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Adhesive Contact of Nanowire in Three-Point Bending Test
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Abstract
A new adhesive receding contact model is presented in this paper for a nanowire in a three-point bending
test. Because of its flexability, the nanowire in such a test, may lift-off or separate from its supporting elastic
medium; this can dramatically change the nanowire boundary conditions and deformations. The changes of
the nanowire boundary conditions and deformations, have a significant impact on the interpretation of the
experimental data of the nanowire material properties. Through the model developed here, some explana-
tions are offered for the different and contradicting observations of the nanowire material properties and the
nanowire boundary conditions, found in recent experiments.
© Koninklijke Brill NV, Leiden, 2011
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Nomenclature

E1, ν1 Young’s moduli and Poisson’s ratios of nanowire, respectively.

E2, ν2 Young’s moduli and Poisson’s ratios of elastic supporting medium, re-
spectively.

E∗ Reduced modulus and 1/E∗ = (1 − ν2
1)/E1 + (1 − ν2

2)/E2.

γ The surface energy per unit area of a surface and 2γ is the work of
adhesion.

Ls Suspension span.

L1 and L2 Lengths of nanowire portions laid on the trench support.

R Nanowire radius.
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I = πR4/4 Nanowire cross-section moment of inertia.

Pe Line load (N ·m−1) due to nanowire contact with elastic
medium.

k1 = πE∗/2 Elastic foundation modulus.

k2 = 2 4
√

2R(πE∗γ )2 Coefficient of nonlinear softening spring.

W Nanowire deflection.

F Concentrated vertical load.

δD Dirac delta function.

β = 4
√

(E∗/(2E1))(1/R) Parameter (with unit of m−1) introduced to nondimen-
sionalize the governing equation.

l1 = βL1, l2 = βL2 Dimensionless lengths of portion laid on elastic medium.

ls = βLs Dimensionless suspension span.

w = βW Dimensionless nanowire deflection.

α = (k2/k1)β
3/4 A dimensionless parameter indicating the (order) of adhe-

sion contribution to the line load as compared with that due
to the Hertzian contact.

J = F/(4β2E1I ) Dimensionless concentrated vertical load.

1. Introduction

The so-called one-dimensional (1D) nanostructures [1], such as micro/nanotubes
[2–4], nanobelts [5] and nanowires [6–11] are important types of materials used
in gas sensors, high-frequency resonators, nanoscale light-emitting diodes, high-
resolution tips for atomic force microscopes (AFM), scanning tunneling micro-
scopes (STM), photovoltaics, etc. The mechanical properties of these 1D mi-
cro/nanomaterials are of interest for both technical and theoretical reasons. Due to
its high spatial resolution and the accuracy/sensitivity of direct force measurements,
the bending test with an AFM is commonly used for mechanical characterizations.
The 1D micro/nanomaterials in these tests are first suspended over porous mate-
rial [2–4, 6], or a strip [5], or an etched hole [7], or over a trench [8–11]. The
AFM tip then exerts a concentrated force on the suspended section to form a typical
three-point bending test [7]. The AFM tip is often placed at the center of the sus-
pended section, which is thus referred to as the midpoint test [7, 8]. By assuming
the Euler–Bernoulli beam model, [12] the midpoint displacement has the following
relationship with the testing material properties:

k = F

zmp
= K

E1I

L3
s

, (1)
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where k is the effective spring stiffness of the beam and the AFM measures the data
for the force–displacement (F–zmp) curves [5, 7–11]. The term F is the concen-
trated load exerted at the center of the beam; zmp is the beam midpoint displacement
which is also the maximum displacement for a clamped–clamped (C–C) beam and
a hinged–hinged (H–H) beam with the load at its center. K is a constant depend-
ing on the testing materials boundary conditions; K = 192 for the C–C boundary
conditions and K = 48 for the H–H boundary conditions. In equation (1), Ls is the
beam suspension length; E1 is the beam (bending) Young’s modulus and I is the
beam cross-sectional moment of inertia and I = πR4/4 for a solid circular beam
(R is the radius). Therefore, by measuring the midpoint displacement; the concen-
trated load; the suspension length; the radius; and choosing the boundary conditions
accordingly, the Young’s modulus of the testing material can be found from above
equation. Keep in mind that the spring stiffness k of a C–C beam (with the same
E1,R and Ls) is four times larger than that of a H–H beam because of the difference
in the K values.

It should be noticed that for the three-point bending test of a nanowire which is
bonded to the support by adhesion, the two boundary conditions at the nanowire
two ends can be either C–C or H–H [2, 5, 8, 9].

Because of the small size of nanowire/nanotube (which results in the large
surface to volume ratio), and because of the large adhesion effect [2–7], most
researchers assume C–C boundary conditions for a nanowire/belt/tube suspended
on a trench/pore. From equation (1) the Young’s modulus can be calculated from
E1 = kL3

s /(KI) with k supplied by the F–zmp data, measured by the AFM. With K

fixed at 192 for a C–C beam, I (R),Ls can be measured with relatively high accu-
racy. By analyzing the experimental F–zmp data [2, 5–7], many researchers found
that the Young’s modulus of Ag nanowire increases significantly with a decrease of
its diameter — usually 2–3 times that of the bulk value. Cuenot et al. [6] and Jing et
al. [7] offer a surface stress theory to explain the increase in the Young’s modulus
with decreasing Ag nanowire diameter. According to their theory, the increase of
the Ag nanowire Young’s modulus is proportional to R−3, which is also supported
by their experimental observations [6, 7]. However, the experiment by Wu et al.
[10] on Ag nanowires does not agree with the trend observed in previous exper-
iments and theories [6, 7]. Wu’s experiment shows that most of the measured Ag
nanowires Young’s moduli are higher than the bulk one but their Young’s moduli are
not sensitive to the change of nanowire radius at all, as shown in their Fig. 3 [10];
a novel fivefold twin microstructure mechanism is proposed to explain the increase
of the Ag nanowire Young’s modulus [10]. Here it is worth mentioning that there is
another possible mechanism responsible for the larger Young’s modulus observa-
tion/calculation. The equation E1 = kL3

s /(KI) derived from equation (1) does not
consider the axial force effect. Now because the AFM tip–nanowire friction coeffi-
cient is high (due to the large adhesion effect), it induces an additional tensile stress
inside the nanowire [13] and as a result the axial tension stiffens the structure [14,
15]. Therefore the tension and also Young’s modulus increase can both contribute
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to the increase of k (k = F/zmp), as measured in the experiment. In essence the
equation E1 = kL3

s /(KI) (or k = K(E1I/L3
s )Ls) takes into account the Young’s

modulus increase, to explain the increase of k. Unlike the midpoint test which mea-
sures the force–displacement data only at the suspension center [2–7, 10], Chen et
al. conducted the three-point bending test by measuring force–displacement data
for the whole profile of the suspended portions of the testing nanowires [8, 9].
The reason for conducting the multiple-point measurements rather than the single
point measurement is that unlike the model used in those experiments [2–7, 10]
which assumes the C–C boundary conditions for the testing nanowires, Chen et al.
found that the boundary conditions of the suspended nanowire may change with
the change of the diameter/load. This was verified by their experimental data [8, 9].
With multiple-point force–displacement data and curve fitting, the boundary condi-
tions can be specified [8, 9]. By taking into account that boundary conditions may
change, Chen et al. conclude that in their Ag nanowire test the Young’s modulus
of Ag nanowire was not significantly different from the bulk property [8]. Now
for the Young’s modulus test of the Ag nanowires, three different and contradict-
ing trends were observed: (1) Cuenot et al. [6] and Jing et al. [7] observed that
the Young’s moduli of Ag nanowires (diameter range of 30–250 nm in [6] and
20–140 nm in [7]) increases monotonously with the decrease of the diameter and
they were all larger than the bulk property; (2) Wu et al. [10] observed that the
Young’s moduli of Ag nanowires (diameter range of 13–35 nm) can be either larger
or smaller than the bulk property and Young’s moduli were found not to be sen-
sitive to the nanowires diameters at all; (3) Chen et al. concluded that there is no
size effect for Ag nanowires (diameter range of 65–140 nm) [8]. We are fully aware
that the Ag nanowires from different groups are fabricated/processed differently,
which can significantly change the nanowire material properties. However, Chen et
al. [8, 9] pointed out that the single point measurements as those done in references
[2–7, 10] may suffer from the drawback of assuming incorrect boundary condi-
tions. The same contradicting experimental observations on other types of nanowire
Young’s modulus measurements were also noticed by Park and Klein [16]. They
used the surface Cauchy–Born (SCB) model to compute the eigenfrequencies of a
gold nanowire and they found that for the same gold nanowires, the eigenfrequen-
cies of those with clamped–free (C–F) boundary conditions were reduced and the
eigenfrequencies of those with the C–C ones were increased [16], which is another
way of saying that the effective Young’s modulus of the C–F gold nanowire became
smaller and that of the C–C became larger. Their SCB model shows that boundary
conditions behave as a constraining condition which determines the eigenfrequen-
cies of a nanowire together with its surface effect [16]. Again, in Park and Klein’s
model [16], the boundary conditions are set a priori.

This paper presents a model describing the boundary conditions transition and
deformations of nanowires suspended on a trench with their ends bonded and sup-
ported by adhesion. Chen et al. [8, 9] came to the following conclusions in their
experiments with both Ag and GaN nanowires: (1) the nanowire boundary condi-
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tions were found to be C–C for those with small diameters and H–H for those with
larger diameters (in their experiments the suspended length Ls is fixed); (2) the
magnitude of the applied concentrated force influenced on the boundary condi-
tions transition; (3) a nanowire can have asymmetric boundary conditions of the
clamped–hinged (C–H) type; (4) as shown in their Fig. 3(d) and 3(e) of reference
[8], the deflection of a nanowire with a relatively large diameter is between a C–C
deflection curve and a H–H curve. Chen et al. also noticed intermediate boundary
conditions [9]. All these experimental observations can be explained by the model
presented in this work. Chen et al. [9] believe that adhesion and its competition
with the applied load is the key to understanding the boundary conditions transition
and our model agrees with that. We do not rule out the possibility that the Young’s
modulus of nanowire can be different from the bulk one because the thermodynam-
ically fewer imperfections, microstructures and surface effects of nanowires can all
alter the nanowire material properties. In this paper we assume the Young’s mod-
ulus of the nanowire is fixed and we change the parameters such as the nanowire
suspended length, the length of nanowire portion laid down on the support, radius,
concentrated load magnitude and adhesion to see how the nanowire deforms and
their boundary conditions change. All those parameters, mentioned above, have
significant impact on the nanowire boundary conditions. In the three-point bending
test for nanowires bonded with support by adhesion, the boundary conditions are a
key issue. As indicated in equation (1), the boundary conditions, being either C–C
or H–H, can contribute to a Young’s modulus evaluation being four times the other
value. In our model we find that the nanowire boundary conditions in general are
the intermediate ones, which is to say that the nanowire end is neither clamped nor
hinged. The hinged end can not take any bending moment and a rotation will oc-
cur; the clamped end can take a bending moment and there is no rotation. For the
end with the intermediate boundary conditions, it can take some bending moment
but there is also a rotation. The intermediate boundary conditions are common in
many as-grown or as-deposited film/substrate structures [17]. The nanowire bound-
ary conditions can be asymmetric, of the clamped–hinged (C–H) type [8, 9], with
K ≈ 107 in equation (1) for the C–H beam in the midpoint test [12]. The effective
structure stiffness of a beam with the intermediate boundary conditions or with the
asymmetric C–H boundary conditions, is between that with H–H boundary con-
ditions and that with C–C boundary conditions. The fact is that a nanowire with
intermediate boundary conditions or with C–H type during three-point bending test
may offer some insight into the experimental observations that the Ag nanowire
Young’s modulus is 2–3 times larger than its bulk one [6, 7].

Even in those experiments which assume the C–C boundary conditions, the re-
searchers all show their concerns for the boundary conditions of nanowires under
test and realize the importance of boundary conditions on determining the nanowire
Young’s modulus [2–7]. Sliding is one of the mechanisms which may cause the
change of boundary conditions [4, 5, 7, 8]. Although the AFM exerts a vertical
force, the AFM tip–nanowire contact [13] and the mid-plane stretching during
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(a)

(I) (II)

(III) (IV)

(b)

Figure 1. (a) Dimension of a nanowire under an AFM loading and its coordination system. The
schematic diagram of a beam laid on a trench. The beam dimensions and the coordinate system are
also shown. (b) Four typical boundary conditions of the beam under loading: (I) and (II) full contact,
(III) and (IV) partial contact.

nanowire deflection [18], can both induce a horizontal tensile force which can cause
the nanowire in a test to slide. Here the vertical direction is the z-axis direction
and horizontal direction is the x-axis direction as shown in Fig. 1(a). However, the
experimental observations show very little or no sliding [4, 5, 7]. Lift-off was pro-
posed as another possible mechanism causing the boundary conditions to change
[2, 8]. Unlike sliding which occurs in horizontal direction and can be observed
relatively easily by SEM imaging [5, 7], lift-off occurs in a vertical direction,
which is also experimentally difficult to observed in the three-point bending test
of nanowires. Cuenot et al. [2] assumed that strong adhesion should prevent lift-off
and thus the boundary conditions should be the C–C type. However, Chen et al. [9]
suspected that under a relatively large applied force, the adhesion may not be suffi-
cient enough to hold the nanowire ends clamped. Paulo et al. pointed out that ‘the
nonideal anchoring using adhesion forces’ will introduce ‘interfacial mechanical
instabilities’, which means the nanobeam may not be ‘solidly connected to prefab-
ricated microstructures’ [19]. To achieve ‘a mechanically rigid anchor’ (which is
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the clamped boundary condition), Paulo et al. used the vapor–liquid–solid (VLS)
method to grow the nanowires from small catalyst particles deposited on a substrate
[19]. Similarly, in order to make sure the nanowires two ends are clamped after they
are dispersed on a trench, Zhu et al. [1] and Wu et al. [10] enhanced the nanowires
bonding with the trench by electron-beam-induced deposition (EBID) welding. The
adhesion force is a relatively weak force and its effect stands out only when the sur-
face to volume ratio is large. When the nanowire diameter is small (the surface
to volume ratio is large) and applied force is relatively small, the adhesion effect
can be strong enough to hold the nanowire two ends clamped. However, when the
nanowire diameter is large or the applied force is large, the adhesion may not be
strong enough to hold the two ends clamped, which leads to the boundary condition
transition from the C–C type to the H–H one.

Lift-off is an essential topic in the research of receding contact [20, 21], un-
bonded contact [22–24] and tensionless contact [25–27]. In the Hertzian contact
of the flexural structures with an elastic medium [20–27], which has no adhesion,
there is only compressive stress inside the contact area. The fact that the contact-
ing flexural structures deflect and that the contacting bodies react differently to the
tension and compression are the reasons for the lift-off; and lift-off reduces the
contact area. The term ‘receding contact’ emphasizes the fact that the contact area
is smaller when loaded; the name of unbonded contact emphasizes the fact that
the structure is allowed to lift-off/separate from its contacting medium; the name
of tensionless contact emphasizes the fact that the unilateral response of two con-
tacting bodies, i.e., the contacting bodies react only in compression. Yu et al. [28]
developed a model for the carbon nanotube contact under indentation using Hertz
contact and ignoring the nanotube flexibility. The nanowires/nanobelts/nanotubes
are the ones with large aspect ratio of length to radius/width, which results in the
large flexibility. The contact of flexible structures is significantly different from
rigid/stiff ones. One of the significant differences is that the contact length of the
(very) flexible structures is independent of the load magnitude because of lift-off
[20–27], which is very counter-intuitive. It is worth pointing out that those models
[20–26] do not specify how ‘flexible’ the structures are and assume there is no ini-
tial gap/separation between two contacting body; Zhang and Murphy [27] show that
only when the structure is flexible enough and there is no gap, can the contact length
of flexible structures be independent of load magnitude. For the chunky structure
or for the case when two bodies are separated at the beginning, the contact length
is dependent on the load magnitude [27]. For the highly flexible 1D nanostructures,
the receding contact model is an appropriate one [29]. In the nanowire contact, ad-
hesion is also an important issue as discussed above. Chaudhury et al. [30] and
Chen et al. [31] developed an adhesive model for a cylinder contact with an elas-
tic half-space, but the flexibility of cylinder was again ignored. Adhesion induces
tensile force inside the contact area and as the result the adhesive contact (for exam-
ple, Johnson–Kendall–Roberts (JKR) model) has a larger contact area and deeper
normal displacement than the Hertzian one [32]. This paper models the contact of
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the nanowire with the trench support as an adhesive receding contact. In our model
the adhesion is to prevent/reduce lift-off and thus has the significant impact on the
boundary conditions transition as observed by Chen et al. [8, 9]. The formulation
of the receding contact problem can be either integral [20–25] or differential [26,
27]. If the supporting elastic medium is modeled as an elastic half-space, the con-
tact problem is in essence to solve a Boussinesq problem [32] and its formulation
can only be integral. When the supporting elastic medium is modeled on an elastic
foundation, the formulation can be either differential or integral. From a modeling
aspect, the elastic half-space model is a mathematically more difficult problem than
the elastic foundation one [33]. Compared with the differential formulation, the in-
tegral formulation is rather complex, lengthy and mathematically challenging. This
paper uses the elastic foundation model and has a differential formulation for the
contact problem. However, the parameters of the elastic foundation are derived from
the elastic half-space model.

2. Model Development

Figure 1(a) shows a cylinder with the Young’s modulus E1, Poisson’s ratio ν1,
radius R laid down on a trench with the Young’s modulus E2 and Poisson’s ratio
ν2. L1 and L2 are the lengths of the cylinder portions laid on the trench support
when there is no applied load. Ls1 and Ls2 are the lengths from the loading point to
the left and right edges, respectively. Ls = Ls1 +Ls2 is thus the cylinder suspension
length. The coordinate system is also shown in the Fig. 1(a). We mention above
that the cylinder may lift-off from the trench support, which leads to the different
contact scenarios. Figure 1(b) shows four different typical contact scenarios and
these contact scenarios as discussed later in detail are the key to understand the
cylinder deformation with different loading, adhesion and geometric conditions.

Let us first derive the pressure–displacement relation in the trench support area.
When the elastic medium is modeled as an elastic half space and for the time being
adhesion is ignored, the line load Pe resulted from the contact between the cylinder
and trench support is given as follows [32]:

Pe = πa2E∗

4R
. (2)

Here 1/E∗ = (1 − ν2
1)/E1 + (1 − ν2

2)/E2. The following relation holds [32]:

W = R −
√

R2 − a2 ≈ a2

2R
, (3)

where W is the displacement of the cylinder center sinking into the elastic medium
[31] and a is the half contact width. In the above equation the approximation is
only valid when a/R is very small [32]. So assuming a small a/R, we obtain the
following equation in conjunction with equations (2) and (3):

Pe = πa2E∗

4R
= πE∗

2
W = k1W. (4)
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Here k1 is the elastic foundation modulus defined as k1 = (πE∗)/2. When the ad-
hesion effect is considered, the following equation holds [30]:

Pe = πa2E∗

4R
− √

4E∗πγ a, (5)

where γ is the surface energy per unit area of a surface (with the unit of N · m−1)
[34], which is one half of the one defined in reference [30]. Again by applying the
geometric relation of equation (3), equation (5) is now written as the following:

Pe = k1W − k2W
1/4. (6)

Here k2 is defined as k2 = 2 4
√

2R(πE∗γ )2. Clearly by considering the adhe-
sion effect, the elastic foundation model of the elastic medium in this pressure–
displacement relation becomes nonlinear. Because here −k2 < 0, the elastic foun-
dation will behave as a softening spring [35]. When k2 is zero, equation (6) recovers
equation (4). The energy stored by the elastic foundation is as follows:

∫

C

∫ W

0
Pe dW dx =

∫

C

(
k1W

2

2
− 4

5
k2W

5/4
)

dx. (7)

Here C is the contact domain of the cylinder, which is unknown and as shown
later is dependent on various factors such as the applied force magnitude, nanowire
geometry and adhesion etc. In Fig. 1(a), when the full contact scenario is seen in
cases I and II, the domain C consists of two parts 0 � x � L1 and L1 + Ls �
x � L1 + Ls + L2. For the partial contact scenario, the domain C can be rather
complicate. For example, C in case III is [P1,L1] ∪ [L1 + Ls,L1 + Ls +L2 −P2];
C in case IV is [0,Q1]∪[Q2,L1]∪[L1 +Ls,L1 +Ls +L2 −Q4]∪[L1 +Ls,L1 +
Ls + L2 − Q3].

We will discuss later how we determine those contact zones.
The system energy E is now written as:

E =
∫ L1+L2+Ls

0

E1IW 2
xx

2
dx +

∫

C

(
k1W

2

2
− 4

5
k2W

5/4
)

dx

−
∫ L1+L2+Ls

0
FδD(x − xo)W dx. (8)

Here Wxx = d2W/dx2 and I is the second moment of inertia defined as I =
πR4/4; δD is the Dirac delta function and xo = L1 + Ls1 is the loading point of the
concentrated force F . The first term is the bending energy of the cylinder, the sec-
ond one is the energy stored in the elastic foundation and the third is the work done
by the concentrated load. If the principle of minimum potential energy (PMPE) is
applied, i.e., δE = 0, the following governing equation is obtained:

{
EIWxxxx = FδD(x − xo), noncontact,

EIWxxxx + k1W − k2W
−1/4 = 0, contact.

(9)

The above governing equations of the beam for the contact and noncontact domain
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are similar to those in references [26, 27]. The solution approach used by Weits-
man [26], Zhang and Murphy [27] is to give the analytical solution forms with the
undetermined constants first and then solve those constants by using the match-
ing/boundary conditions. There are two reasons why the solution approach used in
[26, 27] cannot be used here. Firstly, when there is adhesion (i.e., k2 �= 0), the gov-
erning equation in the contact domain is nonlinear and its analytical solution form
cannot be obtained. Here it is worth mentioning that even when k2 = 0, equation (9)
as a whole is still nonlinear because of the unknown property of contact domain re-
sulting from lift-off. Secondly, in the references [26, 27], the so-called ‘continuous’
contact scenario is assumed, which in essence prescribes the beam/cylinder defor-
mation shape. The tensionless contact problem in references [26, 27] is that the
whole beam is originally laid down on an elastic foundation and the assumption
of the continuous contact scenario is proved to be valid in the elastic range [26].
Here our case is that only (small) portions of the cylinder around the two ends are
originally laid down on the trench support, the contact scenario here is much more
complicate. Figure 1(b) shows four typical scenarios and there are other types of
contact. Especially in Fig. 1(b) case IV of partial contact scenario, the ‘discontinu-
ous’ contact is formed: i.e., different contact zones are formed and separated from
one another, which makes the above assumption of ‘continuous’ contact invalid in
references [26, 27]. The variety and unknown property of the possible deformation
shapes of the cylinder around the trench support make the solution approach used
in references [26, 27] extremely difficult if not impossible to be applied here. Here
the finite element approach is used to solve the problem. Before we start the finite
element formulation of the problem, the following nondimensionalization scheme
is introduced [26, 27]:

ξ = βx, ξo = βxo, w = βW, l1 = βL1, l2 = βL2,

(10)
ls1 = βLs1, ls2 = βLs2, ls = βLs, J = F

4β2E1I
.

Here β is defined as follow:

β = 4

√
k1

4E1I
= 4

√
E∗
2E1

1

R
, (11)

where β has the unit of m−1. The PMPE is applied again and the following dimen-
sionless equation is derived from equations (8) and (10):

∫ l1+l2+ls

0

1

4
wξξ δwξξ dξ +

∫

c

(w − αw1/4)dx

=
∫ l1+l2+ls

0
JδD(ξ − ξo)δw dξ, (12)
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where c is the dimensionless contact domain (c = βC) and here α is a dimension-
less parameter defined as follows:

α = k2

k1
β3/4 = 4

4
√

2

√
γ

πE∗R

(
E∗

2E1

)3/16

. (13)

Clearly here α ∝ √
γ /(E∗R). The adhesion effect (γ ) and cylinder size effect (R)

are incorporated in the parameter α, which as shown later is a key parameter in
determining the elastic deformation behavior of a micro/nanowire. This dimension-
less parameter α also reminds us of the famous dimensionless number defined by
Tabor [36] relating to contacting spheres, which is thus often referred to as Tabor
number. The Tabor number holds the vital role in differentiating different contact
models [34, 37, 38]. The Tabor number is defined as μ = [Rsγ

2/(E∗2z3
o)]1/3 (here

Rs is the sphere radius and zo is the equilibrium separation of atoms). The term zo
arises here because of the Lennard–Jones potential [34]. Here α plays the same role
for a cylinder as that of μ for a sphere. One obvious distinction here is that a larger
R results in a smaller α but a larger μ.

To have the finite element formulation, we introduce the following interpolation
for w:

w =
4∑

i=1

Ni(ζ )di, (14)

where ζ = ξ/ le; le is the element length; d1 and d3 are the nodal displacements;
d2 and d4 are the nodal rotations; and Ni are the interpolation functions defined as
follows [39]:

N1(ζ ) = 1 − 3ζ 2 + 2ζ 3, N2(ζ ) = leζ(1 − 2ζ + ζ 2),
(15)

N3(ζ ) = ζ 2(3 − 2ζ ), N4(ζ ) = leζ
2(ζ − 1).

We then substitute equation (14) into equation (12) and then use the routine fi-
nite element procedures to formulate equation (12) and a nonlinear equation set
with di unknowns is obtained [39]. Here keep in mind that the contact domain c in
equation (12) is still unknown. Physically the contact domain can only be within
[0, l1] ∪ [l1 + ls, l1 + ls + l2], which are the domains where the wire is originally
laid down on the trench support. Now, because the wire can lift-off/separate from
the trench support during the deformation process, various contact domains such
as the four typical examples shown in Fig. 1(b) can appear. Here the criterion of
the lift-off is taken as a displacement constraint of w < 0 [26, 27]. Besides the
Newton–Rhapson method [40] used to solve the nonlinear equation set, we also
need to check the nodal displacement one by one and once we find the lift-off points
of w < 0, the corresponding second integral term of equation (12) which accounts
the energy due to contact is set to be zero. Consequently the nonlinear equation set
derived from the finite element formulation is changed because of the change in the
contact domains. Our solution strategy can be summarized as follows: (1) guess an
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initial contact domain (for example, the full contact case) and initial cylinder nodal
displacements; (2) formulate finite element equation set according to equation (12)
and the corresponding contact domain, then solve the equations set via the Newton–
Rhapson method; (3) check the newly solved nodal displacement to find the new
contact domain; (4) go back to step (2) and iterate until the results converge. In
all the finite element computations presented in this paper, the element number is
fixed as 150. The nonlinear equation set obtained by the finite element formulation
is not sensitive to the initial guess of the contact domain. Usually it only takes a few
iterations (less than 20) to have the solutions converge.

3. Dimensional Analysis

A dimensionless analysis is needed for readers to better understand our numeri-
cal results presented in the next section. Because a nondimensionalization scheme
is used with equation (10), the interactions of adhesion, beam span, beam portion
laid on the elastic medium and the concentrated load are incorporated in the di-
mensionless parameters. Although the dimensionless nature governing equation of
equation (12), offers a more general study on the nanowire bending, the physical
meanings of our numerical analysis can be blurred without a detailed analysis and
evaluation on the those dimensionless parameters. Through this dimensional analy-
sis, reasonings on how the parameters used in our computation are taken are also
given.

Equation (11) gives the following equation:

β = 4

√
E∗
2E1

1

R
= D1

1

R
. (16)

Here D1 = 4
√

E∗/(2E1) is a constant depending on the Young’s moduli and Pois-
son’s ratios of the two contacting materials, E1,E2, ν1, ν2, respectively. Equa-
tion (5) is derived using the JKR model [30], which is established for two similar
homogeneous solids in contact [34]. Therefore, D1 = 4

√
E∗/(2E1) ≈ 1. The dimen-

sionless parameter ls = βLs = D1Ls/R of equation (10) in essence indicates the
ratio of the cylinder suspension length to its radius. In the experiment by Chen et
al. [8, 9], Ls is fixed and R is varied, which is equivalent to varying the dimension-
less parameter ls here. Large ls physically indicates a slender beam under test and
small ls indicates a ‘chunky’ beam. The energy expression of equation (8) does not
account for the contribution of shear, which is to say that the Euler–Bernoulli beam
model is applied to the nanowires. The Euler–Bernoulli beam model requires the
beam to be slender. On the other hand, ls (or Ls/R) should not be too large because
the nanowires with large Ls/R sag [10, 11], which makes the above beam theory
inapplicable. In the experiment of the nanowires with Ls/R ≈ 4000, the nanowires
behave more like an elastic string rather than a beam [11]. Therefore, in all our
computations 10 � ls � 100.
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The term α in equation (12) is defined as follows by equation (13):

α = 4
4
√

2

√
γ

πE∗R

(
E∗

2E1

)3/16

= D2

√
γ

πE∗R
. (17)

Here D2 = 4 4
√

2/π2(E∗/(2E1))
3/16 is a constant depending on the material proper-

ties of two contacting bodies. As mentioned above, the dimensionless α parameter
incorporates, together, the adhesion effect of γ and size effect of R. The term α

(also defined as α = (k2/k1)β
3/4 by equation (13)) in essence indicates the (or-

der of) adhesion contribution to the line load, as compared with that due to the
Hertzian contact, which is directly associated with elastic foundation modulus k1.
For many different materials, γ /E∗ is around 10−9–10−12 m [41–43]. Our com-
putations show that in general cases, only when α � 10−3, can this dimensionless
parameter have a significant impact on the deflection behavior of the wire. Physi-
cally this means that the wire radius R has to be of a micron scale or smaller for
α to be large enough to influence the wire deflection.

The dimensionless load J defined in equation (10) is as follows:

J = F

4β2E1I
= F

πR2
√

E1E∗ ≈ F

E1πR2
. (18)

Here E1πR2 = E1A (where A = πR2 is the cylinder cross-section area) is the wire
axial stiffness. Therefore, J indicates the ratio of the vertical load to the wire axial
stiffness, which should be (very) small. The maximum J taken in this paper is
2 × 10−2 and all others are between 10−4 and 10−3.

4. Results and Discussions

In all our results presented here, we set L1 = L2 and Ls1 = Ls2 = Ls/2, which
prescribes a symmetric configuration and loading scenario. The formulas for the
deflections of the H–H, C–C and C–H beams with the beam span of Ls and the
concentrated load F at the center, are taken from Roark’s book [12] and nondimen-
sionalized according to equation (10) for the comparison reasons.

Figure 2 shows the cylinder beam deflections with three different α’s under J =
5 × 10−3, ls = 10 and l1 = 2. The dimensionless deflections of the C–C and H–H
beams with J = 5 × 10−3 and ls = 10 are also plotted. The rotation angles of a
C–C beam at its ends ξ = l1 and ξ = l1 + ls are zero. With the symmetric load,
the rotation angles of an H–H beam at ξ = l1 and ξ = l1 + ls are with the same
magnitude but the opposite sign. In Fig. 2, the H–H beam rotation angle at ξ = l1
is calculated as θ = arctan(J l2

s /4) = arctan(0.125) [12]. It is seen in Fig. 2 that
the deflection curve of α = 0 is very similar to that of an H–H beam. Its rotation
angle at ξ = l1 is arctan(0.1168), which is only a little smaller than that of an H–
H beam. The rotation angles at ξ = l1 of the α = 4 × 10−3 and α = 1 × 10−2

are both arctan(0.0275), which is very small and close to zero rotation angle of a
C–C beam. It also needs to point out that for beams on elastic foundation, their
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Figure 2. The beam deflections of J = 5 × 10−3, ls = 10 and l1 = 2. The corresponding deflections
of the clamped–clamped (C–C) and hinged–hinged (H–H) beams with J = 5 × 10−3 and ls = 10 are
also plotted for the comparison reasons. For all the plots of the elastic foundation model presented in
this paper, α varies as α = 0,4 × 10−3 and 1 × 10−2.

displacements at the trench edges (i.e., ξ = l1 and ξ = l1 + ls) are not zero. This
is very obvious for the deflection curves of α = 4 × 10−3 and α = 1 × 10−2 in
Fig. 2. The term α is also the parameter indicating the nonlinear softening effect
of a spring [35]. The larger α here means a larger softening/adhesive effect, which
requires a larger displacement to balance the same amount of exerted force [32].
The deflection curves of α = 4 × 10−3 and α = 1 × 10−2 are very similar to that
of a C–C beam. Their displacements at the trench edges are the main reason for
their larger deflections than that of a C–C beam. Now it is clear under this relatively
small amount of loading (J = 5 × 10−3) and given geometry (ls = 10 and l1 = 2),
that adhesion does play an very important role of transforming the beam deflection
from an H–H one to a C–C one. It is noticed that in Fig. 2 the deflection of the α = 0
curve is always larger than that of the H–H beam. Keeping in mind that the H–H and
C–C beams have a span of Ls and the beams of the elastic foundation model have a
total span of Ls +L1 +L2. The deflection curves of α = 4×10−3 and α = 1×10−2

have the full contact scenario of case I as indicated in Fig. 1(b). There is lift-off for
the α = 0 case, which has the partial contact scenario of case III. Although the
elastic foundation restricts the deflection curve of α = 0 to have a slightly smaller
rotation angle at ξ = l1 than that of an H–H beam, the facts that the longer beam
is more flexible and the additional displacement at the trench edges are responsible
for the larger deflection of α = 0.

In Fig. 2 we see how the adhesion changes the beam deflection under the small
loading. Now let us examine how the load can change the beam deflection. In Fig. 3
the geometry of the beam is the same, with ls = 10 and l1 = 2 and only the load
is changed to a larger one of J = 2 × 10−2. Now we see that the deflection curves
of α = 0 and α = 4 × 10−3 are almost overlapped each other. Their rotation an-
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Figure 3. The beam deflections of J = 2 × 10−2, ls = 10 and l1 = 2. The corresponding deflections
of H–H and C–C beams are with J = 2 × 10−2 and ls = 10.

Figure 4. The beam deflections of J = 2 × 10−2, ls = 10 and l1 = 1.

gles at ξ = l1 are now the same as that of an H–H beam as θ = arctan(J l2
s /4) =

arctan(0.5). So compared with the deflection curve of α = 4×10−3 in Fig. 2 which
is like a C–C one, that of α = 4 × 10−3 under a larger load in Fig. 3 is now more
like an H–H one. Now both curves lift-off and have the partial contact scenario of
case III. As for deflection curve of α = 1 × 10−2, it still has the full contact sce-
nario of case I, but its rotation angle at ξ = l1 now becomes arctan(0.116), which
means the deflection curve of α = 1 × 10−2 under this larger load is neither that
of a C–C beam nor that of an H–H beam. In Fig. 4, we shorten l1 as l1 = 1 to see
how this affects the beam deflections. In Fig. 4 all parameters are kept the same as
those in Fig. 3 except for l1. Now we see all these three deflection curves lift-off
and have the contact scenario of case III. And their rotation angles at the trench
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edges are (almost) the same as that of an H–H beam, which is arctan(0.5). The dis-
placements due to the compression of the elastic foundation are the reason for these
three deflections being larger than that of an H–H beam. Chen et al. [8, 9] noticed
that the boundary conditions change for a nanowire under different loads and their
explanation is that under a large load the nanowire ends cannot adhere firmly to the
substrate and therefore the boundary conditions become hinged ones; under a small
load the nanowires adhere well to the substrate, which leads to the clamped bound-
ary conditions. Our computation results presented in Figs 2–4 generally agree with
their explanation. However, because their model does not include the adhesion and
the portion length l1 as the parameters, as demonstrated and discussed later, things
are more complicated and adhesion is not the only reason.

From Figs 2–4, we see how the load, adhesion and the portion length laid down
the elastic foundation affect the beam deflection behavior. In Figs 2–4, the suspen-
sion span ls is fixed as 10, which physically means a relatively ‘chunky’ beam.
Now let us examine how the slender beams behave. Compared with those in Fig. 2,
ls = 20 and l1 = 4 in Fig. 5 are both doubled; the load J is taken as J = 1 × 10−3.
Because the beam flexural rigidity is proportional to L3

s/I = 4l3
s /(πR) [12], a much

smaller load of J = 1 × 10−3 (one fifth of that in Fig. 2) is taken in Fig. 5 to keep
the small deflection in order to compare them to those of the C–C and H–H beams,
which are derived from a linear theory. In Fig. 5 all three deflection curves with
α = 0,4 × 10−3,1 × 10−2 are between the deflection curves of a C–C and an H–H
beam. Now for an H–H beam the rotation angle at ξ = l1 is arctan(0.1), the rotation
angles of the three curves are arctan(5.5×10−3) for α = 0, arctan(4.74×10−3) for
α = 4 × 10−3 and arctan(8.95 × 10−3) for α = 1 × 10−2, respectively. The cylin-
der beam with α = 1 × 10−2 has the largest deflection and α = 0 has the smallest.
Again, this is due to the fact that larger α has larger softening effect and larger dis-
placement is required at the contact portion to balance the external force. The curves
of α = 0 has the partial contact scenario of case IV and the other two have the full

Figure 5. The beam deflections of J = 2 × 10−2, ls = 20 and l1 = 4.
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contact scenario of case I. In Fig. 6 all the parameters are kept the same as those in
Fig. 5 except that the load J is changed to J = 4 × 10−3. Similar to those in Fig. 5
the three curves in Fig. 6 are still between the two curves of a C–C beam and an
H–H beam. Now the rotation angle of an H–H beam becomes as arctan(0.4); the ro-
tation angle of α = 0 is about arctan(3.3 × 10−2), the other two have the rotation of
arctan(3.5 × 10−2). These three curves all have the full contact scenario of case II.
In Fig. 7 we examine the effect of l1 on the curve deflection. All the parameters
in Fig. 7 are kept the same as those in Fig. 5 except that l1 is shortened as l1 = 2.
The three curves are still between the curves of a C–C beam and an H–H beam.
Now the deflection curve of α = 0 lifts-off and has the partial contact scenario of
case III; its corresponding rotation angle is arctan(4.06 × 10−2). The rotation an-

Figure 6. The beam deflections of J = 4 × 10−3, ls = 20 and l1 = 4.

Figure 7. The beam deflections of J = 1 × 10−3, ls = 20 and l1 = 2.
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Figure 8. The beam deflections of J = 1 × 10−4, ls = 100 and l1 = 10.

gles of α = 4 × 10−3 and α = 1 × 10−2 are both approximately arctan(3.7 × 10−3)

and they both have the full contact scenario of case I.
For a very slender beam with ls = 100, l1 = 10 and J = 1 × 10−4 as shown

in Fig. 8, the three curves are almost exactly like that of a C–C beam and it is
clear that for this very slender beam its deflection is not sensitive to the adhesion.
The rotation angle of α = 0 is arctan(3.1 × 10−3) and it has the partial contact
scenario of case IV. The rotation angles of 4 × 10−3 and α = 1 × 10−2 are both
approximately arctan(3 × 10−3) and they also both have the full contact scenario of
case II. In comparison, the rotation angle of an H–H beam now is arctan(0.25). It
also needs to emphasize here that for this very slender beam of ls = 100, the beam
deflection pattern of the elastic foundation model is not sensitive to both the load J

and the beam portion laid down on the trench l1. In our computation we change J

to J = 5 × 10−4 and l1 = 20, the deflection curves look very similar to what we see
in Fig. 8, that is all the curves are very close to that of C–C beam and it is thus not
plotted again.

Figure 9 shows an asymmetric deflection of the beam with J = 1 × 10−4, α =
0, ls = 100 and l1 = 2. The deflection of a C–H beam is also plotted together with
those of a C–C beam and an H–H beam. It is quite counter-intuitive that such asym-
metric deflection appears in the symmetric structure (l1 = l2) under a symmetric
load (J is loaded at the center). Here we need to point out the following facts: the
beam model used in this paper is the Euler–Bernoulli beam theory and the load is
carefully chosen in order to keep small linear deflection. There are only two sources
contributing to the nonlinearity of equations (9) or (12). The first one is the adhe-
sion, which is clearly indicated in equation (9) and is responsible for the softening
effect of the elastic foundation. The second one is the contact area, which is not
known a priori. This unknown property of contact area has already been pointed
out as the major obstacle in solving the tensionless contact problem [22, 27]. This
asymmetric deflection is reported in the experiments by Chen et al. [8, 9] and they
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Figure 9. The beam deflections of J = 1 × 10−4, ls = 100 and l1 = 2. The corresponding deflections
of the C–C, H–H and clamped–hinged (C–H) beams are also plotted for the comparison. Here the
foundation model shows the asymmetric deflection.

ascribe this asymmetry vaguely to the adhesion influence on the beam boundary
conditions. Because α is set as zero in our computation case presented in Fig. 9,
physically the unknown property of the contact area (or say lift-off) is the reason
for the asymmetric deflection. Mathematically, the conditions to locate the vari-
able lift-off points are called transversality conditions [44] or matching conditions
[27]. The transversality conditions together with linear governing equations form a
highly nonlinear equation set [26, 27] and this nonlinearity due to the transversality
conditions is mathematically responsible for the asymmetric deflection of the above
nanowire with a symmetric configuration and loading.

Chen et al. [8, 9] found that for a nanowire with a large radius, the H–H boundary
conditions fit; for a nanowire with a small radius, the C–C boundary conditions fit.
In the experiments of Chen et al. [8, 9], the beam suspension length (Ls) is fixed and
the nanowires with different radius R are tested under an AFM load at the center.
As mentioned before, their large radius case corresponds to our small ls case and
their small radius case corresponds to our large ls case. The results presented in our
Figs 4 and 8 reflect the (general) observations by Chen et al. [8, 9]. In our model,
α,J, ls and l1 are studied systematically. When ls is small, α,J and l1 will all play
important role of determining the beam deflection and the beam deflection curve
can look like that of a C–C beam or an H–H beam or neither of them as indicated
from Figs 2–4. When ls is large, the beam deflection is not sensitive to α,J and l1;
the deflection curves all look a C–C one as indicated in Fig. 8. For the beam with the
intermediate ls as indicated in Figs 5–7, the beam deflection curve looks like neither
a C–C one nor an H–H one. The contact portions in general form a constraint which
makes the rotation angle between that of a C–C beam (zero degree) and that of an
H–H beam, i.e., the intermediate boundary conditions are formed.
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Finally, we address the friction issue in the three-point bending test. Equations
(9) and (12) do not consider the friction effect in the horizontal direction. When
the suspended nanowire is pushed down, its mid-plane is stretched and a tension
force is thus generated. This tension force is balanced by the nanowire–trench in-
terfacial friction. When the tension reaches the critical value of static friction, the
nanowire slides, which has a direct impact on the parameters of Ls and L1. Re-
cent experiments [45, 46] show that for nanowire/substrate friction, the empirical
Amonton–Coulomb friction law may not be applicable and the Bowden–Tabor law
should be applied. The Amonton–Coulomb friction states Ffric = μN (Ffric: sta-
tic friction; μ: coefficient of friction and N : normal compressive force) and the
Bowden–Tabor law states Ffric = τA (τ is the interfacial shear strength and is
the A is the true contact area) [45, 46]. There are two major obstacles using the
Bowden–Tabor law to model the nanowire friction in a three-point bending test:
(1) because of lift-off, the nanowire shows different contact scenarios, which makes
it very difficult to calculate the true contact area; (2) it is also experimentally diffi-
cult to find the interfacial strength [46]. For example, the formation of oxide layer
on the nanowire surface, metallic bonding between nanowire and substrate, adhe-
sion force induced in the fabrication process/experiment stage and even the model
used to extract the interfacial shear strength can all cause the data scattering of the
interfacial strength [46]. However, the interfacial shear strength is relatively large
for a nanowire, for example, τ lies between 134 and 139 MPa for Ag nanowire/Au
substrate [46]; and the horizontal force required to cause the nanowire to slide is so
large that the fracture of nanowire is observed in the experiment [45]. In general,
the deflection of the suspended nanowire in a three-point bending test is small and
there is little or no sliding [4, 5, 7].

5. Conclusion

In this work the interactions between the nanowire geometry, adhesion and ap-
plied load are systematically studied in an adhesive receding contact model to show
how they influence the nanowire deformations and its boundary conditions. Both
adhesion and lift-off cause nonlinearity of the receding contact. A finite element
computation is given to offer a numerical analysis. At the same time, a dimensional
analysis is also presented. The following four dimensionless parameters are the
control parameters used in our analysis: (1) α, which indicates the adhesion contri-
bution to the contact line load as compared with that of a Hertzian contact; (2) ls,
which indicates the ratio of the suspension span to the cylinder radius; (3) l1, l2
(l1 = l2 are set in our study), which are the ratios of the lengths of wire portion
laid on the elastic medium to the cylinder radius; (4) J , which is the ratio of verti-
cal load to the cylinder axial stiffness. The asymmetric configuration (l1 �= l2) and
asymmetric loading (ls1 �= ls2) have a definite influence on the nanowire deflections
and boundary conditions. However, only the symmetric configuration and symmet-
ric loading are studied in this paper. The above four dimensionless parameters are
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solely responsible for the results obtained from our receding contact model. The
interactions and competitions between these four dimensionless parameters deter-
mine the nanowire deflection and boundary conditions. The following trends are
observed: for ‘chunky’ nanowire with a small ls, large α (adhesion) and l1 reduce
lift-off, which makes the nanowire rotation difficult at the trench ends. Under a
(very) small vertical load, the rotation is (very) small and the clamped–clamped
boundary conditions can be a good approximation. On the other hand, larger J val-
ues cause more lift-off and thus rotation increases. When J is large enough, most
parts lift-off and the nanowire rotates like a hinged–hinged beam. However, the gen-
eral scenario is that the nanowire behaves neither like a clamped–clamped beam or
a hinged–hinged beam: the nanowire rotates at the trench edges with a finite angle
less than that of a hinged–hinged beam, which forms intermediate boundary con-
ditions. The nanowire deflection of a very slender nanowire (very large ls) is not
sensitive to α,J and l1. For a very slender nanowire, the corresponding J is also
very small, resulting in a small deflection in the suspension part, which ensures the
applicability of the Euler–Bernoulli beam theory. For a very slender nanowire un-
der load with a J value of a reasonable range, the deflections on the support are
extremely small compared to that of the suspension part, and so are the rotations at
the trench edges. Therefore, the nanowire behaves like a clamped–clamped beam.
In summary, for a nanowire under 3-point bending test, the following competitive
mechanism exists: adhesion prevents and reduces lift-off; vertical load induces and
accelerates lift-off. At the same time, this competition is significantly influenced by
the nanowire geometries (ls and l1).

The boundary conditions of the nanowire in the test are key factors in interpret-
ing the experimental data on the nanowire material properties. For the three-point
bending test of the nanowire whose two ends are bonded with the supporting elastic
medium by adhesion, the nanowire boundary conditions show rich patterns because
of the lift-off mechanism. For the single-point/midpoint measurement of nanowire,
extreme caution should be taken: adhesion may not be strong enough to hold the
nanowire clamped–clamped and boundary conditions may change to intermediate
one or hinged–hinged one or even a clamped–hinged one. Because the boundary
condition change has a direct impact on the force–displacement measurement in
the experiment, the interpretation on the nanowire material properties can lead to
large differences (up to four times) in the results obtained by different researchers.
Either the nanowire ends should be enhanced by an extra processing technique to
make sure that they are clamped with its supporting materials or the multiple-point
measurement approach should be used to monitor its changing boundary conditions.
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