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Modeling Nanowire Indentation
Test With Adhesion Effect
Because of the large aspect ratio of its length to radius and the large surface area to
volume ratio, the nanowire is highly flexural and susceptible to the adhesion influence.
The bending deflection of nanowire and its adhesion effect make the previous indentation
models inappropriate for the nanowire indentation test. In this paper, a new model in-
corporating the nanowire bending deflection, loading symmetry/asymmetry, and adhesion
effect is presented and compared with the previous models. Because of the bending
deflection of the flexural nanowire, the nanowire may lift-off/separate from its contacting
elastic medium and the localized contact effects may thus be induced. The localized
contact effects as predicted by this new model can cause the relatively large deflection
difference of the nanowire in test as compared with those obtained by the previous
models, which impacts directly and significantly on the interpretation of the indentation
experimental data. The nanowire is modeled as a cylinder/beam and the indentation force
is modeled as a concentrated force. The elastic medium is modeled as an elastic foun-
dation. The elastic foundation behaves as a linear spring in nonadhesive Hertz contact
and as a nonlinear softening spring in adhesive contact. In the Hertz contact, due to
lift-off, the contact length is independent of the load. However, in adhesive contact, larger
load results in smaller contact length. Unlike the Hertz contact in which lift-off always
occurs when adhesion force is too large for bending cylinder to overcome, there is no
lift-off for cylinder and the full contact scenario is thus formed.
�DOI: 10.1115/1.4002305�
Introduction
Due to their wide potential applications in small devices and

emarkable physical properties, which range across the different
cientific disciplines, nanowires have attracted much interest in
cientific community �1,2�. Because of their small size and thus
arge surface area to volume ratio, nanowires can have some
hysical properties significantly different from the bulk ones. Un-
ike the resonance test �3� and three-point bending test �4,5� of
anowires/nanotubes, which essentially only offer the elastic
odulus information, more information such as Young’s modulus,

ardness, yield stress, and work-hardening exponent can be ob-
ained from the indentation test �6,7�. Nanoindenter is also known
or its excellent force/displacement resolution and force control,
hich gives the nanoindentation great advantages in the mechani-

al properties test of nanomaterials �2�. However, the model for
he nanowire indentation is extremely few �2�. The so-called one-
imensional nanostructure �8�, such as nanotube, nanobelt, and
anowire has very large aspect ratio of length to radius, which
akes the structure highly flexural. The standard Oliver–Pharr
ethod �6� assumes the indented sample as a monolithic, semi-

nfinite elastic half-space �7�. Due to its flexurality, nanowire in
ndentation test will have the nonuniformity along the axis �9�,
hich leads to the localized effect and the separation of nanowire

rom its contacting substrate. The bending deflection of nanowire
s the major reason that makes the Oliver–Pharr method inappro-
riate for modeling nanowire indentation test �2�. Yu et al. �10�
eveloped a model for the carbon nanotube contact under inden-
ation using the Hertz contact model and ignoring the nanotube
exurality. Feng et al. �2� reviewed several receding contact mod-
ls, which can be potentially used as the model for the nanowire
ndentation test. Those receding contact models as discussed later
n details do not incorporate adhesion effect and assume the sym-

etric loading scenario.
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As shown in Fig. 1�a�, a flexural cylinder is in contact with an
elastic medium. The flexural cylinder can separate, or, say, lift-off
from the other contacting elastic medium because of its bending
deflection. In contact mechanics, the flexural structure contact
problem is often referred to as the receding contact �11,12�, un-
bonded contact �13–15�, and tensionless contact �16,17�. The
name of receding contact �11,12� emphasizes the fact that when
the flexural structure is loaded, its contact area is smaller than the
unloaded one due to the lift-off mechanism. Because the flexural
layer of the beam/plate structure is free to lift-off, this kind of
contact is thus often called the unbonded contact �13–15�. Be-
cause in nonadhesive Hertz contact the tensile stress cannot be
transmitted to the lifting-off structure portions and only the com-
pressive stress can be transmitted through the contact interface
�18�, this kind of contact is also often called the tensionless con-
tact �16,17�. Although the calculated contact lengths �x1+x2 as
shown in Fig. 1�b�� are different due to the their modeling differ-
ence and approximate nature, all these above receding/unbonded/
tensionless contact models �13–18� reach the same conclusion that
the contact length is independent on the load magnitude. Increas-
ing load just pushes the flexural structure deeper into the elastic
medium but remains the same contact length, which implies the
following facts: the displacement, stress, and strain are in direct
proportion to the load; however, the contact area is not �12�.
Therefore, with the increasing load the elastic energy will be
stored faster than the adhesion energy, which is proportional to the
contact area. This will have significant impact on classical Amon-
ton’s law in tribology, which predicts the friction increases lin-
early with the normal pressure. Yang et al. �19� recently demon-
strated such violation of Amonton’s law in the contact of nanotube
rafts. Amonton’s law can only be valid when the contact area
increases substantially faster than the stored elastic energy �19�.
However, because the nanotube’s Young modulus in the radial
direction is relatively small compared with its Young’s modulus in
the axial direction, which leads to relatively large cross section
deformation, the work done by the normal pressure is transformed
more into the elastic energy rather than to increase the contact

area/adhesion energy �19�, which leads to the abnormal tribologi-
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al behavior. The flexural rigidity of the contacting layer also has
he very important influence on the peeling test of adhesion mea-
urement �20� and the instability pattern formation at the contact
ine �21,22�.

The previous models �13–18� consider the flexural rigidity of a
lender layer and its interaction with the contacting elastic me-
ium. However, in those models the adhesion effect is not taken
nto account. When the size of contact layer is of the micron order
r smaller, the adhesion force can be a dominant one �23�. This is
articularly true for those nanowire �4� and nanotube �5� in con-
act with the porous materials and adhesion is �assumed� so strong
hat the clamped-clamped boundary conditions are formed �4,5,8�.
n the adhesive contact models for a cylinder developed by
haudhury et al. �24�, Chen and Gao �25� did not consider the
ffect of the cylinder flexural rigidity. In their models �24,25�, the
lastic deformation concentrates around the contact interface and
he cylinder does not bend; therefore one cross section deforma-
ion can stand for the whole cylinder. Here, we call this kind of
ontact “rigid contact,” which says the cylinder flexural rigidity is
o large that the cylinder does not bend during contact, as shown
n Fig. 1�b�. The adhesive contact model developed by Ghatak et
l. �20–22� focuses on the influence of the confinement/
ncompressibility of the flexural film on the formation of wavy
ontact lines and adhesion measurement. Also in their models
20–22� the substrate is �assumed� rigid and the elastic energy is
hus all stored in the flexural film; the only interaction between
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x1 x2Rigid conatct

Flexible/unbonded conatct
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J : concentrated load
P: line load

ig. 1 „a… The schematic diagram of a cylinder with Young’s
odulus E1, Poisson ratio �1, radius R and length L in contact
ith an elastic medium with E2 and �2. J is the concentrated

oad and P is the uniformly distributed line load. „b… The con-
act profile in x−z plane. For the rigid contact scenario, the
hole cylinder sinks into the elastic medium with a constant �.
or the flexible contact scenario, the cylinder lifts-off and �
aries with x. x1 and x2 are the left-side and right-side contact

engths. „c… The contact area in x−y plane. For the rigid contact
cenario, the contact area is a rectangle and the contact width
a is constant. For the flexible contact scenario, the contact is
n ellipselike zone and the contact width 2a varies with x.
lm and substrate is adhesion. In this paper, we incorporate the
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cylinder bending energy, the elastic energy due to contact, and the
adhesion energy together to study the adhesive contact of a flex-
ural cylinder.

There are two types of problem formulations on this flexural
contact problem: integral and differential ones. When the elastic
medium is modeled as an elastic half-space �13–15,17,18�, the
formulation is always the integral one. The integral equation of
the elastic half-space model, which indicates the displacement,
strain, and stress at a point, are determined by the elastic defor-
mation all over the area. In contrast to this, the elastic foundation
model, for example, the Winkler foundation model, assumes the
elastic medium consists of a series of independent springs; there-
fore, in an elastic foundation, the displacement, strain, and stress
at a point are locally determined. The elastic foundation model
leads to the differential formulation of this contact problem
�16,26,27�. In the viewpoint of continuum approach, the elastic
foundation model may lead to some physically unrealistic results,
especially on the stress analysis. But Kerr �28� pointed out that the
elastic foundation model is introduced to study the foundation
surface response, not the stress caused inside the foundation. This
deficiency of elastic foundation model on the stress analysis in
general should not cause serious problem. Elastic foundation
model mathematically is much simpler than the elasticity ap-
proach of the elastic half-space model �28�. The integral formula-
tion in general is much more complex and lengthy than the dif-
ferential one. Furthermore, the relationship of line load-
displacement for the 2D �cylinder� plane-strain contact is
indeterminate in an elastic half-space model �29� due to some
uncertainties of its 2D elasticity features �30�. In this paper, the
Winkler elastic foundation model is applied to derive the equilib-
rium equation. Our Winkler foundation model is developed by
choosing the cylinder center displacement as the representative
displacement for the whole cylinder cross section and requiring
the force due to the elastic foundation to be equal to that derived
by the elastic half-space model.

2 Model Development

2.1 Hertz Contact. Figure 1�a� shows a cylinder with
Young’s modulus E1, Poisson ratio �1, radius R, and length L in
contact with an elastic medium. The elastic medium is with
Young’s modulus E2 and Poisson ratio �2, which here is modeled
as an elastic half-space �12� to derive all our following results.
Here, the coordinate system is also shown in Fig. 1�a�, which
starts at the location of the concentrated load J. P is the uniformly
distributed line load. Figure 1�b� shows the scenarios of the rigid
and flexible contacts in the x−z plane. Here, the word rigid con-
tact means the cylinder bending stiffness is very large and during
contact the cylinder sinks into the elastic medium as a whole, i.e.,
the cylinder center displacement � is a constant. For the flexible
contact, there is a phenomenon called lift-off �15,16�, which is
shown in Fig. 1�b�, in which the cylinder separates from the elas-
tic medium at the left side of x1 and the right side of x2. Generally,
x1�x2 when the concentrated load J is not located at the center,
i.e., L1�L2. Figure 1�c� shows the contact area in x−y plane. The
rigid contact has a rectangular contact area, in which the half
contact width a is a constant. The contact area of the flexible
contact is an ellipselike shape, in which a varies at the different
locations. It is noticed that for the rigid contact, because the cyl-
inder submerges as a whole into the elastic medium, the total
contact length is the cylinder length L. However, for the flexible
contact, the total contact length is x1+x2 due to the lift-off mecha-
nism. Obviously, the reason for such difference is that in the rigid
contact modeling the overall flexurality/bending stiffness of the
cylinder is not taken into consideration �12,24�.

In order to have a comparison with the previous research results
�16,26�, physically we set the line load P=0 and only keep J
nonzero. However, the rigid contact models �12,24� so far can

only handle the line load case. In the modeling sense, the concen-
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rated load J is transformed into the line load as P=J /L �24�,
hich as shown later is a major drawback of the rigid contact
odeling because it implies that the location of the concentrated

oad J has no influence on the contact. Now let us first derive Pe,
he force per unit length of the cylinder exerted by the elastic

edium. As the elastic medium is modeled as an elastic half-
pace and for the time being adhesion is ignored, Pe is given as
ollows �12�:

Pe =
�a2E�

4R
�1�

ere, E� is the reduced Young modulus defined as 1 /E�= �1
�1

2� /E1+ �1−�2
2� /E2. As shown in Fig. 2�a�, the following rela-

ion holds when a /R is small �12�:

� =
a2

2R
�2�

he elasticity analysis shows that Eq. �2� is valid for the two-
imensional cylinder contact only when the elastic medium is
reated as an elastic foundation and thus, the surface displacement
utside contact area is neglected �12�. It is also interesting to
otice that the � value is one-half of that obtained by Hertz for
phere contact ��=a2 /R� �12�. As this � is also the cylinder center
isplacement �w� �25,30�, from now on, we use w instead of � to
tand for it. From Eq. �1�, we have

Pe =
�a2E�

4R
=

�E�

2
w = k1w �3�

o k1, the elastic foundation modulus is k1=�E� /2. It should be
mphasized that here we use the cylinder center displacement to
tand for the whole cylinder cross section displacement and then
erive this foundation modulus. Because the cross section dis-
lacement uz varies with y as uz�y�= �a2−y2� /2R �here y2 /2R is
he parabolic approximation for the cylinder surface profile�,
ohnson �12� derived the foundation modulus k1 through the fol-
owing equation:

Pe =
�a2E�

4R
=�

−a

a
k1

h
�a2 − y2

2R
�dy �4�

here h is the thickness of the elastic medium. k1 /h�a2−y2 /2R� is
he pressure generated inside contact zone by assuming that the
lastic medium is a Winkler foundation. k1 is derived from the

� � �

R
a a

δ

Geometric Relations between R, a andδ

Discontinuous Contact Scenario

J

Lift-off (no contact)

Contact
z=0

y

z

(b)

(a)

ig. 2 „a… Geometric relations of R, �, and a in a cylinder con-
act and „b… the discontinuous contact scenario in which the
ylinder has multiple separated contact zones
bove equation as k1=1.18E h /a=1.18E h / 2Rw �12�. So this

ournal of Applied Mechanics
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foundation modulus k1 derived by Johnson depends on the half
contact width a �or the center displacement w�, which changes
with the load. So the elastic foundation derived by Johnson’s
method of integrating the pressure all over the contact cross sec-
tion is a nonlinear one, which can make the computation much
more complicated. The �physical� reason causing this nonlinear
elastic foundation modulus in Johnson’s derivation is that the
cross section displacement uz�y�= �a2−y2� /2R is parabolic �so is
the pressure of the Winkler foundation�; however, the pressure
distribution derived by the half-space model is elliptic �p�y�
=2P /�a2�a2−y2�1/2� �12�. In our derivation, Pe=�a2E� /4R is de-
rived from the elastic half-space model and in our Winkler foun-
dation model, we assume the pressure is proportional to the cyl-
inder center displacement. Both our derivation and Johnson’s of
the elastic foundation modulus require that the line load of the
cylinder derived by the elastic foundation model is equal to that
obtained from the elastic half-space model. Because of the ap-
proximate nature of the elastic foundation, the elastic foundation
modulus is dependent on the contacting bodies’ geometry, the
loading scenario, and the equivalence principle applied. For ex-
ample, the elastic foundation modulus for the axisymmetric con-
tact of sphere �k1=1.7E�h /a� is derived by equating the concen-
trated loads derived by the elastic foundation model and elastic
half-space model �12�, which is noticed to have a 44% difference
with the above value of a cylinder; k1=0.71E2�E2b4 /E1I�1/3 �b:
width� is derived for an infinitely long prismatic beam resting on
an elastic medium under a sinusoidal load by equating the maxi-
mum moments derived by the elastic foundation model and elastic
half-space model �31�. In essence, Eqs. �3� and �4� use the elastic
foundation model to establish an analytical and simple relation for
the line load Pe and displacement w. For two-dimensional �cylin-
derlike� plane-strain contact, no analytical line load-displacement
relation can be derived from the half-space model �30�. Some
integral relations derived from the half-space model are shown to
be divergent with the increase of cylinder length, which cause
significant confusion �30�. Giannakopoulos �29� stated that for the
plane-strain wedge indentation, the line load-displacement rela-
tion was indeterminate. An explanation was offered by Yang and
Cheng �30� through their in-depth analysis on the half-space
model of two dimensional contact: “there is always uncertainty on
the surface deformation of the elastic half-plane, which is associ-
ated with the reference zero-point due to the feature of 2D
elasticity.”

For the rigid contact, the equation of equilibrium is obtained by
setting P= Pe �12,24�

P =
J

L
= Pe =

�a2E�

4R
�5�

For the flexible contact, as shown in Fig. 1�b�, the displacement is
divided into the following three zones due to the lift-off mecha-
nism �26,27�:

E1I
d4w1

dx4 = 0, w1 � 0, − L1 � x � − x1

E1I
d4w2

dx4 + k1w2 = J�D�x�, w2 � 0, − x1 � x � x2

E1I
d4w3

dx4 = 0, w3 � 0, x2 � x � L2 �6�

where I is the cylinder area moment of inertia defined as I
=�R4 /4. −x1 and x2 are the points at which the cylinder lifts-off
from the elastic medium. w2 is the cylinder displacement in the
contact zone; w1 and w3 are the displacements of the noncontact
zones. For very chunky cylinder, we can imagine that the cylinder
does not bend at all, which is to say wi�0 and wix=wixx=wixxx

=wixxxx=0 �i=1,2 ,3�. Physically, wi now is the rigid body dis-
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lacement and w=w1=w2=w3. It is thus valid to transform the
oncentrated load into line load for chunky cylinder �i.e., k1w2
k1w=J�D�x�=J /L�. So Eq. �6� recovers Eq. �5� for the chunky
ylinder. �D is the Dirac delta function and the force exerted by
he indenter is thus modeled as a concentrated force. Generally,
he apex of an indenter is rounded and is often approximated as a
phere �2�. An elliptical contact zone is formed in the indenter-
anotube contact �10�. Here, the reasons to model the indenter
orce as a concentrated one are the following: �1� the indenter-
ylinder contact area/length is very small compared with the
hole cylinder length and the cylinder-substrate contact area/

ength, �2� the cylinder deformation is not sensitive to the details
f the load distribution �inside the indenter-cylinder contact zone�
2�, and �3� some of our results will be compared with the previ-
us models, which use the concentrated force modeling �16,26�.

In order to have a comparison with the previous results �16,26�,
he following nondimensionalization scheme is introduced:

� = �x, Wi = �wi�i = 1,2,3�, A = �a, �1 = �x1, �2

= �x2, l1 = �L1, l2 = �L2, l = �L, F =
J

4�2E1I
�7�

is defined as

� =�4 k1

4E1I
=�4 E�

2E1

1

R
�8�

here � has the unit of m−1 and the dimensionless length l de-
ned above as l=�L=�4 E� /2E1�L /R�, in essence, indicates the
atio of the cylinder length to its radius. l also indicates the flex-
rality of a cylinder.

Now Eq. �6� becomes

W1���� = 0, W1 � 0, − l1 � � � − �1

1
4W2���� + W2 = F�D���, W2 � 0, − �1 � � � �2

W3���� = 0, W3 � 0, �2 � � � l2 �9�

ere, � �,�=d /d�. The details of solving Eq. �9� are given in the
ppendix. It is also worth mentioning that it is not difficult at all

o solve the problem of adding a line load in Eq. �6�, which is the
ase of considering the cylinder weight �16�. There are three rea-
ons here for us to ignore the line load induced by the cylinder
eight: �1� to compare our results with the previous models,
hich are developed without the line load; �2� Gladwell �14�

howed that when the total weight of the beam layer is less than
% of the total applied force, which is usually the case in the
ndentation test, the weight of flexural layer can be ignored; and
3� as we later consider the adhesive contact case in which the
dhesion force of a micron size structure can be a million times
reater than the gravity force �23�.

For the rigid contact, the dimensionless displacement is derived
rom Eq. �5� simply as follows:

W =
F

l
�10�

s for the dimensionless half contact width A=�a and from geo-
etric relation of Eq. �2�, we have the following equation when

he cylinder is in contact, i.e., W	0.

A
�2�R

= �W �11�

2.2 Adhesive Contact. The following line load exerted on the
ylinder by the elastic medium is derived by considering the ad-

esion effect �24�

11007-4 / Vol. 78, JANUARY 2011

nloaded 21 Mar 2012 to 159.226.231.78. Redistribution subject to ASM
Pe =
�a2E�

4R
− �4E��
a �12�

where 
 is the surface energy per unit area of a surface. Again, Eq.
�12� applies only for the contact zone and the half contact width a
is a function of x. By applying the geometric relation of Eq. �2�,
Eq. �12� is now written as follows:

Pe = k1w − k2w1/4 �13�

where k2 is defined as k2=2�4 2R��E�
�2. Clearly by considering
the adhesion effect, the elastic foundation model of the elastic
medium becomes nonlinear. Clearly with the adhesion effect, the
restoring line load of Eq. �13� is smaller than the nonadhesive one.
Therefore, the adhesive elastic foundation described by Eq. �13�
will behave as a softening spring �32�. Because of this nonlinear-
ity due to the adhesion, it is impossible for us to have the solution
form as given in Eq. �A1�. Here, the finite element method is
applied to solve the adhesive contact.

The system energy is written as follows:

�
−L1

L2 E1Iwxx
2

2
dx +�

−x1

x2 � k1w2

2
−

4

5
k2w5/4�dx −�

−L1

L2

J�D�x�wdx = 0

�14�

The first term is the bending energy of the cylinder, the second
term is the energy stored by the elastic foundation 	−x1

x2 ��k1w2 /2�
− �4 /5�k2w5/4�dx=	−x1

x2 	0
wPedwdx. The third term is the work done

by the concentrated load. It is worth pointing out here that in Eq.
�14�, the membrane energy �33–36� is not accounted. The mem-
brane energy is due to the in-plane stretching/compression of
structure, which holds a vital role in the wrinkling of hard film/
nanotube on soft substrate �33–36�. Therefore, Eq. �14� physically
indicates that the nanowire is under no axial force and the deflec-
tion is relatively small. Equation �14� also assumes that the nano-
wire in test is in an isolated state, i.e., the interaction energy
between nanowires is not accounted. When the two nanotubes are
close to each other, their in-plane van der Waals force �per unit
length� can be much larger than Pe of the transverse normal force
�per unit length� due to the nanotube/substrate interaction �36�,
which can cause the change of the buckling wavelength of nano-
tubes �34,36�. By using the nondimensionalization scheme of Eq.
�7� and taking the variation, Eq. �14� now becomes as

1

4�
−l1

l2

W���W��d� +�
−�1

�2

�W − �W1/4��Wd� − F�
−l1

l2

�D���d� = 0

�15�

Here, the dimensionless parameter � is defined as

� =
k2

k1
�3/4 = 4�4 2� 


�E�R
� E�

2E1
�3/16

�16�

Clearly, ���
 /RE� �
 has the unit of N m−1 and E� of N m−2�.
So the adhesion effect �
� and cylinder size effect �R� are incor-
porated in the parameter �. For different materials, 
 /E� is around
10−9−10−12 m �37–39�. Our computations show that in general
cases, only when ��10−3 can this dimensionless parameter has
�significant� impact on the deflection behavior of the cylinder.
Physically, this means that only when the wire radius R is of the
micron scale or smaller can the adhesion effect ��� has impact on
the cylinder deflection. This dimensionless parameter � �for cyl-
inder� also reminds us the famous dimensionless number defined
by Tabor �40� for the contacting spheres and it is thus often re-
ferred to as Tabor number. Tabor number holds the vital role of
differentiating different contact models �41–43�. Tabor number is
defined as 
= �R
2 / �E�2zo

3��1/3 �R is the sphere radius and zo is the
equilibrium separation of atoms�. zo arises here because of the

Lennard-Jones potential �43�. � here plays the same role for cyl-
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nder as that of 
 for the sphere, which is to evaluate the adhesion
ontribution as compared with the elastic one. One mathematic
istinction is that larger R results in smaller � but larger 
.
Now in each element, we introduce the following interpolation:

W = 

i=1

4

Ni���di �17�

ere, �=� /Le and Le is the element length. d1 and d3 are the nodal
isplacements; d2 and d4 are the nodal rotations. Ni are the inter-
olation functions defined as follows �44�:

N1��� = 1 − 3�2 + 2�3, N2��� = Le��1 − 2� + �2� ,

N3��� = �2�3 − 2��, N4��� = Le�
2�� − 1� �18�

Then substitute Eq. �17� into Eq. �15� and use the routine finite
lement procedures to formulate Eq. �15�, a nonlinear equation set
ith dis as unknown is obtained �44�. Here again, keep in mind

hat lift-off points �1 and �2 in Eq. �15� are unknown, too. Besides
he Newton–Rhapson method �45�, the steps of solving Eq. �15�
re as follows: �1� first, guess the finite element nodal
isplacement/rotation �di� and the lift-off points �1 and �2; �2�
ubstitute them into Eq. �15� to have the finite element formula-
ion and find the solution; �3� check the displacement solution to
nd out new �1 and �2; and �4� go back to step �2� and iterate until

he displacements, �1 and �2, are converged. When searching the
ew lift-off points, we only need to seek two points �1 and �2, at
hich the left and right sides begin to sink into the elastic me-
ium. There is a possible scenario called discontinuous contact, as
hown in Fig. 2�b�. But for this discontinuous contact scenario to
ccur, the concentrated load is so large and well beyond the ma-
erial strength range �16�, which makes it physically impossible to
ccur because the structure will be broken long before the discon-
inuous contact can occur. All our above derivations actually as-
ume the linear elasticity implicitly. Standard Oliver–Pharr inden-
ation involves large plastic deformation �6,7�. In the nanowire
ndentation test �10�, there are two contacting interfaces: the
ndenter/nanowire interface and the nanowire/substrate interface,
hich is also often referred to as the double contact �2�. At the
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Fig. 3 „a… The displacement compa
tact when l=4 and F=0.1, 0.2, respe
center, i.e., l1= l2=2. „b… The compari
ndenter/nanowire interface, severe plastic deformation may oc-
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cur. But as mentioned before, plastic deformation will change the
load distribution inside the indenter/nanowire contact zone, which
has little influence on the the nanowire deflection �2�. Our model
actually ignores the stress distribution details inside the indenter/
nanowire contact zone and uses a concentrated load modeling. For
the nanowire/substrate contact, the flexural bending transfers the
concentrated load to the whole nanowire and the nanowire/
substrate contact zone is relatively large. Therefore, plastic defor-
mation is not expected in the nanowire/substrate contact zone. The
receding contact models �11,13,14,18� reviewed and used by Feng
et al. �2� are all elastic ones. In all finite element computations
presented in this paper, the element number is fixed as 100, which
already shows very high accuracy. The nonlinear equation set ob-
tained by the finite element formulation is not sensitive to the
initial guess of lift-off points and cylinder displacement. Usually,
it only takes a few iterations to have the solutions converged.

3 Results and Discussions

3.1 Hertz Contact. Figure 3 shows �a� the displacements and
�b� the contact width of the rigid and flexible contact for relatively
short cylinder of l=4 under two different concentrated loads F
=0.1 and 0.2. The load is symmetric, i.e., l1= l2=2. For the rigid
contact, the displacement is calculated by Eq. �10�. Clearly, Eq.
�10� indicates the constant displacement for the whole cylinder.
W=0.1 /4=0.025 for F=0.1 and W=0.2 /4=0.05 for F=0.2. Be-
cause the half contact width is calculated accordingly by Eq. �11�
for both the rigid and flexible contacts, the constant displacements
of rigid contact all over the cylinder also means that the contact
width are constant, which forms the rectangular contact area. For
the flexible contact, the cylinder lifts-off and the lift-off points are
marked by two circles. The very counterintuitive thing about this
flexible contact is that the contact length does not depend on the
load magnitude �15,16,26,27�. As seen in Fig. 3�a�, F=0.2 just
pushes the cylinder deeper into the elastic medium than that of
F=0.1; the two deflections share the same lift-off points and �1
=�2=� /2 �16,26�. For shorter cylinder, for example, l��, the
cylinder has less flexurality and the whole cylinder sinks into the
elastic medium with the varying displacements �26�. For the flex-
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ontact area is an ellipselike area. The maximum half contact
idth is at �=0, at �=−�1, and �2 in which the half contact width

s zero. Clearly, the contact areas of the rigid and flexible contacts
re significantly different, which has a direct impact on the evalu-
tion of the nanowire hardness �defined as the ratio of the concen-
rated load to the contact area� �2,6,7�. In this study, the dimen-
ionless cylinder length l is varied to change its flexurality. Figure
shows �a� the deflections and �b� the contact width of l=8 with

he symmetric loads of F=0.1 and 0.2, respectively. Interestingly,
he cylinder length change has no influence on the contact length
n the flexible contact and it still remains the same as �1+�2=�.
ompared with the case of l=4 with the same concentrated load,
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the displacements of l=8 outside the contact area ��W���, ��
−�1, and �	�2� tilt much higher. But the displacement inside the
contact area �W���, −�1����2� remains the same. So as the re-
sult, for the flexible contact, the contact width are the same as
those of l=4 under the same concentrated load F. As mentioned
before, for the rigid contact, the concentrated load F needs to be
�simply� transformed to as the line load of F / l uniformly distrib-
uted on the cylinder. Now for l=8, the displacement of rigid con-
tact now become W=0.1 /8=0.0125 for F=0.1 and W=0.2 /8
=0.025 for F=0.2. Consequently, according to Eq. �11�, the con-
tact width of the rigid contact also changes. Figure 5 shows the
asymmetric contact scenario and the cylinder length is l=8. The
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oncentrated load F is located at l1=2.4 and l2=5.6. Equation �10�
annot differentiate the difference between the symmetric and
symmetric loadings. Therefore, the cylinder displacements and
ontact width of the rigid contact in Fig. 5 are the same as those in
ig. 4. Obviously, for the deflection profiles of the asymmetric

oading in Fig. 5 are quite different from those of the symmetric
nes in Fig. 4. However, the contact lengths and the displacements
nside the contact zone remain the same as those in Fig. 4. There-
ore, symmetric and asymmetric loadings result in the same con-
act area in the flexible contact.

Now, let us summarize the differences between the rigid contact
odel and the flexible contact model here. The rigid contact
odel �24� transforms the concentrated load to a uniformly dis-

ributed line load and it cannot tell the difference between sym-
etric and asymmetric loading. With the concentrated load fixed,

he cylinder length change will alter the line load magnitude;
herefore, the displacement and the half contact width change ac-
ordingly. For the flexible contact of slender cylinder �for ex-
mple, l�4�, the contact length and displacement inside the con-
act zone do not depend on the cylinder length l. The contact
ength is also independent of the concentrated load magnitude.
arger concentrated load just pushes the same portion of the cyl-

nder deeper into the elastic medium, which enlarges the displace-
ent inside the contact area and the contact width. The symmetric

nd asymmetric loadings do alter the overall deflections of the
ylinder. But the displacement inside the contact area and the
ontact width remain the same for the symmetric and asymmetric
oadings with the same magnitude. Figure 6 is another way of
utting the above summarization in figure. Figure 6 plots the
/�2�R as a function of F for l=4 and l=8 and keep in mind that
W=A /�2�R of Eq. �11�. As for the flexible contact, A /�2�R is
function of � and in Fig. 6, we take its maximum value, i.e.,
hen �=0. For both the contacts, the curves keep monotonously

ncreasing. For the flexible contact, the cylinder length l has no
nfluence on the contact width. As for the rigid contact, the longer
he cylinder means the F smaller line load, so the curve of l=8 is
lways below that of l=4.

3.2 Adhesive Contact. The adhesive contact is computed by
he finite element formulation of Eq. �15�. When �=0, the results
re expected to be the same of those obtained by Eq. �A1� given in
he Appendix, our finite element computation results match �al-

ost� exactly as those of Eq. �A1�. One of the interesting and also
ounterintuitive results about the Hertz flexible contact is that the
arameters, such as the loading location/symmetry, the cylinder
ength, and magnitude of the concentrated load have no influence
n the dimensionless contact length, which is a constant of �. In
his section, we will examine closely how the variation of � can
hange the contact length and displacement.

Figure 7 shows the cylinder deflections of l=4 and F=0.1 with
−3 −3
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Fig. 6 „a… The comparison of A /�2R
narios as a function of F for l=4 and
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contact scenarios as a function of l
ifferent �=0, 1�10 , and 3�10 . Here, F is symmetrically
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loaded. �=0 is the Hertz contact and �1=�2=� /2. For �=1
�10−3 the contact length becomes larger as �2=1.76 and so does
the displacement inside the contact area. As for �=3�10−3, the
whole cylinder is now in contact with the elastic medium and is
pushed deeper. As seen from Fig. 7, the cylinder bending shapes
almost have no change, so the force per unit length due to the
cylinder bending �E1Iwxxxx� almost has no changes, too. As indi-
cated by Eq. �13�, when considering the adhesion effect, the elas-
tic foundation is like a softening spring. Therefore, in comparison
with the Hertz contact, the adhesive contact has to increase either
the contact length or the displacement inside the contact area or
both to balance the same amount of external load F. Figure 8
examines the cylinder contact of l=4 and �=1�10−3 under two
different loads of F=0.1 and 0.2, respectively. It is interesting to
notice that larger F has smaller contact length. �2=1.68 for F
=0.2 and �2=1.76 for F=0.1. As seen in Fig. 8, under larger F, the
cylinder deflection is more “curvy” and the cylinder sinks much
deeper into the elastic foundation, which makes the force exerted
by the foundation larger and this can serve as a qualitative expla-
nation for why larger load has smaller contact length. About the
independence of the contact length on the load magnitude, we
need to point out that there is no shear force inside the Winkler
foundation and in the continuum modeling of elastic half-space,
the shear force does exist �12�. The shear force has significant
influence on this contact length �16,27�. But once the shear force
contribution is specified in the Reissner foundation, the contact
length is still independent on the load magnitude, which is also
demonstrated by the elastic half-space models �14,15,17�. Here, it
also needs to point out that there is no initial gap separating the
cylinder and elastic medium. As demonstrated by Zhang and Mur-
phy �27�, larger load has larger contact length when the cylinder/
beam is initially separated with a finite gap distance from the
elastic foundation. Figure 9 shows the center displacement W�0�
and �2 as a function of � under F=0.1 and F=0.2, respectively.
Clearly, as indicated in Fig. 9, larger F always has larger W�0� and
smaller �2, which is also shown in Fig. 8. As shown in Fig. 8, both
�2s of F=0.1 and 0.2 starts at �2=� /2 at �=0 �Hertz contact�. For
F=0.1, the whole cylinder is in contact with elastic medium at
�=1.56�10−3 and F=0.2 at �=2.64�10−3. And once the full
contact occurs, it keeps that way with the increase of �.

Now, let us examine how the cylinder flexurality influences the
contact. In Fig. 10 the cylinder length is l=8 and F=0.1. The
concentrated force is also symmetrically loaded and � varies as
�=0, 4�10−3, and 8�10−3, respectively. Now, �2=� /2 for �
=0 and �2=2.24 for 4�10−3. When �=8�10−3, the full contact
occurs. Compared with Fig. 7, under F=0.1, larger � is required
for longer cylinder to have full contact. We also notice that the
cylinder deflection shape has very significant change at the full
contact. In Fig. 11, we examine the deflections of this longer
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F

dius as a Function of load F

f the rigid and flexible contact sce-
espectively. For the flexible contact,
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=0.2 is more “curvy” resulting in a shorter �2=1.84 compared
ith �2=1.84 for F=0.1. Again, Fig. 12 shows the center dis-
lacement W�0� and �2 of this longer cylinder as a function of �
nder F=0.1 and F=0.2, which are very similar to those of Fig. 9.
he main difference is as follows: unlike that the full contact is
radually reached for shorter cylinder in Fig. 9, we see here the
ull contact is reached suddenly at �=4.48�10−3 for F=0.1 and
=7.2�10−3 for F=0.2. For F=0.1, �2=2.48 at �=4.32�10−3

ust before its sudden jump to �2=4 at �=4.32�10−3; for F
0.2, �2 is also 2.48 at �=7.04�10−3 just before its sudden jump

o �2=4 at �=7.2�10−3. So far, we are not clear about what
echanism causes the instabilitylike jump. The analogous thing is

he mode jumping phenomenon, which also occurs for a beam on
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a nonlinear elastic foundation �46,47�. When the axial compres-
sive load reaches a critical value in its post-buckling region, mode
jumping occurs in which the beam experiences a sudden discon-
tinuous change in the wavelength and magnitude of its post-
buckling configuration �46,47�.

We should talk about the contact under tension, i.e., J�0 case.
It is well known that in the rigid contact model of adhesive con-
tact, for example, the Johnson–Kendall–Roberts �JKR� model for
the contact of spheres �12�, when the load becomes zero, the
spheres will not separate from each other unlike those of the Hertz
contact model. Because of adhesion, the spheres can withstand the
tension and they will separate only when the external tension load
reaches some critical value �12�, which is also true for the adhe-
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ive contact of a cylinder �24�. The minimum tension required to
eparate the contacting bodies is called force of adhesion �12� or
ull-off force �24�, which has very important application in the
xperimental measurement of adhesion �12,24�. But here, it is
ifficult for us to define the pull-off force for the flexible contact.
nlike the rigid contact model in which the cylinder moves up

nd down with one displacement for the whole cylinder, the cyl-
nder displacement of the flexible contact model is different from
oint to point. As seen from Fig. 13, when the load is compressive
J	0�, only the portion around the loading location is in contact;
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when the load is tensile �J�0�, the portion around the loading
location separates from the elastic medium instantly, but the two
portions around the free ends are now in contact. The only way for
the cylinder of the flexible contact to be freed from contact is to
further increase the tension until it pulls the whole cylinder out of
the elastic medium. As seen from Figs. 3–5, the cylinder
flexurality/length and loading location have significant impact on
when the whole cylinder separates from the elastic medium. It
will be of great trouble for the flexible contact model to measure
the pull-off force to determine the adhesion.
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Conclusion
In the rigid contact model, the elastic deformation occurs only

round the contact interface and the structure overall stiffness is
ot accounted, which works fine for the structures, such as sphere
nd punch. However, for structure such as cylinders, especially
hen its ratio of length to radius is large, the structural overall

tiffness/flexurality will have significant impact on the contact.
ue to the structural flexurality and the compatibility conditions,

he cylinder may have the lift-off phenomenon. And we show that
ue to this lift-off mechanism, the difference between the flexible
ontact and rigid contact can be very significant. In the Hertz
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contact of the slender cylinder, because of the lift-off mechanism,
the cylinder has a constant contact length independent of the load
magnitude, location, and cylinder length. The cylinder displace-
ment and contact width depend only on the load magnitude. The
adhesion together with the cylinder dimensions �radius and
length� has impact on the cylinder contact length, displacement,
and contact width. Under the same conditions, the adhesive con-
tact always has the larger contact length than that of the Hertz
contact. In our study, a dimensionless parameter � is defined and
���
 /RE�, which indicates the interaction between the adhesion
energy 
, contacting bodies’ elastic property E�, and the cylinder
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there is no fractures at those separation points �continuity of dis-

F
tension and compression
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radius R. Larger � always results in the larger contact length.
When � is large enough, the bending cylinder is unable to over-
come the adhesion force, no lift-off occurs and the full contact
scenario is formed.
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Appendix

The solution forms to Eq. �9� are as follows �26�:
W = �
W1 = A1�3 + B1�2 + C1� + D1

W2 = A2 cosh � sin � + B2 cosh � cos � + C2 sinh � sin � + D2 sinh � cos � −
F

2
sinh���cos � +

F

2
cosh � sin���

W3 = A3�3 + B3�2 + C3� + D3


 �A1�
here Ai, Bi, Ci, and Di �i=1,2 ,3� are the 12 unknown constants
o be determined. Because the lift-off points �1 and �2 are also
nknown, there are total 14 unknowns to be determined. There-
ore, 14 equations in total are needed to determine the above 14
nknowns. Four equations are from the boundary conditions, eight
rom the matching conditions and two from the constraint condi-
ions.

For a free-free cylinder, the following four boundary conditions
old, which indicate the vanishing of the moment and shear force
t the ends

d2w1

dx2 �− L1� = 0,
d3w1

dx3 �− L1� = 0,
d2w3

dx2 �L2� = 0,

d3w3

dx3 �L2� = 0 �A2�

t the lift-off points −x1 and x2, the following eight matching
onditions must be satisfied �26,27�, which indicate the continuity
f the displacement, slope, moment, and shear.

w1�− x1� = w2�− x1�,
dw1

dx
�− x1� =

dw2

dx
�− x1� ,

d2w1

dx2 �− x1� =
d2w2

dx2 �− x1�,
d3w1

dx3 �− x1� =
dw2

dx2 �− x1�

w2�x2� = w3�x2�,
dw2

dx
�x2� =

dw3

dx
�x2� ,

d2w2

dx2 �x2� =
d2w3

dx2 �x2�,
d3w2

dx3 �x2� =
d3w3

dx3 �x2� �A3�

hese matching conditions, in essence, play the role of compat-
bility and equilibrium conditions, which physically guarantee that
placement and slope� and the continuity of moment and shear
force. The boundary/matching conditions given by Weitsman �16�
for an infinite beam are different from above ones and Gladwell
�14� pointed out that Weitsman’s boundary/matching conditions
were problematic. Zhang and Murphy �26� showed that Weits-
man’s boundary/matching conditions were very good approxima-
tion for a very long beam. The same matching conditions as those
in Eq. �A3� were also obtained by Ghatak et al. �20�. At the lift-off
points, there are also two constraint conditions, which tell when
the cylinder is in contact with the elastic medium �26�

w1�− x1� = 0, w3�x2� = 0 �A4�
Equations �A2�–�A4� offer 14 equations in total to solve the above
14 unknowns. Because of the unknown property of �1 and �2, the
above 14 governing equations are highly nonlinear ones, which
require the Newton–Rhapson method �45� to solve. Once the 14
unknowns are obtained, the displacement Wi �i=1,2 ,3� is also
obtained.

References
�1� Park, H. S., and Klein, P. A., 2008, “Surface Stress Effects on the Resonant

Properties of Metal Nanowires: The Importance of Finite Deformation Kine-
matics and the Impact of the Residual Surface Stress,” J. Mech. Phys. Solids,
56, pp. 3144–3166.

�2� Feng, G., Nix, W. D., Yoon, Y., and Lee, C. J., 2006, “A Study of the Me-
chanical Properties of Nanowires Using Nanoindentation,” J. Appl. Phys., 99,
p. 074304.

�3� Wang, Z. L., 2000, “Characterizing the Structure and Properties of Individual
Wire-Like Nanoentities,” Adv. Mater., 12, pp. 1295–1298.

�4� Jing, G. Y., Duan, H. L., Sun, X. M., Zhang, Z. S., Xu, J., Li, Y. D., Wang, J.
X., and Yu, D. P., 2006, “Surface Effect on Elastic Properties of Silver Nano-
wire: Contact Atomic-Force Microscopy,” Phys. Rev. B, 73, pp. 235409.

�5� Salvetat, J., Briggs, G. A. D., Bonard, J., Bacsa, R. R., Kulik, A. J., Stökli, T.,
Burham, N. A., and Forró, L., 1999, “Elastic and Shear Moduli of Single-
Walled Carbon Nanotube Ropes,” Phys. Rev. Lett., 82, pp. 944–947.

�6� Oliver, W. C., and Pharr, G. M., 1992, “An Improved Technique for Deter-
mining Hardness and Elastic Modulus Using Load and Displacement Sensing
Indentation Experiments,” J. Mater. Res., 7, pp. 1564–1583.
J>0, Compression

J<0, Tension
z=0

Contact length of J>0

J>0

J<0

Contact lengths of J<0

Contact scenario of Tension

ig. 13 Comparison of the cylinder contact scenarios under
�7� Oliver, W. C., and Pharr, G. M., 2004, “Measurement of Hardness and Elastic

JANUARY 2011, Vol. 78 / 011007-11

E license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



0

Dow
Modulus by Instrumented Indentation: Advances in Understanding and Refine-
ments to Methodology,” J. Mater. Res., 19, pp. 3–20.

�8� Zhu, Y., Ke, C., and Espinosa, H. D., 2007, “Experimental Techniques for the
Mechanical Characterization of One-Dimensional Nanostructures,” Exp.
Mech., 47, pp. 7–24.

�9� Castillo, J., and Barber, J. R., 1997, “Lateral Contact of Slender Prismatic
Bodies,” Proc. R. Soc. London, Ser. A, 453, pp. 2397–2412.

�10� Yu, M.-F., Kowalewski, T., and Ruoff, R. S., 2000, “Investigation of the Radial
Deformability of Individual Carbon Nanotubes Under Controlled Indentation
Force,” Phys. Rev. Lett., 85, pp. 1456–1459.

�11� Keer, L. M., Dundurs, J., and Tsai, K. C., 1972, “Problems Involving a Re-
ceding Contact Between a Layer and a Half Space,” ASME J. Appl. Mech.,
39, pp. 1115–1120.

�12� Johnson, K. L., 1985, Contact Mechanics, Cambridge University Press, Cam-
bridge, UK, Chaps. 4 and 5.

�13� Pu, S. L., and Hussain, M. A., 1970, “Note on the Unbonded Contact Between
Plates and an Elastic Half Space,” ASME J. Appl. Mech., 37, pp. 859–861.

�14� Gladwell, G. M., 1976, “On Some Unbonded Contact Problems in Plane Elas-
ticity Theory,” ASME J. Appl. Mech., 43, pp. 263–267.

�15� Weitsman, Y., 1969, “On the Unbonded Contact Between Plates and an Elastic
Half Space,” ASME J. Appl. Mech., 36, pp. 505–509.

�16� Weitsman, Y., 1970, “On Foundations That Reacts in Compression Only,”
ASME J. Appl. Mech., 37, pp. 1019–1030.

�17� Weitsman, Y., 1972, “A Tensionless Contact Between a Beam and an Elastic
Half-Space,” Int. J. Eng. Sci., 10, pp. 73–81.

�18� Ratwani, M., and Erdogan, F., 1973, “On the Plane Contact Problem for a
Frictionless Elastic Layer,” Int. J. Solids Struct., 9, pp. 921–936.

�19� Yang, W., Wang, H., and Huang, Y., 2005, “Abnormal Tribological Behavior
of Multiwalled Nanotube Rafts. Part I: Aligned Rafts,” ASME J. Eng. Mater.
Technol., 127, pp. 383–392.

�20� Ghatak, A., Mahadevan, L., and Chaudhury, M. K., 2005, “Measuring the
Work of Adhesion Between a Soft Confined Film and a Flexible Plate,” Lang-
muir, 21, pp. 1277–1281.

�21� Ghatak, A., Chaudhury, M. K., Shenoy, V., and Sharma, A., 2000, “Menicus
Instability in a Thin Elastic Film,” Phys. Rev. Lett., 85, pp. 4329–4332.

�22� Ghatak, A., Mahadevan, L., Chung, J. Y., Chaudhury, M. K., and Shenoy, V.,
2004, “Peeling From a Biomimetically Patterned Thin Elastic Film,” Proc. R.
Soc. London, Ser. A, 460, pp. 2725–2735.

�23� Kendall, K., 1994, “Adhesion: Molecules and Mechanics,” Science, 263, pp.
1720–1725.

�24� Chaudhury, M. K., Weaver, T., Hui, C. Y., and Kramer, E. J., 1996, “Adhesive
Contact of Cylindrical Lens and a Flat Sheet,” J. Appl. Phys., 80, pp. 30–37.

�25� Chen, S., and Gao, H., 2006, “Non-Slipping Adhesive Contact of an Elastic
Cylinder on Stretched Substrate,” Proc. R. Soc. London, Ser. A, 462, pp.
211–228.

�26� Zhang, Y., and Murphy, K. D., 2004, “Response of a Finite Beam in Contact
With a Tensionless Foundation Under Symmetric and Asymmetric Loading,”
Int. J. Solids Struct., 41, pp. 6745–6758.

�27� Zhang, Y., 2008, “Tensionless Contact of a Finite Beam Resting on Reissner
Foundation,” Int. J. Mech. Sci., 50, pp. 1035–1041.
11007-12 / Vol. 78, JANUARY 2011

nloaded 21 Mar 2012 to 159.226.231.78. Redistribution subject to ASM
�28� Kerr, A. D., 1964, “Elastic and Viscoelastic Foundation Models,” ASME J.
Appl. Mech., 31, pp. 491–498.

�29� Giannakopoulos, A. E., 2006, “Elastic and Viscoelastic Indentation of Flat
Surfaces by Pyramid Indentors,” J. Mech. Phys. Solids, 54, pp. 1305–1332.

�30� Yang, F., and Cheng, Y. T., 2009, “Revisit of the Two-Dimensional Indentation
Deformation of an Elastic Half-Space,” J. Mater. Res., 24, pp. 1976–1982.

�31� Biot, M. A., 1937, “Bending of an Infinite Beam on an Elastic Foundation,”
ASME J. Appl. Mech., 4, pp. 1–7.

�32� Nayfeh, A. H., and Mook, D. T., 1979, Nonlinear Oscillations, Wiley, New
York, Chap. 2.

�33� Jiang, H., Sun, Y., Rogers, J. A., and Huang, Y., 2008, “Post-Buckling Analy-
sis for the Precisely Controlled Buckling of Thin Film Encapsulated by Elas-
tomeric Substrate,” Int. J. Solids Struct., 45, pp. 2014–2023.

�34� Xiao, J., Jiang, H., Khang, D.-Y., Wu, J., Huang, Y., and Rogers, J. A., 2008,
“Mechanics of Buckled Carbon Nanotubes on Elastomeric Substrate,” J. Appl.
Phys., 104, p. 033543.

�35� Xiao, J., Ryu, S., Huang, Y., Hwang, K., Paik, U., and Rogers, J., 2010,
“Mechanics of Nanowire/Nanotubes In-Surface Buckling on Elastomeric Sub-
strate,” Nanotechnology, 21, p. 085708.

�36� Khang, D., Xiao, J., Kocabas, C., MacLaren, S., Banks, T., Jiang, H., Huang,
Y., and Rogers, J., 2008, “Molecular Scale Buckling Mechanics in Individual
Aligned Single-Wall Carbon Nanotubes on Elastomeric Substrate,” Nano Lett.,
8, pp. 124–130.

�37� Miller, R. E., and Shenoy, V. B., 2000, “Size-Dependent Elastic Properties of
Nanosized Structural Elements,” Nanotechnology, 11, pp. 139–147.

�38� Giri, M., Bousfield, D. B., and Unertl, W. N., 2001, “Dynamic Contacts on
Viscoelastic Film: Work of Adhesion,” Langmuir, 17, pp. 2973–2981.

�39� Sun, Y., Akhremitchev, B., and Walker, G. C., 2004, “Using the Adhesive
Interaction Between Atomic Force Microscopy Tips and Polymer Surfaces to
Measure the Elastic Modulus of Compliant Sample,” Langmuir, 20, pp. 5837–
5845.

�40� Tabor, D., 1977, “Surface Force and Surface Interactions,” J. Colloid Interface
Sci., 58, pp. 2–13.

�41� Johnson, K. L., and Greenwood, J. A., 1997, “An Adhesion Map for the
Contact of Elastic Spheres,” J. Colloid Interface Sci., 192, pp. 326–333.

�42� Zhao, Y.-P., Wang, L. S., and Wang, T. X., 2003, “Mechanics of Adhesion in
MEMS—A Review,” J. Adhes. Sci. Technol., 17, pp. 519–546.

�43� Zhang, Y., 2008, “Transitions Between Different Contact Models,” J. Adhes.
Sci. Technol., 22, pp. 699–715.

�44� Bathe, K. J., 1996, Finite Element Procedures, Prentice-Hall, Englewood
Cliffs, NJ, Chaps. 5 and 6.

�45� Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., 1992,
Numerical Recipes in Fortran, 2nd ed., Cambridge University Press, Cam-
bridge, UK, Chap. 9.

�46� Everall, P. R., and Hunt, G. W., 2000, “Mode Jumping in the Buckling of
Struts and Plates: A Comparative Study,” Int. J. Non-Linear Mech., 35, pp.
1067–1079.

�47� Zhang, Y., and Murphy, K., 2005, “Secondary Buckling and Tertiary States of
a Beam on a Non-Linear Elastic Foundation,” Int. J. Non-Linear Mech., 40,
pp. 795–805.
Transactions of the ASME

E license or copyright; see http://www.asme.org/terms/Terms_Use.cfm


