dx

; ð9aÞ

ðUxÞn�j ¼ �
2 Un

j�1
2
� Un

j

� �
Dx

¼ �
2 Un�1

j�1
2
þ ðUtÞn�1

j�1
2
Dt � Un

j

h �
Dx

: ð9bÞ
To evaluate the values of spatial derivatives, we introduce a weighted average function [7] which is defined as
W½x�; xþ;a� ¼
jxþjax� þ jx�jaxþ
jxþja þ jx�ja

: ð10Þ
Then, the spatial derivative is calculated by
ðUxÞnj ¼W ðUxÞnþj ; ðUxÞn�j ;a
h i

: ð11Þ
If there is no discontinuity, we let a = 0. If there are discontinuities, we generally let a ¼ 1 � 2 [7] to avoid numerical
instability.

Another function can instead of the weighted average function, which is defined as [24]
min modðxþ; x�Þ ¼
0 when xþ � x� 6 0;
xþ when xþ � x� > 0 and jxþj < jx�j;
x� when xþ � x� > 0 and jxþj > jx�j:

8><
>: ð12Þ
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Eqs. (7)–(11) imply that Un
j and ðUxÞnj depend on Un�1

j�1
2
; ðUxÞn�1

j�1
2
; Un�1

jþ1
2

and ðUxÞn�1
jþ1

2
which are the mesh variables and their

spatial derivatives on auxiliary nodes. As the finite volume method, different models can be used to evaluate the values of U
and Ux on auxiliary nodes to construct different schemes. So the construction of the present scheme can be very flexible.
Here we introduce a simple method which is easy to apply in multi-dimensional cases. With respect to Un�1

jþ1
2
;
R

FG Uðx; tÞdx

is calculated by two ways, i.e.
Z
FG

Uðx; tÞdx ¼
Z xjþ1

xj

Un�1
jþ1

2
þ ðUxÞn�1

jþ1
2

x� xjþ1
2

� �h i
dx

¼
Z x

jþ1
2

xj

Un�1
j þ ðUxÞn�1

j ðx� xjÞ
h i

dxþ
Z xjþ1

x
jþ1

2

Un�1
jþ1 þ ðUxÞn�1

jþ1 ðx� xjþ1Þ
h i

dx: ð13aÞ
The equation can be reduced to
Un�1
jþ1

2
¼ 1

2
Un�1

j þ ðUxÞn�1
j

Dx
4
þ Un�1

jþ1 � ðUxÞn�1
jþ1

Dx
4

� �
: ð13bÞ
With respect to ðUxÞn�1
jþ1

2
, it is calculated as ðUxÞnj , i.e.
ðUxÞn�1
jþ1

2
¼W ðUxÞn�1þ

jþ1
2
; ðUxÞn�1�

jþ1
2
;a

h i
; ð14Þ
where, ðUxÞn�1�
jþ1

2
¼ �

2ðUn�1
j �Un�1

jþ1
2
Þ

Dx ; ðUxÞn�1þ
jþ1

2
¼

2ðUn�1
jþ1 �Un�1

jþ1
2
Þ

Dx .

The present scheme has been constructed by Eqs. 7, 11, 13a and 14. It implies that U and Ux at (j,n) can be calculated
through U and Ux at (j�1,n�1), (j,n�1) and (j + 1,n�1). So the present scheme is a three point explicit scheme. It follows
most methodology of the CE/SE method, except the staggered mesh grids. It is worth mentioning that the global flux con-
servation is not fully satisfied in the time direction in the present scheme, because two different ways are used to calculateR

AD Uðx; tÞdx when calculate UF and UH . The flux may not completely vanish through the rectangle BIJC. But in global space
and local space–time region, flux conservation is satisfied perfectly.

2.2. von Neumann analysis

To illustrate the effectiveness of the present scheme, von Neumann analysis has been done. Let U ¼ u and EðUÞ ¼ au in Eq.
(1). Thus, Eq. (1) is equivalent to the simple one-dimensional convection equation
@u
@t
þ a

@u
@x
¼ 0; ð15Þ
where the advection speed a – 0 is a constant. Here, the case with no discontinuity ða ¼ 0Þ is considered. Let m ¼ a Dt
Dx. Thus,

Eqs. 7, 13b, 11 and 14 are equivalent to
un
j ¼

1
2
ð1þ 2mÞun�1

j�1
2
þ ð1� 2mÞun�1

jþ1
2

h i
þ Dx

8
ð1� 4m2Þ ðuxÞn�1

j�1
2
� ðuxÞn�1

jþ1
2

h i
; ð16aÞ

un�1
jþ1

2
¼ 1

2
un�1

j þ ðuxÞn�1
j

Dx
4
þ un�1

jþ1 � ðuxÞn�1
jþ1

Dx
4

� �
; ð16bÞ

ðuxÞnj ¼W ðuxÞnþj ; ðuxÞn�j ;0
h i

¼
un�1

jþ1
2
� mðuxÞn�1

jþ1
2
Dx� un�1

j�1
2
þ mðuxÞn�1

j�1
2
Dx

Dx
; ð16cÞ

ðuxÞn�1
jþ1

2
¼W ðuxÞn�1þ

jþ1
2
; ðuxÞn�1�

jþ1
2
;0

h i
¼

un�1
jþ1 � un�1

j

Dx
: ð16dÞ
Eqs. (16a)–(16d) can be expressed in matrix form, i.e.
qn
j ¼ Mþqn�1

j�1
2
þM�qn�1

jþ1
2
; ð17aÞ

qn�1
jþ1

2
¼ M1qn�1

j þM2qn�1
jþ1 : ð17bÞ
Here
qn
j ¼ un

j ; ðuxÞnj Dx
� �

;

Mþ ¼
1
2

1þ 2m 1
4� m2

�2 2m

" #
; M� ¼

1
2

1� 2m � 1
4þ m2

2 �2m

" #
;

M1 ¼
1
2

1 1
4

�2 0

" #
; M2 ¼

1
2

1 � 1
4

2 0

" #
:
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Substituting Eq. (17b) into Eqs. (17a), (17a) is equivalent to
qn
j ¼ MþM1qn�1

j�1 þMþM2qn�1
j þM�M1qn�1

j þM�M2qn�1
jþ1 : ð18Þ
Let qn
j ¼ q�ðn; hÞeijhð�p 6 h < p; eih ¼ cos hþ i sin hÞ, then Eq. (18) is equivalent to
q�ðn; hÞ ¼ Mq�ðn� 1; hÞ: ð19Þ
Here
M ¼ Mþe�ih2 þM�eih2
� �

M1e�ih2 þM2eih2
� �

;

i.e.
M ¼
1� m2 þ 1

4

� �
ð1� cos hÞ � im sin h � m

4 ð1� cos hÞ � i 1
8 sin h

2mð1� cos hÞ þ i sin h 1
4 ð1� cos hÞ

" #
:

The characteristic function of matrix M is
k2 � ½1� m2ð1� cos hÞ � iv sin h�kþ 1
4
ð1� cos hÞ þ 1

4
m2 � 1

4

� 	
ð1� cos hÞ2 � 1

8
sin2 hþ i

m
4

sin hð1� cos hÞ ¼ 0: ð20Þ
Assuming that k1 and k2 are the roots of Eq. (20), define the function f ðm; hÞ ¼maxðjk1j; jk2jÞð0 < m < 1;�p 6 h 6 pÞ. Be-
cause the roots of Eq. (20) are too complex to derive its theoretical solution, numerical calculation is used to solve it. The
variation of f ðm; hÞ with respect to m and h is shown in Fig. 2.

The white plane in Fig. 2 is f ¼ 1. Numerical results show that, the value of function f ðm; hÞ is always smaller than 1.0
when m 6 0:43. But the value of function f ðm; hÞ is very close to 1.0 near m ¼ 0:5. And note that, von Neumann stability con-
dition is qðMÞ ¼maxðjk1j; jk2jÞ 6 1þ KDt. On the right side of inequality, KDt is a small term. So the stability condition can be
relaxed appropriately. Actually, when m 6 0:52, the function f ðm; hÞ is always smaller than 1.01. Thus, the stability condition
is considered as 0 < m 6 0:52 which is consistent with the numerical stability condition.

Note that, for the specific case m ¼ 0, Eq. (18) reduces to
qn
j ¼

1
8

1
16

� 1
2 � 1

8

" #
qn�1

j�1 þ
3
4 0
0 1

4

" #
qn�1

j þ
1
8 � 1

16
1
2 � 1

8

" #
qn�1

jþ1 : ð21Þ
Because m! 0 as Dt ! 0, Eq. (21) implies that qn
j does not approach to qn�1

j as Dt ! 0. Because (i) point (j,n) would ap-
proach point (j,n�1) when Dt ! 0, and (ii) both points (j,n) and (j,n-1) are the mesh points where solution variables are
stored and marked by solid circles in Fig. 1(b), this implies that the present scheme fails to satisfy the accuracy requirement
that the solution variables at the mesh point (j,n) should approach those stored at the mesh point (j, n�1) as these two
approach each other in the limit of Dt ! 0. This failure would lead to the conclusion that the present scheme is highly
dissipative in the limit of m! 0. With respect to the shock wave propagation problems, the present scheme is accuracy
and efficient when the Courant number is not too small. To solve a problem with large Courant number disparity, the
present scheme need to be further improved. A family of very robust Courant number insensitive CE/SE scheme has been
developed [10].
Fig. 2. Variation of f ðm; hÞ with respect to m and h.
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3. Multi-dimensional schemes

In order to further improve the algorithm, it is necessary to extended it to multi-dimensional cases. As mentioned above,
in the present scheme, dimensional splitting method is not needed in the multi-dimensional schemes. The logic of multi-
dimensional schemes is simple and almost the same as the one-dimensional scheme. First, the three-dimensional scheme
is constructed carefully. Then the two-dimensional scheme is supplied generally.

3.1. The three-dimensional scheme

Consider a standard three-dimensional hyperbolic conservation equation
Fig. 3.
space–t
@U
@t
þ @EðUÞ

@x
þ @FðUÞ

@y
þ @GðUÞ

@z
¼ 0: ð22Þ
Here, let x1 ¼ x; x2 ¼ y; x3 ¼ z and x4 ¼ t be the coordinates of a four-dimensional Euclidean space E4. In Eq. (2),
~h ¼ ðE; F;G;UÞ. SðVÞ is the boundary of an arbitrary space–time region V in E4, and ~ds ¼ dr~n with dr and~n, respectively, being
the volume and the unit outward normal vector of a surface element on SðVÞ.

To proceed on, the whole space is divided into uniform hexahedrons. A typical spatial mesh element is shown in Fig. 3(a).
V1–V8 are the eight vertices of the hexahedron which are used to store mesh variables and their spatial derivatives. The cen-
tral point of hexahedron V1V2V3V4V5V6V7V8 A1 is an auxiliary node. C1–C6 and B1–B12 are the central points of the six
faces and the twelve edges of the hexahedron. A four-dimensional space–time element is shown in Fig. 3(b). Points V1–V8
are at time level t ¼ tn. Points V10–V80 are the corresponding points at time level t ¼ tnþ1. Hereto forth, the above rule is ap-
plied to all points for denoting the time level, i.e., the superscript

0
for points at time level t ¼ tnþ1, and none for points at

t ¼ tn. Obviously, the mesh grids are non-staggered in the time direction.
Suppose that the integral conservation laws are satisfied in the space–time element shown in Fig. 3(b). Note that the

boundaries of the space–time element are hexahedrons A10A20A30A40A50A60A70A80, A1A2A3A4A5A6A7A8, A2A3A7
A6A20A30A70A60, A1A4A8A5A10A40A80A50, A3A4A8A7A30A40A80A70, A1A2A6A5A10A20A60A50, A5A6A7A8A50A60A70A80 and
A1A2A3A4A10A20A30A40 whose outward unit normal vectors are (0;0;0;1), (0;0;0;�1), (1;0;0;0), (�1;0;0;0), (0;1;0;0),
(0;�1;0;0), (0;0;1;0) and (0;0;�1;0). Under these conditions, Eq. (2) is equivalent to
�SðVÞ h
*

�ds
*

¼
ZZZ

A10A20A30A40A50A60A70A80
Udxdydz�

ZZZ
A1A2A3A4A5A6A7A8

Udxdydzþ
ZZZ

A2A3A7A6A20A30A70A60
Edydzdt

�
ZZZ

A1A4A8A5A10A40A80A50
Edydzdt þ

ZZZ
A3A4A8A7A30A40A80A70

Fdxdzdt �
ZZZ

A1A2A6A5A10A20A60A50
Fdxdzdt

þ
ZZZ

A5A6A7A8A50A60A70A80
Gdxdydt �

ZZZ
A1A2A3A4A10A20A30A40

Gdxdydt ¼ 0: ð23Þ
With the aid of first order Taylor expansions at the reference points A1, A2, A3, A4, A5, A6, A7, A8 and V70, we have
ZZZ
A10A20A30A40A50A60A70A80

Udxdydz ¼ UV70DxDyDz; ð24aÞ
Schematic of the computational mesh grids for the three-dimensional scheme. (a) Three-dimensional spatial mesh grids; (b) the
ime element.
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ZZZ
A1A2A3A4A5A6A7A8

Udxdydz ¼ DxDyDz
8
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4
;0
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4
;
Dz
4
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A2
þ U �Dx

4
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4
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4
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�
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4
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4
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Dz
4
;0

� 	
A4
þ U

Dx
4
;
Dy
4
;�Dz

4
;0

� 	
A5
þ U �Dx

4
;
Dy
4
;�Dz

4
;0

� 	
A6

þ U �Dx
4
;�Dy

4
;�Dz

4
;0

� 	
A7
þ U

Dx
4
;�Dy

4
;�Dz

4
;0

� 	
A8

�
; ð24bÞ

ZZZ
A2A3A7A6A20A30A70A60

Edydzdt ¼ DyDzDt
4

E 0;
Dy
4
;
Dz
4
;
Dt
2

� 	
A2
þ E 0;�Dy

4
;
Dz
4
;
Dt
2

� 	
A3

�

þ E 0;�Dy
4
;�Dz

4
;
Dt
2

� 	
A7
þ E 0;

Dy
4
;�Dz

4
;
Dt
2

� 	
A6

�
; ð24cÞ

ZZZ
A1A4A8A5A10A40A80A50

Edydzdt ¼ DyDzDt
4

E 0;
Dy
4
;
Dz
4
;
Dt
2

� 	
A1
þ E 0;�Dy

4
;
Dz
4
;
Dt
2

� 	
A4

�

þ E 0;�Dy
4
;�Dz

4
;
Dt
2

� 	
A8
þ E 0;

Dy
4
;�Dz

4
;
Dt
2

� 	
A5

�
; ð24dÞ

ZZZ
A3A4A8A7A30A40A80A70

Fdxdzdt ¼ DxDzDt
4

F �Dx
4
; 0;

Dz
4
;
Dt
2

� 	
A3
þ F

Dx
4
;0;

Dz
4
;
Dt
2

� 	
A4

�

þ F
Dx
4
;0;�Dz

4
;
Dt
2

� 	
A8
þ F �Dx

4
;0;�Dz

4
;
Dt
2

� 	
A7

�
; ð24eÞ

ZZZ
A1A2A6A5A10A20A60A50

Fdxdzdt ¼ DxDzDt
4

F
Dx
4
; 0;

Dz
4
;
Dt
2

� 	
A1
þ F �Dx

4
;0;

Dz
4
;
Dt
2

� 	
A2

�

þ F �Dx
4
;0;�Dz

4
;
Dt
2

� 	
A6
þ F

Dx
4
;0;�Dz

4
;
Dt
2

� 	
A5

�
ð24fÞ

ZZZ
A5A6A7A8A50A60A70A80

Gdxdydt ¼ DxDyDt
4

G
Dx
4
;
Dy
4
;0;

Dt
2

� 	
A5
þ G �Dx

4
;
Dy
4
;0;

Dt
2

� 	
A6

�

þ G �Dx
4
;�Dy

4
;0;

Dt
2

� 	
A7
þ G

Dx
4
;�Dy

4
;0;

Dt
2

� 	
A8

�
; ð24gÞ

ZZZ
A1A2A3A4A10A20A30A40

Gdxdydt ¼ DxDyDt
4

G
Dx
4
;
Dy
4
;0;

Dt
2

� 	
A1
þ G �Dx

4
;
Dy
4
;0;

Dt
2

� 	
A2

�

þ G �Dx
4
;�Dy

4
;0;

Dt
2

� 	
A3
þ G

Dx
4
;�Dy

4
;0;

Dt
2

� 	
A4

�
: ð24hÞ
Substituting Eqs. (24a)–(24h) into Eq. (23), the three-dimensional numerical scheme is constructed as
UV70 ¼
1
8

U þ 2
Dt
Dx

Eþ 2
Dt
Dy

F þ 2
Dt
Dz

G
� 	

; ð25Þ
where,
U¼U
Dx
4
;
Dy
4
;
Dz
4
;0

� 	
A1
þU �Dx

4
;
Dy
4
;
Dz
4
;0

� 	
A2
þU �Dx

4
;�Dy

4
;
Dz
4
;0

� 	
A3
þU

Dx
4
;�Dy

4
;
Dz
4
;0

� 	
A4

þU
Dx
4
;
Dy
4
;�Dz

4
;0

� 	
A5
þU �Dx

4
;
Dy
4
;�Dz

4
;0

� 	
A6
þU �Dx

4
;�Dy

4
;�Dz

4
;0

� 	
A7
þU

Dx
4
;�Dy

4
;�Dz

4
;0

� 	
A8
; ð26aÞ

E ¼ E 0;
Dy
4
;
Dz
4
;
Dt
2

� 	
A1
� E 0;

Dy
4
;
Dz
4
;
Dt
2

� 	
A2
� E 0;�Dy

4
;
Dz
4
;
Dt
2

� 	
A3
þ E 0;�Dy

4
;
Dz
4
;
Dt
2

� 	
A4

þ E 0;
Dy
4
;�Dz

4
;
Dt
2

� 	
A5
� E 0;

Dy
4
;�Dz

4
;
Dt
2

� 	
A6
� E 0;�Dy

4
;�Dz

4
;
Dt
2

� 	
A7
þ E 0;�Dy

4
;�Dz

4
;
Dt
2

� 	
A8
; ð26bÞ

F ¼ F
Dx
4
;0;

Dz
4
;
Dt
2

� 	
A1
þ F �Dx

4
;0;

Dz
4
;
Dt
2

� 	
A2
� F �Dx

4
;0;

Dz
4
;
Dt
2

� 	
A3
� F

Dx
4
;0;

Dz
4
;
Dt
2

� 	
A4

þ F
Dx
4
;0;�Dz

4
;
Dt
2

� 	
A5
þ F �Dx

4
;0;�Dz

4
;
Dt
2

� 	
A6
� F �Dx

4
;0;�Dz

4
;
Dt
2

� 	
A7
� F

Dx
4
;0;�Dz

4
;
Dt
2

� 	
A8
; ð26cÞ
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G ¼ G
Dx
4
;
Dy
4
;0;

Dt
2

� 	
A1
þ G �Dx

4
;
Dy
4
; 0;

Dt
2

� 	
A2
þ G �Dx

4
;�Dy

4
;0;

Dt
2

� 	
A3
þ G

Dx
4
;�Dy

4
;0;

Dt
2

� 	
A4

� G
Dx
4
;
Dy
4
;0;

Dt
2

� 	
A5
� G �Dx

4
;
Dy
4
; 0;

Dt
2

� 	
A6
� G �Dx

4
;�Dy

4
;0;

Dt
2

� 	
A7
� G

Dx
4
;�Dy

4
;0;

Dt
2

� 	
A8
: ð26dÞ
Here Xðdx; dy; dz; dtÞN are the Taylor expansions of U; E; F and G at the reference point N, i.e.
Xðdx;dy;dz; dtÞN ¼ XN þ ðXxÞNdxþ ðXyÞNdyþ ðXzÞNdzþ ðXtÞNdt: ð27Þ
Substituting Eq. (27) into Eq. (22), we obtain
ðUtÞN ¼ �ðExÞN � ðFyÞN � ðGzÞN : ð28Þ
Eqs. (27) and (28) imply that the variables needed to be calculated are U; Ux; Uy, and Uz at each grid point, because E; F and
G are functions of U.

Suppose that mesh variables are continuous in the space–time element. The continuous condition at points A10, A20, A30,
A40, A50, A60, A70 and A80 imply that
UA10 ¼ UA1 þ DtðUtÞA1 ¼ UV70 � ðUxÞV70
Dx
2
� ðUyÞV70

Dy
2
� ðUzÞV70

Dz
2
; ð29aÞ

UA20 ¼ UA2 þ DtðUtÞA2 ¼ UV70 þ ðUxÞV70
Dx
2
� ðUyÞV70

Dy
2
� ðUzÞV70

Dz
2
; ð29bÞ

UA30 ¼ UA3 þ DtðUtÞA3 ¼ UV70 þ ðUxÞV70
Dx
2
þ ðUyÞV70

Dy
2
� ðUzÞV70

Dz
2
; ð29cÞ

UA40 ¼ UA4 þ DtðUtÞA4 ¼ UV70 � ðUxÞV70
Dx
2
þ ðUyÞV70

Dy
2
� ðUzÞV70

Dz
2
; ð29dÞ

UA50 ¼ UA5 þ DtðUtÞA5 ¼ UV70 � ðUxÞV70
Dx
2
� ðUyÞV70

Dy
2
þ ðUzÞV70

Dz
2
; ð29eÞ

UA60 ¼ UA6 þ DtðUtÞA6 ¼ UV70 þ ðUxÞV70
Dx
2
� ðUyÞV70

Dy
2
þ ðUzÞV70

Dz
2
; ð29fÞ

UA70 ¼ UA7 þ DtðUtÞA7 ¼ UV70 þ ðUxÞV70
Dx
2
þ ðUyÞV70

Dy
2
þ ðUzÞV70

Dz
2
; ð29gÞ

UA80 ¼ UA8 þ DtðUtÞA8 ¼ UV70 � ðUxÞV70
Dx
2
þ ðUyÞV70

Dy
2
þ ðUzÞV70

Dz
2
: ð29hÞ
By adding Eqs. (29a), (29d), (29e) and (29h), Eqs. (29b), (29c), (29f) and (29g), Eqs. (29a), (29b), (29e) and (29f), Eqs. (29c),
(29d), (29g) and (29h), Eqs. (29a)–(29d) and Eqs. (29e)–(29h) together, two different values of each spatial derivatives are
derived, i.e.
ðUxÞ�V70 ¼ �
1

2Dx
½Uð0; 0;0;DtÞA1 þ Uð0;0; 0;DtÞA4 þ Uð0;0;0;DtÞA5 þ Uð0;0;0;DtÞA8 � 4UV70 �; ð30aÞ

ðUxÞþV70 ¼ þ
1

2Dx
½Uð0; 0;0;DtÞA2 þ Uð0;0; 0;DtÞA3 þ Uð0;0;0;DtÞA6 þ Uð0;0;0;DtÞA7 � 4UV70 �; ð30bÞ

ðUyÞ�V70 ¼ �
1

2Dy
½Uð0;0; 0;DtÞA1 þ Uð0; 0;0;DtÞA2 þ Uð0;0;0;DtÞA5 þ Uð0;0;0;DtÞA6 � 4UV70 �; ð30cÞ

ðUyÞþV70 ¼ þ
1

2Dy
½Uð0;0; 0;DtÞA3 þ Uð0; 0;0;DtÞA4 þ Uð0;0;0;DtÞA7 þ Uð0;0;0;DtÞA8 � 4UV70 �; ð30dÞ

ðUzÞ�V70 ¼ �
1

2Dz
½Uð0; 0;0;DtÞA1 þ Uð0;0; 0;DtÞA2 þ Uð0;0;0;DtÞA3 þ Uð0;0;0;DtÞA4 � 4UV70 �; ð30eÞ

ðUzÞþV70 ¼ þ
1

2Dz
½Uð0; 0;0;DtÞA5 þ Uð0;0; 0;DtÞA6 þ Uð0;0;0;DtÞA7 þ Uð0;0;0;DtÞA8 � 4UV70 �: ð30fÞ
Following the previous practice, the spatial derivatives are calculated as
ðUxÞV70 ¼W ðUxÞ�V70 ; ðUxÞþV70 ;a

 �

ðUyÞV70 ¼W ðUyÞ�V70 ; ðUyÞþV70 ;a

 �

ðUzÞV70 ¼W ðUzÞ�V70 ; ðUzÞþV70 ;a

 � ð31Þ
Eqs. (25)–(31) imply that U; Ux; Uy, and Uz at V70 are calculated by U; Ux; Uy, and Uz at auxiliary nodes A1, A2, A3, A4, A5,
A6, A7 and A8. Respect to UA1, two ways are used to calculate

RRR
V1V2V3V4V5V6V7V8Udxdydz, i.e.
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ZZZ
V1V2V3V4V5V6V7V8

Udxdydz ¼
ZZZ

V1B1C1B4B5C2A1C5
Udxdydzþ

ZZZ
B1V2B2C1C2B6C3A1

Udxdydz

þ
ZZZ

C1B2V3B3A1C3B7C4
Udxdydzþ

ZZZ
B4C1B3V4C5A1C4B8

Udxdydz

þ
ZZZ

B5C2A1C5V5B9C6B12
Udxdydzþ

ZZZ
C2B6C3A1B9V6B10C6

Udxdydz

þ
ZZZ

A1C3B7C4C6B10V7B11
Udxdydzþ

ZZZ
C5A1C4B8B12C6B11V8

Udxdydz: ð32Þ
Eq. (32) can be reduced to
UA1¼
1
8

U
Dx
4
;
Dy
4
;
Dz
4
;0

� 	
V1
þU �Dx

4
;
Dy
4
;
Dz
4
;0

� 	
V2
þU �Dx

4
;�Dy

4
;
Dz
4
;0

� 	
V3
þU

Dx
4
;�Dy

4
;
Dz
4
;0

� 	
V4

�

þU
Dx
4
;
Dy
4
;�Dz

4
;0

� 	
V5
þU �Dx

4
;
Dy
4
;�Dz

4
;0

� 	
V6
þU �Dx

4
;�Dy

4
;�Dz

4
;0

� 	
V7
þU

Dx
4
;�Dy

4
;�Dz

4
;0

� 	
V8

�
: ð33Þ
With respect to the spatial derivatives at A1, they can be evaluated by using the continuous condition at points V1, V2, V3,
V4, V5, V6, V7 and V8. The detailed process is almost the same with the calculation of Ux; Uy and Uz at V70. The final results are
ðUxÞA1 ¼W ðUxÞ�A1; ðUxÞþA1;a

 �

;

ðUyÞA1 ¼W ðUyÞ�A1; ðUyÞþA1;a

 �

;

ðUzÞA1 ¼W ðUzÞ�A1; ðUzÞþA1;a

 �

:

ð34Þ
Here
ðUxÞþA1 ¼
UV2 þ UV3 þ UV6 þ UV7 � 4UA1

2Dx
;

ðUxÞ�A1 ¼ �
UV1 þ UV4 þ UV5 þ UV8 � 4UA1

2Dx
;

ðUyÞþA1 ¼
UV3 þ UV4 þ UV7 þ UV8 � 4UA1

2Dy
;

ðUyÞ�A1 ¼ �
UV1 þ UV2 þ UV5 þ UV6 � 4UA1

2Dy
;

ðUzÞþA1 ¼
UV5 þ UV6 þ UV7 þ UV8 � 4UA1

2Dz
;

ðUzÞ�A1 ¼ �
UV1 þ UV2 þ UV3 þ UV4 � 4UA1

2Dz
:

3.2. The two-dimensional scheme

With respect to the two-dimensional case, the whole space is divided into uniform rectangles as seen in Fig. 4(a). The
vertices of the rectangles V1, V2, V3, V4, V5, V6, V7, V8 and V9 signed with � are the grid points used to store mesh variables
Schematic of the computational mesh grids for the two-dimensional scheme. (a) Two-dimensional spatial mesh grids; (b) the space–time element.
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and their spatial derivatives. The center points of the rectangles A1, A2, A3 and A4 signed with � are auxiliary nodes. B1–B4
are the central points of the four edges of rectangle A1A2A3A4. Fig. 4(b) shows a typical element in space and time. The same
rule as the three-dimensional case is applied to all points for denoting the time level.

The whole process of the construction is similar with the construction of the three-dimensional scheme. There is just a
little difference. That is all the volume integrals are replaced by area integrals. So the detailed process is not repeated, just the
final scheme is supplied as follows.
Fig. 5. Comparison of numerical results at t = 0.4 derived by three numerical schemes. A, B and C represent the third-order ENO scheme, the original CE/SE
scheme and the present scheme. (a) Density distribution of the whole x axis; (b) local enlargement of the density distribution; (c) velocity distribution of the
whole x axis; (d) local enlargement of the velocity distribution; (e) pressure distribution of the whole x axis; (f) local enlargement of the pressure
distribution.
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Mesh variables at grid points are calculated by
UV30 ¼
1
4

U þ 2
Dt
Dx

Eþ 2
Dt
Dy

F
� 	

; ð35Þ
where
U ¼ U
Dx
4
;
Dy
4
;0

� 	
A1
þ U �Dx

4
;
Dy
4
;0

� 	
A2
þ U �Dx

4
;�Dy

4
;0

� 	
A3
þ U

Dx
4
;�Dy

4
;0

� 	
A4
;

E ¼ E 0;
Dy
4
;
Dt
2

� 	
A1
� E 0;

Dy
4
;
Dt
2

� 	
A2
� E 0;�Dy

4
;
Dt
2

� 	
A3
þ E 0;�Dy

4
;
Dt
2

� 	
A4
;

F ¼ F
Dx
4
;0;

Dt
2

� 	
A1
þ F �Dx

4
;0;

Dt
2

� 	
A2
� F �Dx

4
;0;

Dt
2

� 	
A3
� F

Dx
4
;0;

Dt
2

� 	
A4
:

Spatial derivatives at grid points are calculated by
ðUxÞV30 ¼W ðUxÞ�V30 ; ðUxÞþV30 ;a

 �

;

ðUyÞV30 ¼W ðUyÞ�V30 ; ðUyÞþV30 ;a

 �

;
ð36Þ
where
ðUxÞþV30 ¼
Uð0;0;DtÞA2 þ Uð0;0;DtÞA3 � 2UV30

Dx
;

ðUxÞ�V30 ¼ �
Uð0;0;DtÞA1 þ Uð0;0;DtÞA4 � 2UV30

Dx
;

ðUyÞþV30 ¼
Uð0;0;DtÞA3 þ Uð0;0;DtÞA4 � 2UV30

Dy
;

ðUyÞ�V30 ¼ �
Uð0;0;DtÞA1 þ Uð0;0;DtÞA2 � 2UV30

Dy
:

Mesh variables at auxiliary nodes are calculated by
UA1 ¼
1
4

U
Dx
4
;
Dy
4
;0

� 	
V1
þ U �Dx

4
;
Dy
4
; 0

� 	
V2
þ U �Dx

4
;�Dy

4
;0

� 	
V3
þ U

Dx
4
;�Dy

4
;0

� 	
V4

� �
: ð37Þ
Spatial derivatives at auxiliary nodes are calculated by
ðUxÞA1 ¼W ðUxÞ�A1; ðUxÞþA1;a

 �

;

ðUyÞA1 ¼W ðUyÞ�A1; ðUyÞþA1;a

 �

;
ð38Þ
where
ðUxÞþA1 ¼
UV2 þ UV3 � 2UA1

Dx
;

ðUxÞ�A1 ¼ �
UV1 þ UV4 � 2UA1

Dx
;

ðUyÞþA1 ¼
UV3 þ UV4 � 2UA1

Dy
;

ðUyÞ�A1 ¼ �
UV1 þ UV2 � 2UA1

Dy
:

4. Numerical examples

To demonstrate the capabilities of the present 1D, 2D and 3D schemes, we apply them to solve Euler equations.
For three-dimensional unsteady Euler equations of a prefect gas, U; E; F and G in Eq. (22) are defined as
U ¼

q
qu

qv
qw

e

2
6666664

3
7777775
; E ¼

qu

qu2 þ p

quv
quw

ðeþ pÞu

2
6666664

3
7777775
; F ¼

qv
quv

qv2 þ p

qvw

ðeþ pÞv

2
6666664

3
7777775
; G ¼

qw

quw

qvw

qw2 þ p

ðeþ pÞw

2
6666664

3
7777775
; ð39Þ
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where q is the density, u; v and w are the velocity components of x-direction, y-direction and z-direction respectively, p is
the pressure, and e is the total energy per unit volume. Consider the fluid as a perfect gas, e can be calculated by the following
equation
Fig. 6.
calculat
(d) loca
e ¼ p
c� 1

þ 1
2
qðu2 þ v2 þw2Þ: ð40Þ
4.1. One-dimensional shock tube problem

First, a shock tube problem suggested by Sod [25] is considered. The shock tube is filled with perfect gas. The gas is di-
vided into two parts by a diaphragm placed at x ¼ 1. The gas state at t ¼ 0 is
ðq;u;pÞ ¼
ð1:0;0;1:0Þ 0 6 x 6 1
ð0:125;0;0:1Þ 1 < x 6 2

�
: ð41Þ
When computation starts, the diaphragm vanishes instantly. Non-reflecting boundary conditions are imposed on both
sides of the tube. To test the one dimensional local space–time conservation scheme, the results are compared with that cal-
culated by third-order ENO scheme [26,27] and original CE/SE scheme [7]. All the numerical results are derived by dividing
the whole one-dimensional space into 100 uniform line segments. Because the present scheme and the original CE/SE
scheme are sensitive with the CFL number and have a parameter a, different CFL numbers and the same aða ¼ 2Þ are
considered.
Comparison of numerical results and the exact solution for the shock reflection on a plate. (a) Schematic of the exact solution; (b) density contours
ed by present scheme (401	 101); (c) pressure coefficient distribution of the whole x axis at the mid-section of the computation domain (y = 0.5);
l enlargement of pressure coefficient distribution.



Fig. 7. Comparison of the numerical result and experimental photographs at t = 1.05. (a) The numerical result; (b) the corresponding experimental
photographs.
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Fig. 5 shows that all the three schemes’ accuracy is very high. Numerical results are very close to exact solution just cal-
culated by 101 mesh grids. Local enlargement figures imply that the present scheme and the original CE/SE scheme’s results
are closer to exact solution than third-order ENO scheme’s result. When CFL¼0.5, the present scheme’s result is the best.
When the Courant number is smaller (CFL¼0.3), the present scheme becomes more dissipative. The results agree with
the theoretical analysis in Section 2.2.

4.2. Shock reflection on a flat plate

This steady-state test problem was proposed by Yee et al. [28]. By imposing suitable upstream conditions, oblique inci-
dent and reflected shocks will appear above a flat plate. The spatial computational domain is a 4:0	 1:0 rectangle.

The flow conditions at t ¼ 0 are [13]
ðq;u;v ;pÞ ¼
ð1:0;2:9;0:0;0:71428Þ ahead of the incident shock;
ð1:7;2:6193;�0:50632;1:5282Þ behind the incident shock:

�
ð42Þ
For t > 0, (i) the flow conditions given in the first and second rows on the right side of Eq. (42) are imposed on the left and
the top boundaries, respectively; (ii) the reflecting boundary conditions are imposed on the bottom boundary (a solid wall);
and (iii) the nonreflecting conditions are imposed on the right boundary (a supersonic outlet).

Fig. 6(b) shows the density contours computed by the present 2D scheme with a ¼ 1 and CFL¼0.4, which agrees with the
exact solution (Fig. 6(a)) well. In order to evaluate accuracy of the present scheme further, the shock reflection problem is
also calculated under the same conditions by Wang’s CE/SE scheme [19]. Fig. 6(c) shows the distribution of the pressure coef-

ficient Cp Cp ¼
2 p

p1�1ð Þ
cM2
1

� 	
[19] at y¼0.5 by the two numerical schemes, and the exact solution is also provided. Fig. 6(d) gives a

local enlargement vision of the pressure coefficient. It shows that the accuracy of the present scheme is equivalent to Wang’s
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CE/SE scheme. According to Wang’s results, his improved CE/SE scheme’s accuracy is higher than first-order Roe scheme and
second-order MUSCL scheme [19]. So it is concluded that the present two-dimensional scheme retains high accuracy.

4.3. Shock wave passes a tunnel with clapboards

To test the 2D scheme further, a more complex problem is considered. The computational domain is a 1.68	0.93 rectan-
gle. There are eight 0.06	0.39 clapboards placed at the bottom and top of the tunnel at x ¼ 0:072; x ¼ 0:54; x ¼ 1:008 and
x ¼ 1:476. At t ¼ 0, a planar incident shock (Ms = 1.41) is placed at the entrance and the flow conditions in the tunnel are
ðq;u;v; pÞ ¼ ð1:4;0;0;1:0Þ. The whole domain is meshed by 561	311 grids.

For t > 0, (i) the flow conditions calculated by the normal shock condition are imposed on the left boundary; (ii) the
reflecting boundary conditions are imposed on the top and bottom boundaries and the boundaries of the clapboards (a solid
wall); and (iii) the nonreflecting conditions are imposed on the right boundary (a supersonic outlet).

When the shock passes the tunnel, normal shock reflections, oblique shock reflections and vortexes generate and interact
with each other. Thus, the flow becomes very complex. To enhance the visual effect, the spatial derivative of densityffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2
x þ q2

y

q� �
is used to capture the shock waves. The numerical results at t ¼1.05 compared with experimental photographs
Fig. 8. Schematic of computational domain for the shock wave reflection over two intersecting wedges.

Fig. 9. Comparison of the numerical result and experimental photographs at t = 0.6 for the shock wave reflection over two intersecting wedges. (a) The
numerical result; (b) the corresponding experimental photograph.
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[29] are presented in Fig. 7(a) and (b). These results show that the numerical result agrees well with the experimental result
except for some subtle differences. The reasons causing these differences are the experimental conditions in Ref. [29] are not
illustrated clearly and the resolution of the film used in the experiment is limited. Moreover, the computation is based on
Euler equations, so those phenomena induced by the viscous effect are not captured. This case suggests that the present
2D scheme can simulate complex flow accurately.

4.4. Shock wave reflection over two intersecting wedges

As shown in Fig. 8, the whole computational domain is a 2.0 	 2.0 	 2.0 cube including a horizontal wedge and a vertical
wedge, where AM = 0.5. ON is the intersecting line of the two wedges. The inclination angles of the two wedges are b and c.
The flow conditions at t ¼ 0 are ðq;u;v;w; pÞ ¼ ð1:4;0;0;0;1:0Þ. A planar incident shock is placed at plane ADEH. The whole
domain is divided into 200	 200	 200 uniform hexahedrons including the two wedges. Here, the numerical and experi-
mental [30] results with b ¼ 45�; c ¼ 45� and Ms = 2.85 are supplied in Fig. 9(a) and (b).

For t > 0, (i) the flow conditions calculated by the normal shock condition are imposed on the left boundary (plane
ADHE); (ii) the nonreflecting conditions are imposed on the right boundary (plane FQOR); (iii) the reflecting boundary con-
ditions are imposed on the other boundaries (planes AEFQM, AMND, DNPH, EFRPH, PNOR and MNOQ).

Theoretical and experimental results show that, when the inclination angle of the wedge or the strength of incident shock
is different, the reflection pattern is different in a two-dimensional case. There are four different patterns on the whole,
including double Mach reflection, single Mach reflection, transitional Mach reflection and regular reflection. In Fig. 10(a),
Fig. 10. Comparison of the two-and three-dimensional numerical results. (a) The reflection pattern on plane ABFE; (b) the two-dimensional reflection
pattern over a 45� wedge; (c) the reflection pattern on plane CDEF; (d) the two-dimensional reflection pattern over a 54� wedge.
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the density contours on plane ABFE show a double Mach reflection over a 45� wedge. It is consistent with the two-dimen-
sional numerical results as shown in Fig. 10(b). This case agrees with Ben-Dor’s [31] research in two-dimensional cases. Since
the two Mach stems interact with each other perpendicularly, a 3D Mach stem generate near the intersecting line of the two
wedges. As a result, the density contours on plane CDEF also show a double Mach reflection over a 54� (When b ¼ 45� and
c ¼ 45�, the intersecting line ON lies on the plane CDEF. \CNO ¼ arctan

ffiffiffi
2
p
’ 54�) wedge, as shown in Fig. 10(c). But at the

54� wedge angle and Ms = 2.85, it should be a regular reflection according to Ben-Dor’s research, as shown in Fig. 10(d). Com-
paring Fig. 10(c) and (d), the pattern of Mach reflection on plane CDEF is a little different from that in a two dimensional case.
A wall jet is generated along the line of the two intersecting wedges. It makes the Mach stem lean forward near the line of the
two intersecting wedges. A further study about this problem is available in Ref. [30].

5. Concluding Remarks

This paper introduces a local space–time conservation scheme based on non-staggered mesh grids, which is a variation of
CE/SE method. This method retains local flux conservation in space and time and global flux conservation in space. It is
proved that the present scheme has many good features theoretically and practically: (a) Space and time is treated uni-
formly; (b) Mathematical treatment is very simple. Dimensional splitting method is not used in the constructions of two-
and three-dimensional schemes. Riemann solver is not needed to capture shocks. Only a simple weighted average function
is considered as a limiter to calculate the spatial gradients; (c) Through the numerical examples, it can be seen that the pres-
ent scheme has a good ability to capture the complex structure of the flow including diffraction, reflection, Mach stems, com-
plex vortexes and their interactions.

In future work, several extensions of the present scheme will be developed including a Courant number insensitive
scheme and a scheme for unstructured mesh grids.
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