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With the adsorption of analyte on the resonator mass sensor, the system eigenfrequencies
will shift due to the changes of inertial mass and structural rigidity. How to model those
changes and formulate the eigenfrequency computation is very important to the mass
sensor application, which results in different accuracies and requires different amounts of
computation. Different methods on the eigenfrequency computation of a beam and a plate
carrying arbitrary number of concentrated mass/spring are presented and compared. The
advantages and disadvantages of these methods are analyzed and discussed. A new
method called finite mode transform method (FMTM) is shown to have good convergence
and require much less computation for a beam carrying concentrated mass/spring. Be-
cause the previous finite sine transform method (FSTM) has only been applied to compute
the eigenfrequency of the plate with four edges simply supported carrying a single con-
centrated mass, here a generalized FSTM is also presented for the case of the same plate
carrying arbitrary number of concentrated mass and spring. When the total number of
concentrated mass and spring is small, FMTM and FSTM are demonstrated to be very
efficient. �DOI: 10.1115/1.4002121�

Keywords: eigenfrequency, beam, plate, concentrated mass/spring, vibration, resonator
Introduction
The mass accretion on a structure results in the changes of the

ystem resonant frequencies, traveling wave propagation, and
amping �1–4�. These property changes are of pragmatic interest
n many engineering applications and intrigue many investiga-
ions. These property changes are also utilized to develop various
ensors. For example, resonator mass sensor operates by provid-
ng a frequency shift that is directly proportional to the inertial

ass accreted upon it �5–17�. The resonator mass sensor is attrac-
ive in part because of its high sensitivity and frequency stability,

aking it possible and suitable to detect tiny mass changes. The
apability of nanomechanical resonator to detect a single E. Coli
acteria �5� and virus �6� has been demonstrated. With the ad-
ances of micro-/nanoelectromechanical system �MEMS/NEMS�
echnologies, the mass detecting sensitivity now has been pushed
o the scale of zeptogram �10−21 g� �7�.

The relation between the structure eigenfrequency shift and the
ccreted mass is the most important thing in the resonator mass
ensor modeling. In this paper, a continuum mechanics approach
s used. Although the resonator mass sensor with nanometer scale
as been fabricated, recent molecular dynamics simulation and
nitial experiments appear to indicate that the continuum mechan-
cs model is still valid for the structures with the cross section of
he order of tens of lattice constants �8�. The resonator mass sen-
ors in general are the plate �1–4� or beam �5–17� type of struc-
ure. Compared with the whole sensor structure, the size of ac-
reted mass is often very small �5,6,9–11�. Therefore, the accreted
ass can be modeled as a concentrated mass. One degree of free-

om �DOF� model is the simplest one to describe the relation
etween the eigenfrequency shift and accreted mass
6,10–13,16,17�. 1DOF model uses the spring-mass system, which
equires the effective spring stiffness and mass to be known a
riori for the computation. To model the resonator mass sensor of
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continuum system as 1DOF spring-mass system, the first step is
often to use statics to find the effective spring stiffness of a con-
tinuum system without the presence of concentrated mass/spring
�10,16,17�. An alternative way of determining the effective spring
stiffness is to use the Galerkin method with one mode approxima-
tion �18�. The second step is to find the effective mass by com-
paring the resonant frequency obtained by 1DOF model and con-
tinuum theory. The effective spring stiffness found by statics
�without a special treatment� is only valid for system vibrating
around or lower than the fundamental eigenfrequency �the eigen-
frequency of the first mode� because only the first mode shape is
similar to the static deflection. Recent experiments �11,12� dem-
onstrate that much higher mass sensitivity can be achieved when
the resonator mass sensor is driven at/around higher eigenfrequen-
cies. The effective spring stiffness of the continuum system driven
at/around higher eigenfrequencies can still be found via statics by
adding constraints as demonstrated by Tseytlin �16�, which is
quite complex and difficult. In 1DOF model, the effective spring
stiffness is often assumed unchanged and the inertial mass change
is thus the only mechanism responsible for the eigenfrequency
shift �6,10–13,16,17�. However, the recent experiment by Ramos
et al. �5� shows a surprising 24% eigenfrequency increase of the
mass sensor system with the adsorption of an E. Coli bacteria.
Because the inertial mass increase can only result in the decrease
of the system eigenfrequencies, Ramos et al. �5� argued that the
adsorption of an E. Coli bacteria must also increase the system
rigidity. In this paper, the concentrated spring is also incorporated
in the model to account for such possible rigidity increase. With
this possible rigidity increase effect, using statics to determine the
effective spring stiffness for higher modes becomes much more
complex and difficult. In addition, because the effective spring
stiffness is found via statics, the shape of static deflection curve is
thus implicitly assumed the same as that of dynamic one. With
large concentrated mass or spring stiffness, which makes the dy-
namic deflection curve significantly different from the static one,
1DOF model may not be accurate. Similarly, the Rayleigh method
uses the static deflection curve to approximate the system dy-
namic deflection curve �19,20�. Instead of using spring-mass sys-

tem, the governing equation of the Rayleigh method is obtained
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y equating the maximum kinetic energy and maximum potential
nergy of the system �19,20�. The effective spring stiffness and
ffective mass can also be found by the Rayleigh method �19,20�.
he accuracy of the Rayleigh method depends on how closely one
an approximate the dynamic deflection curve �20�. For example,
he approximation curve used by Timoshenko and Young �19�,
hich is derived from statics, is shown to be applicable only in

ertain scenarios �20�. It is difficult and often experience depen-
ent to find such close approximation as reflected in Low’s com-
lex construction scheme of the approximation curves for the
ayleigh method �20�. The Rayleigh method, as commented by
hen �21�, is not easily applicable to the general case of the eigen-

requency computation of a beam carrying concentrated mass.
In the analytical method �9,22–26�, the influence of concen-

rated mass/spring on the system eigenfrequencies is embodied in
he so-called compatibility/equilibrium conditions �9,22�, or con-
inuity conditions �23�, or boundary conditions �24,25�, or transi-
ion conditions �26� at the location of concentrated mass/spring. In
he analytical method, concentrated mass/spring does not appear
n the governing equation and no approximation for structure dy-
amic deflection is required. The eigenvalue problem formulation
y the analytical method results in a transcendental equation,
hich requires numerical method for the solution �9,22–26�. As

nalyzed later in this paper, the computation effort of the analyti-
al method can be tremendous. Both the Galerkin method and
nite mode transform method �FMTM� use the Dirac delta func-

ion to incorporate the influence of concentrated mass/spring into
he governing equations �18,27,28� and use the mode shapes of a
niform beam to approximate the dynamic deflection curve of the
eam carrying concentrated mass/spring. Here an analytical ex-
ression for the system eigenfrequency is derived from the Galer-
in method by using one mode approximation, which is suitable
or resonator to detect small mass or spring stiffness change.
MTM developed in this paper is similar to Amber–Rao’s finite
ine transform method �FSTM� used in the rectangular plate with
our edges simply supported carrying a single concentrated mass
29�. The name of finite sine transform method is given by Wu
nd Luo �30� because the dynamic deflection of the plate with
our edges simply supported is approximated by the double sine
unctions and an integral transform is used �29�. Unlike FSTM,
hich can only be applied to the plate with four edges simply

upported, FMTM is capable of computing the eigenfrequencies
f the beam with different �arbitrary� boundary conditions. Com-
ared with the analytical method, FMTM also requires less com-
utation.

In the eigenfrequency computation of a plate carrying concen-
rated mass/spring, various methods are developed, such as FSTM
29�, analytical-numerical-combined method �ANCM�, and finite
lement method �FEM� �30�, Rayleigh method �31�, Laplace
ransform �32�, and Green’s function �33�. Because concentrated

ass/spring can severely distort the plate dynamic deflection
urve, large number of series/elements are needed for good ap-
roximation, which results in large computation. For example,
hiba and Sugimoto’s eigenfrequency computation is an eigen-
alue problem of a 50�50 matrix �31�; Wu and Luo’s is an ei-
envalue problem of a 175�175 matrix �FEM� and a 30�30
atrix �ANCM� �30�, respectively. FSTM, as pointed by Wu and
uo �30�, has only been applied to the simple case of the plate
arrying single concentrated mass. In this paper, a generalized
STM for a plate carrying arbitrary number of concentrated mass
nd spring is presented. Although FSTM also uses many modes to
pproximate the dynamic deflection, it is demonstrated that the
igenfrequency computation formulated by FSTM in essence is an
igenvalue problem of an �r+s�� �r+s� matrix, where r+s is the
otal number of concentrated mass and spring. When r+s is small,
STM is very efficient because much less computation is re-

uired.
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2 Eigenfrequency Computation of a Beam Carrying
Concentrated Mass and Spring

2.1 Analytical Method. The detailed formulation by the ana-
lytical method on the eigenvalue problem of a uniform beam car-
rying a single concentrated mass is presented by Srinath and Das
�23� and that of a uniform beam carrying a single concentrated
spring is given by Plaut et al. �26�. Here the formulation by the
analytical method of an eigenfrequency problem on the beam car-
rying a concentrated mass and a concentrated spring is illustrated
in detail. The general formulation for the beam carrying arbitrary
number of concentrated mass and spring is also discussed.

Figure 1 shows the schematic diagram of a beam carrying a
concentrated mass M1 at x=u1 and a concentrated translational
spring K1 at x=v1. The governing equation of a vibrating beam is

m
�2w

�t2 + EI
�4w

�x4 = 0 �1�

where m is the beam mass per unit length, E is Young’s modulus,
I is the moment of inertia, and I=bh3 /12 for a rectangular cross
section beam �b and h are the beam width and thickness, respec-
tively�. Although Eq. �1� is the exactly same governing equation
of a uniform beam, it needs to emphasize that w here is the beam
dynamic transverse displacement with the presence of concen-
trated mass/spring. In the analytical method, the effects of concen-
trated mass/spring are embodied in the so-called compatibility/
continuity/transition conditions �9,22–26�, not in the governing
equation. In order to compare our results with the dimensionless
results presented by Low �22�, the following dimensionless quan-
tities are introduced:

W =
w

L
, � =

x

L
, �e =

ue

L
, �e =

ve

L
, � =� EI

mL4 t

�e =
Me

mL
, �e =

KeL
3

EI
�2�

The subscript e of � starts from 1 to r �r is the total number of
concentrated masses� and the subscript e of � starts from 1 to s �s
is the total number of concentrated springs�. Equation �1� is now
nondimensionalized as follows:

�2W

��2 +
�4W

��4 = 0 �3�

W�� ,�� is assumed to have the following solution form:

W��,�� = Y���ei�� = �Y1���ei��, 0 	 � 	 �1

Y2���ei��, �1 
 � 	 �1

Y3���ei��, �1 
 � 	 1
� �4�

In the above equation �1
�1 is assumed. � here is the eigenfre-
quency of the system with the presence of concentrated mass and
spring. Substituting Eq. �4� into Eq. �3�, Y1, Y2, and Y3 are solved
as follows:

Y1��� = C1 sin���� + C2 cos���� + C3 sinh���� + C4 cosh����

u1

v1

M1

K1

L

Fig. 1 The schematic diagram of a beam carrying a concen-
trated mass and spring. The concentrated mass is located at
x=u1 and the concentrated spring is at x=v1.
Y2��� = C5 sin���� + C6 cos���� + C7 sinh���� + C8 cosh����
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Y3��� = C9 sin���� + C10 cos���� + C11 sinh���� + C12 cosh����
�5�

is defined as �=��. There are 12 unknown constants Ci and
herefore, 12 boundary and matching conditions in total are
eeded for the eigenvalue problem formulation. The four match-
ng conditions at �=�1 of a concentrated mass are �22,23�

Y1��1� = Y2��1�,
dY1

d�
��1� =

dY2

d�
��1�

d2Y1

d�2 ��1� =
d2Y2

d�2 ��1�, −
d3Y1

d�3 ��1� +
d3Y2

d�3 ��1� = �1�2Y1��1�

�6�

he first three matching conditions indicate the continuity of the
isplacement, slope, and curvature, respectively. The fourth one is
erived from the dynamic equilibrium �23�. The above four
atching conditions do not incorporate the effect of the concen-

rated mass rotary inertia �23�. The other four matching conditions
t �=�1 of a concentrated spring are �26�

Y2��1� = Y3��1�,
dY2

d�
��1� =

dY3

d�
��1�

d2Y2

d�2 ��1� =
d2Y3

d�2 ��1�,
d3Y2

d�3 ��1� −
d3Y3

d�3 ��1� = �1Y2��1� �7�

he following four boundary conditions hold for a clamped-
lamped beam, which indicate the vanishing of the displacement
nd slope at the ends:

Y1�0� = 0,
dY1

d�
�0� = 0, Y3�1� = 0,

dY3

d�
�1� = 0 �8�

quations �6�–�8� give 12 matching and boundary conditions in
otal. Therefore, with the substitution of Eq. �5� into the above 12
quations, the eigenfrequency � can be found. In general, when a
ew concentrated mass/spring is added, four new matching con-
itions at the location will be generated. For the case of total r
s concentrated masses and springs, Y�x� is divided into r+s+1

ubdomains. There are total 4�r+s+1� unknown constants of Cis.
he eigenfrequencies are found by setting the determinant of the
�r+s+1��4�r+s+1� matrix to be zero.
Here the eigenvalue problem formulation of a clamped-

lamped beam with a concentrated mass �M1� at the center in Ref.
9� is presented for comparison. Instead of explicitly dividing the
eam span into two subdomains, Ilic et al. �9� formulated the
roblem by applying the symmetry and only one solution of a
ubdomain is used. The solution form of Y1��� still holds as

1���=C1 sin����+C2 cos����+C3 sinh����+C4 cosh���� �now
n the problem formulated by Ilic et al. �9�, Y1��� is the solution
or the 0	�	1 /2 subdomain�. At �=0, the clamped boundary
onditions require the vanishing of both deflection and slope,
hich results in the following two equations:

C2 + C4 = 0, C1 + C3 = 0 �9�

n conjunction with Eq. �9�, Y1 can now be written as Y1���
C1�sin����−sinh�����+C2�cos����−cosh�����. At �=1 /2, the

lope vanishes because of the symmetry; therefore,

C1�cos
�

2
− cosh

�

2
	 − C2�sin

�

2
+ sinh

�

2
	 = 0 �10�

he fourth one is derived from −d3Y1 /d�3=�1�2 /2Y1, which cor-
esponds to the fourth matching condition in Eq. �6�. Because of
he symmetry, here a factor of 1/2 is added. Now the fourth con-

ition is rewritten as follows:
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C1
cos
�

2
+ cosh

�

2
−

�1�

2
�sin

�

2
− sinh

�

2
	� − C2
sin

�

2
− sinh

�

2

+
�1�

2
�cos

�

2
− cosh

�

2
	� = 0 �11�

The relation of �2=� is used during the derivation of the above
equation. Equations �10� and �11� form a 2�2 matrix. To have
nontrivial solution of C1 and C2, the following transcendental
equation must be satisfied, which is obtained by setting the 2
�2 matrix determinant zero:

�sin
�

2
+ sinh

�

2
	
cos

�

2
+ cosh

�

2
−

�1�

2
�sin

�

2
− sinh

�

2
	�

− �cos
�

2
− cosh

�

2
	
sin

�

2
− sinh

�

2
+

�1�

2
�cos

�

2

− cosh
�

2
	� = 0 �12�

Equation �12� is the characteristic equation given in Ref. �9� to
determine the system eigenfrequency. Clearly, the above formula-
tion by Ilic et al. fully utilizes the symmetry properties. However,
it is not a general method to formulate the eigenvalue problem.
Once the concentrated mass is off the center, Eqs. �10� and �11�
can no longer be valid. Even when the concentrated mass at the
center, the above formulation by Ilic et al. �9� cannot be applied to
find the system eigenfrequency of even modes. Because the even
modes of a clamped-clamped beam are antisymmetric, the sym-
metry conditions of Eqs. �10� and �11� are also invalid. The char-
acteristic equation of Eq. �12� can only be used to find the eigen-
frequencies of the odd �symmetric� modes when the concentrated
is located at the center. The above approach of dividing the do-
main into r+s+1 subdomains is the generalized one, which is
capable of computing all the eigenfrequencies with different con-
centrated mass/spring locations.

Here it is also noteworthy to discuss and compare the “exact
approach” presented by Li and his colleagues �34,35� with the
above analytical method. Although Li et al. �34� computed the
eigenfrequencies of the rods longitudinal vibrations coupled by
concentrated translational springs and Li �35� is on the eigenfre-
quencies of rectangular plate with line-concentrated mass and
elastic support, Li’s approach can be applied to the above eigen-
frequency problem of the transverse vibration of beam carrying
concentrated mass/spring. Li’s approach �34,35� can be summa-
rized as follows: Instead of writing the general solution forms
such as Eq. �5�, Li used the matching conditions similar to Eqs.
�6� and �7� to construct the delicate solution forms before and
after the concentrated masses/springs locations. Li’s approach in
essence is the same one as the above analytical method. However,
with Li’s method of constructing the solution forms, the number
of the unknown constants in Eq. �5� will be significantly reduced.
Li’s formulation of the eigenvalue problem is thus expected to
have much less computation and the trade-off is the complex deri-
vation of solution forms.

2.2 Galerkin Method. Unlike the analytical method, Galer-
kin method uses the Dirac delta function to directly incorporate
the effects of concentrated mass and spring into the governing
equation. For the sake of brevity, the governing equation is given
as follows, which is similar to those in Refs. �27,28�:

m
�2w

�t2 + �
e=1

r

Me��x − ue�
�2w

�t2 + EI
�4w

�x4 + �
e=1

s

Ke��x − ve�w = 0

�13�

Again, Me and ue �e=1−r� are the concentrated mass and its
coordinate, respectively. Ke and ve �e=1−s� are the concentrated

spring stiffness and its coordinate, respectively. � here is the Dirac
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elta function. With the same nondimensionalization scheme of
q. �2�, Eq. �13� is now nondimensionalized as follows:


1 + �
e=1

r

�e��� − �e�� �2W

��2 +
�4W

��4 + �
e=1

s

�e��� − �e�W = 0

�14�

�� ,�� is assumed to have the following form:

W��,�� = �
j=1

N

aj
 j���ei�� �15�

is the mode number and aj is the unknown constant �modal
mplitude�. 
 j is the jth mode shape of a uniform beam given as
ollows �36�:


 j��� = Aj sin�� j�� + Bj cos�� j�� + Cj sinh�� j�� + Dj cosh�� j��
�16�

j, Aj, Bj, Cj, and Dj are the constants given by Chang and Craig
36� for the jth mode shape of a uniform beam and they vary with
ifferent boundary conditions. � j

2 is the dimensionless jth eigen-
requency of a uniform beam. 
 j is orthogonal �21�. Because
ome of mode shapes given by Chang and Craig are not normal,

j, Bj, Cj, and Dj are divided by �
0
1
 j

2���d� to be normalized for
ater computation and statement convenience. Therefore, 
 j has
he following orthonormal property:

�
0

1


i���
 j���d� = �ij �17�

ij here is the Kronecker delta function. Substitute Eq. �15� into
q. �14�, times 
i��� �i=1−N�, and integrate, the following equa-

ion is obtained:

− �2�
0

1


i���
1 + �
e=1

r

�e��� − �e���
j=1

N

aj
 j���d�

+�
0

1


i���
� j
4 + �

e=1

s

�e��� − �e���
j=1

N

aj
 j���d� = 0

�18�

ith the use of the integration property of the Dirac delta function
21,27,28,32�, Eq. �18� can also be written in the following form:

GA = 0 �19�
T= �a1 ,a2 , . . . ,aN�, G is an N�N matrix and each of its elements

s defined as follows:

Gij = � j
4�ij + �

e=1

s

�e
i��e�
 j��e� − �2
�ij + �
e=1

r

�e
i��e�
 j��e��
�20�

To have nontrivial solution of A, the determinant of G, det�G�
ust be set zero, which results in the characteristic equation of �.
o the eigenfrequency computation of the Galerkin method de-
ends on the mode number N. Because the concentrated mass/
pring can severely distort the mode shapes of system, large num-
er of modes may be required to approximate such distortion. If
he concentrated mass/spring is small and the system jth mode
hape is not severely distorted, which means one jth mode of a
niform beam can have a good approximation on the jth mode
hape of the system with concentrated mass/spring. The following
lose form approximation of the jth eigenfrequency is derived

rom Eq. �20� by setting diagonal term Gjj =0:
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� j =�� j
4 + �

e=1

s

�e
 j
2��e�

1 + �
e=1

r

�e
 j
2��e�

�21�

When �e=�e=0, Eq. �21� results in � j =� j
2, which recovers the jth

eigenfrequency of a uniform beam. When �e=0 and �e�0, it is
the case of no spring and Eq. �21� shares the same square root
form of the eigenfrequency approximation expression presented in
Ref. �9�.

2.3 Finite Mode Transform Method. For the FMTM, the
governing equation is still Eq. �14�. W is now assumed to have the
following form:

W��,�� = ����ei�� �22�

Compared with Eq. �15�, it is not hard to find out that

���� = �
j=1

N

aj
 j��� �23�

Similarly, substitute Eq. �22� into Eq. �14�, times 
i, and integrate,
the following equation is obtained:

�
0

1


i���� �4����
��4 − �2���� + 
�

e=1

s

�e��� − �e� − �2�
e=1

r

�e���

− �e�������d� = 0 �24�

substitute Eq. �23� into the first two terms of Eq. �24� and ���� in
the last two terms associated with the Dirac delta function keep
unsubstituted. By using the orthonormality of mode shape 
 and
the integration property of Dirac delta function again, aj is found
as follows:

aj =

�2�
e=1

r

�e
 j��e����e� − �
e=1

s

�e
 j��e����e�

� j
4 − �2 �25�

Now substitute aj of Eq. �25� into Eq. �23�, � is rewritten as
follows:

���� = �
e=1

r

He��,�����e� − �
e=1

s

Ie��,�����e� �26�

He�� ,�� and Ie�� ,�� are defined as follows:

He��,�� =

�2�
j=1

N

�e
 j��e�
 j���

� j
4 − �2 , Ie��,�� =

�
j=1

N

�e
 j��e�
 j���

� j
4 − �2

�27�

Because Eq. �26� is valid for any �, let �=�e �e=1 to r� and �

=�e �e=1 to s�, the following set of r+s equations is obtained:
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⎩
⎪
⎨
⎪
⎧���1� = �

e=1

r

He��,�1����e� − �
e=1

s

Ie��,�1����e�

���2� = �
e=1

r

He��,�2����e� − �
e=1

s

Ie��,�2����e�

............................................................................

���r� = �
e=1

r

He��,�r����e� − �
e=1

s

Ie��,�r����e�

���1� = �
e=1

r

He��,�1����e� − �
e=1

s

Ie��,�1����e�

���2� = �
e=1

r

He��,�2����e� − �
e=1

s

Ie��,�2����e�

............................................................................

���s� = �
e=1

r

He��,�s����e� − �
e=1

s

Ie��,�s����e� ⎭
⎪
⎬
⎪
⎫

�28�

quation �28� can also be rewritten as the following form by simple manipulation:

CV = 0 �29�

is an r+s vector and VT= ����1� ,���2� , . . . ,���r� ,���1� ,���2� , . . . ,���s��. C is an �r+s�� �r+s� matrix and C=C���. C��� is
efined as follows:

C��� =�
H1��,�1� − 1 H2��,�1� . . . Hr��,�1� − I1��,�1� . . . − Is��,�1�

H1��,�2� H2��,�2� − 1 . . . Hr��,�2� − I1��,�2� . . . − Is��,�2�
. . . . . . . . . . . . . . . . . . . . .

H1��,�r� H2��,�r� . . . Hr��,�r� − 1 − I1��,�r� . . . − Is��,�r�
H1��,�1� H2��,�1� . . . Hr��,�1� − I1��,�1� − 1 . . . − Is��,�1�

. . . . . . . . . . . . . . . . . . . . .

H1��,�s� H2��,�s� . . . Hr��,�s� − I1��,�s� . . . − Is��,�s� − 1

� �30�
s far as not all of �e �e=1 to r� and �e �e=1 to s� are on the
eam nodes, which means that V has a nontrivial solution, the
eterminant of C must be zero. Therefore, det�C�=0 is the char-
cteristic equation to determine the eigenfrequency � of the beam
ith concentrated masses and springs. det�C�=0 is a polynomial

quation of �. Clearly, here the eigenfrequency computation by
MTM formulation is an eigenvalue problem of an �r+s�� �r
s� matrix in comparison with the eigenvalue problem of a 4�r
s+1��4�r+s+1� matrix by the analytical method formulation.

2.4 Computation Example and Discussion. In order to com-
are our results with Low’s �22�, the computation example of a
eam with only one concentrated mass is presented. Instead of � j

the jth eigenfrequency of the system with the concentrated mass�,
j =�� j is used in the following two tables. In this computation

xample, the location of the concentrated mass is fixed at �1
0.1 and the beam is clamped at the both ends. In the following

wo tables, the �1 values of analytical method are all taken from
ow’s paper �22�. For both the Galerkin method and FMTM,
ewton–Rhapson method �37� is used to solve the characteristic

quations. Because the � j values obtained by the analytical
ethod have been shown accurate as compared with the experi-
ental data �22�, �1

FMTM−�1
analytical /�1

analytical is introduced to in-
icate the �1 error computed by FMTM. Figure 2 shows the error

onvergence of �1=20 and 100 as the function of mode number
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Convergence Study of FMTM

Fig. 2 The convergence study on FMTM computation on the
fundamental frequency of the beam with a concentrated mass
as the mode number increases. Two cases of �1=20 and �1
=100 are presented and the concentrated mass is located at

�1=0.1.
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N�. The errors of �1=100 are always larger than those of �1
20 and they both rapidly reduce with the increase of the mode
umber. When N�10, both errors are less than 0.5%.

In Table 1, ten modes �N=10� are used in FMTM. �1s obtained
y the analytical method and FMTM agree well with each other.
nfortunately, FMTM presented here does not yield accurate re-

ults for �1
0.5. The reason that FMTM has the numerical dif-
culty of finding accurate solutions for small �1 is given as fol-

ows. For the beam with a single concentrated mass �1 at �1, the
ollowing characteristic equation can be derived from either Eq.
28� or Eq. �30�:

�
j=1

N
�1
 j

2��1��2

� j
4 − �2 = 1 �31�

hen the concentrated mass is small ��1�0� or its location close
o a node or a clamped/hinged end �
 j��1��0�, � is expected to
e ��� j

2 �� j
2 is the jth eigenfrequency of a uniform beam �36��;

herefore, the leftside of Eq. �31� is a 0/0 type of limit, which
pproaches 1. However, numerically it is difficult for FMTM to
nd � solution around � j

2 accurately under this 0/0 scenario
hough the algorithm used here has a mechanism of precision
ontrol �37�. When the concentrated mass is large or its location is
way from node or clamped/hinged end, which causes the system
igenfrequencies to shift significantly from those of a uniform
eam, FMTM is fairly accurate, as demonstrated in Table 1 for
arge �1 cases.

Table 2 shows the comparison of �1s obtained by the analytical
ethod and Galerkin method with different mode numbers. When

he concentrated mass is small �or close to the nodes�, compared
ith FMTM, the Galerkin method has no problem of computing

he eigenfrequency and show good accuracy. However, when the
oncentrated mass is large, the Galerkin method shows significant
rror compared with the values obtained by the analytical method.
or the Galerkin method of N=1, the error becomes larger with

he increase of �1. The error starts at �1=1 and becomes very
ignificant when �1=20. Physically, the Galerkin method of N
1 is to use the first mode shape of a uniform beam to approxi-
ate the deflection curve of the beam with concentrated mass.
ike the Rayleigh method, the accuracy of the Galerkin method
lso depends on the how close the approximation curve is. With
he increase of concentrated mass, the approximation by the first

ode shape of a uniform beam will deviate more and more from
he beam real defection curve of the beam, as demonstrated in Fig.
. Figure 3 plots the first and second mode shapes of �1=0 �uni-
orm beam�, �1=1 and 20. The single concentrated mass is also
xed at �=�1=0.1. The first mode shape of �1=1 is not signifi-
antly different from that of �1=0 and this explains why the �1
rror of �1=1 in Table 2 is relatively small. But the second mode
hape difference between �1=1 and �1=0 is very significant. This

Table 1 Comparison of �1 compute

ethods /�1 0.5 1.0 1.5 2.0
nalytical �Ref. �22�� 4.708 4.685 4.66 4.634
MTM 4.708 4.685 4.66 4.634

Table 2 Comparison of �1 computed by analytica

ethods /�1 0.01 0.05 0.1 0.2 0
nalytical �Ref. �22�� 4.73 4.728 4.726 4.721 4
alerkin �N=1� 4.73 4.728 4.726 4.721 4
alerkin �N=2� 4.73 4.728 4.726 4.721 4
alerkin �N=3� 4.73 4.728 4.726 4.721 4
alerkin �N=4� 4.73 4.728 4.725 4.72 4
alerkin �N=5� 4.73 4.728 4.724 4.716 4
21006-6 / Vol. 133, APRIL 2011
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fact has the following implication: When the concentrated mass or
spring is large, Eq. �21� of the Galerkin method using one mode
approximation cannot be accurate because of the severe distortion
of the system mode shapes. The first mode shape of �1=20 is so
severely distorted that it looks more like the second mode shape
of a uniform beam. This explains why the Galerkin method of
N=1 cannot accurately compute �1 at �1=20. When N=2, the
first and second modes of a uniform beam are used to approximate
the real deflection of the �1=20 case, and much accurate result is
obtained, as shown in Table 2. However, it is also noticed that in
Table 2, increasing mode number N does not necessarily improve
the accuracy, especially for large �1 cases. The similar scenario is
also observed by Senba and Furuya �38� that increasing the num-
ber of mode shape may lead to even larger error and their expla-
nation is the same as the above one: difference between the real
deflection and the approximation function of mode shape. In the
computation sense, the reason may lie in the matrix element ex-
pression of Galerkin method in Eq. �20�. For the single concen-
trated mass case, Eq. �20� is written as Gij =� j

4�ij −�2��ij

+�1
i��1�
 j��1��. From this expression, it is noticed that when
�1 is small, the diagonal terms of the matrix is large/dominant
compared with the off-diagonal terms and Galerkin method shows
good accuracy. With the increase of �1, the magnitude of the
off-diagonal terms Gij =−�2�1
i��1�
 j��1� �i� j� increases and
the diagonal terms Gii=�i

4−�2�1+�1
i
2��1�� decreases, which

may result in the ill-conditioning of the matrix and lead to the
larger computation error. The Galerkin method uses the mode
shapes defined by Eq. �16�, which is the eigenfunctions of a uni-
form beam, to formulate the eigenvalue problem. It is worth point-
ing that sometimes the eigenfrquency computation formulated by
eigenfunctions may have “an intolerably slow convergence rate”
�39�.

Because the resonator mass sensor excited with higher resonant
frequency shows much better sensitivity of detecting tiny mass
change �11,12�, it is necessary to emphasize that though only the
fundamental eigenfrequency is listed and compared in Tables 1
and 2, the three methods above are all capable of computing the
eigenfrequencies of higher modes. In the resonator mass sensor
application, the ambient environment has significant influence on
the system parameters. For example, the system mass and damp-
ing may change with pressure; the material Young’s modulus may
change with the temperature �40�. How to specify the mass and
Young’s modulus change is given by Sandberg et al. �40�. Here let
us have a brief discussion on the damping issue. Damping �or, say,
the quality factor which is inversely proportional to damping� has
dramatic impact on the sensitivity of the resonator mass sensor
�11,12�. It is noticed that Eq. �1� has no damping term. The reason
to omit the damping term in this paper is purely in order to have
an apple-to-apple comparison with those formulations and results
obtained in Refs. �9,22�, which do not include the damping term.

y the analytical method and FMTM

.0 10.0 20.0 50.0 80.0 100.0

.451 4.123 3.64 2.969 2.654 2.515

.454 4.132 3.653 2.982 2.667 2.527

ethod and Galerkin method with different modes

0.4 1.0 1.5 2.0 10.0 20.0
7 4.713 4.685 4.66 4.634 4.123 3.64
7 4.713 4.689 4.667 4.649 4.382 4.133
7 4.713 4.684 4.659 4.632 4.149 3.707
7 4.71 4.668 4.622 4.568 3.693 3.176
2 4.703 4.622 4.52 4.402 3.261 2.77
4 4.689 4.526 4.337 4.153 2.936 2.482
d b

5
4
4

l m

.3

.71

.71

.71

.71

.71

.70
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lthough the governing equation of Jin et al. �12� has the damping
erm, their Eq. �4� of the eigenfrequency expression actually has
o damping influence. For the analytical method presented in this
aper, it will be of great difficulty to incorporate the damping
ffect if not impossible. For the Galerkin method, with the intro-
uction of the system damping �or more complex gyroscopic
erm�, there will be some change of the eigenfrequency computa-
ion formulation and the detailed formulation can be found in
efs. �27,41�. For FMTM, it is very easy to incorporate the damp-

ng effect. The following outlines the procedures.
With the introduction of damping, Eq. �14� now becomes as the

ollowing:


1 + �
e=1

r

�e��� − �e�� �2W

��2 + c
�W

��
+

�4W

��4 + �
e=1

s

�e��� − �e�W = 0

�32�

ere c�W /�� is the damping term and c is a dimensionless damp-
ng coefficient. Now the Eq. �24� also changes as the following

�
0

1


i���� �4�

��4 + ic�� − �2� + 
�
e=1

s

�e��� − �e� − �2�
e=1

r

�e���

− �e�������d� = 0 �33�

herefore, the previous aj given by Eq. �25� is now changed as
ollows:

aj =

�2�
e=1

r

�e� j��e����e� − �
e=1

s

�e� j��e����e�

� j
4 + ic� − �2 �34�

hen follow all the steps from Eq. �26� to Eq. �30� and new
igenfrequencies containing damping effect can be obtained.

FSTM on the Plate With Four Edges Simply Sup-
orted Carrying Arbitrary Number of Concentrated
ass and Spring

3.1 Problem Formulation. For the sake of brevity, the gov-
rning equation for a rectangular plate carrying arbitrarily distrib-

0 0.5 1
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α1=20
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α1=0

α1=20

ig. 3 The first and second mode shapes of the beam with a
oncentrated mass when �1 is taken as 0, 1, and 20, respec-
ively. The concentrated mass is also located at �1=0.1.
ted concentrated masses and springs is directly given as follows:
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D�4w + 
M + �
i=1

r

Mi��x − ui���y − vi��wtt

+ �
i=1

s

Ki��x − ai���y − bi�w = 0 �35�

w is the plate transverse displacement and wtt=�2W /�t2. � is still
the Dirac delta function. �4 is the operator defined as �4

= ��4 /�x4�+2��4 /�x2�y2�+ ��4 /�y4�. M and D are the mass per
unit area of the plate and the plate flexural rigidity, respectively.
D=Eh3 /12�1−�2� �h is the plate thickness. E and � are the plate
Young’s modulus and Poisson’s ratio, respectively.� There are r
concentrated masses; Mi �i=1 to r� is the concentrated mass; ui

and vi are the corresponding coordinates. There are s concentrated
translational springs; Ki �i=1 to s� is the stiffness of concentrated
spring; ai and bi are the corresponding coordinates. The plate is
isotropic and homogeneous. Equation �35� does not include the
concentrated mass effect of moment of inertia �32�, either.

Similarly, the plate transverse displacement w is assumed to
have the following solution form:

w = ��x,y�ei�t �36�

Substitute Eq. �36� into Eq. �35�, the following equation is ob-
tained:

�4� −
�2

D 
M + �
i=1

r

Mi��x − ui���y − vi��� +
1

D�
i=1

s

Ki��x − ai���y

− bi�� = 0 �37�

��x ,y� is the spatial part solution of the plate carrying concen-
trated masses and springs. For the plate with four edges simply
supported, ��x ,y� can be approximated by the following series
�29�:

��x,y� =
4

ab�
m=1

�

�
n=1

�

�mn sin�m�

a
x	sin�n�

b
y	 �38�

Equation �38� is a double Fourier expansion of ��x ,y� and �mn is
thus defined as

�mn =�
0

a�
0

b

��x,y�sin�m�

a
x	sin�n�

b
y	dxdy �39�

a and b are the plate length and width, respectively.
sin��m� /a�x�sin��n� /b�y� is the m−nth mode shape of a uniform
plate with four edges simply supported.

Times equation �37� with sin��m� /a�x�sin��n� /b�y� and have a
double integral operation, the following equation is derived

�
0

a�
0

b��4� −
�2

D 
M + �
i=1

r

Mi��x − ui���y − vi���

+
1

D�
i=1

s

Ki��x − ai���y − bi���sin�m�

a
x	sin�n�

b
y	dxdy = 0

�40�

Similarly, substitute the ��x ,y� expression of Eq. �38� into Eq.
�40� except the terms related to the concentrated masses and
springs. Again, by using integration by parts, the boundary condi-
tions, integration property of the Dirac delta function, and or-
thogonality of sine functions, the following equation is derived

from Eq. �40�:
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�4�m2

a2 +
n2

b2	2

�mn −
M�2

D
�mn −

�2

D �
i=1

r

Mi��ui,vi�sin�m�

a
ui	sin�n�

b
vi	 +

1

D�
i=1

s

Ki��ai,bi�sin�m�

a
ai	sin�n�

b
bi	 = 0 �41�

rom Eq. �41�, �mn is solved as

�mn =

�2

D �
i=1

r

Mi��ui,vi�sin�m�

a
ui	sin�n�

b
vi	 −

1

D�
i=1

s

Ki��ai,bi�sin�m�

a
ai	sin�n�

b
bi	

�4�m2

a2 +
n2

b2	2

−
M�2

D

�42�
ubstitute Eq. �42� into Eq. �38�, ��x ,y� is now rewritten as fol-
ows:

��x,y� = �
i=1

r

Ai��,x,y���ui,vi� − �
i=1

s

Bi��,x,y���ai,bi� �43�

i and Bi are defined as follows:

Ai��,x,y�

=
4�2Mi

abD �
m=1

�

�
n=1

� sin�m�

a
ui	sin�n�

b
vi	sin�m�

a
x	sin�n�

b
x	

�4�m2

a2 +
n2

b2	2

−
M�2

D

Bi��,x,y�

=
4Ki

abD�
m=1

�

�
n=1

� sin�m�

a
ai	sin�n�

b
bi	sin�m�

a
x	sin�n�

b
x	

�4�m2

a2 +
n2

b2	2

−
M�2

D

�44�

quation �43� is valid for any x ,y, so substitute ui ,vi �i=1,r� and

i ,bi �i=1,s� into Eq. �43�. Therefore, the following set of r+s
quations are obtained.
quation �45� by FSTM formulation in essence is an eigenvalue
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⎩
⎪
⎨
⎪
⎧��u1,v1� = �

i=1

r

Ai��,u1,v1���ui,vi� − �
i=1

s

Bi��,u1,v1���ai,bi�

��u2,v2� = �
i=1

r

Ai��,u2,v2���ui,vi� − �
i=1

s

Bi��,u2,v2���ai,bi�

...............................................................................................

��ur,vr� = �
i=1

r

Ai��,ur,vr���ui,vi� − �
i=1

s

Bi��,ur,vr���ai,bi�

��a1,b1� = �
i=1

r

Ai��,a1,b1���ui,vi� − �
i=1

s

Bi��,a1,b1���ai,bi�

��a2,b2� = �
i=1

r

Ai��,a2,b2���ui,vi� − �
i=1

s

Bi��,a2,b2���ai,bi�

...............................................................................................

��as,bs� = �
i=1

r

Ai��,as,bs���ui,vi� − �
i=1

s

Bi��,as,bs���ai,bi� ⎭
⎪
⎬
⎪
⎫

�45�
Equation �45� can also be rewritten as the following form by
simple manipulation:

CV = 0 �46�

C is a �r+s�� �r+s� matrix and C=C���. C��� is defined as
follows:
C��� =�
A1��,u1,v1� − 1 A2��,u1,v1� . . . Ar��,u1,v1� − B1��,u1,v1� . . . − Bs��,u1,v1�

A1��,u2,v2� A2��,u2,v2� − 1 . . . Ar��,u2,v2� − B1��,u2,v2� . . . − Bs��,u2,v2�
. . . . . . . . . . . . . . . . . . . . .

A1��,ur,vr� A2��,ur,vr� . . . Ar��,ur,vr� − 1 − B1��,ur,vr� . . . − Bs��,ur,vr�
A1��,a1,b1� A2��,a1,b1� . . . Ar��,a1,b1� − B1��,a1,b1� − 1 . . . − Bs��,a1,b1�

. . . . . . . . . . . . . . . . . . . . .

A1��,as,bs� A2��,as,bs� . . . Ar��,as,bs� − B1��,as,bs� . . . − Bs��,as,bs� − 1

� �47�
is a r+s vector and VT= ���u1 ,v1� ,��u2 ,v2� , . . . ,��ur ,vr� ,
�a1 ,b1� ,��a2 ,b2� , . . . ,��as ,bs��. Again, as far as not all of

ui ,vi� and �ai ,bi� are on the plate nodes, which means V has
ontrivial solution, the determinant of C must be set zero.
et�C�=0 is the characteristic equation to determine the eigenfre-
uency � of the plate carrying concentrated masses and springs.
problem of an �r+s�� �r+s� matrix. It also needs to be empha-
sized that the FSTM can only be applied to the plate with the four
edges simply supported. Because the double sine series expansion
of the plate transverse deflection in Eq. �38� is only applicable to
the plate with the four edges simply supported, Eq. �42� cannot be
obtained without this double sine series expansion.
3.2 Computation Example. Figure 4 is a schematic diagram
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f the rectangular plate carrying three concentrated masses and
hree concentrated springs. All the following parameters related
ith the plate and concentrated mass/spring are taken from Wu

nd Luo’s paper �30� in order to have a comparison with their
NCM and FEM results.

a = 2.0 m, b = 3.0 m, h = 0.005 m

E = 2.051 � 1011 N/m2, M = 39.25 kg/m2, � = 0.3

M1 = 70.0 kg, u1 = 0.375a, v1 = 0.25b, M2 = 50.0 kg

u2 = 0.5a, v2 = 0.625b

M3 = 60.0 kg, u3 = 0.75a, v3 = 0.5b, K1 = 106 N/m

a1 = 0.125a, b1 = 0.25b

K2 = 104 N/m, a2 = 0.5a, b2 = 0.5b, K3 = 105 N/m

a3 = 0.625a, b3 = 0.625b

Although ��x ,y� in Eq. �38� is symbolically expressed by the
ode summation from m=1 to � and n=1 to �, only finite num-

er of mode can be used during the computation. Generally, the
odes with the lowest eigenfrequencies should be given the pri-

rity to be used in the modal expansion of ��x ,y�. For a uniform
late with four edges simply supported, the eigenfrequency �mn is
iven as follows �42�:

M1

K3

M3

M2

K1

K2

x
a=2

b=3

y

ig. 4 The schematic diagram of the distribution of the con-
entrated masses and springs in the plate

Table 3 Comparison of the plate eigenfrequen

Methods/eigenfrequency �1 �2

FEM �Ref. �30�� 28.831 39.775
ANCM �Ref. �30�� 28.632 39.392
FSTM �this paper� 27.564 39.767
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a2�M

D
�mn = �2
m2 + n2�a

b
	2� �48�

Equation �48� provides the idea on how to take the modes with the
lowest frequencies. With this formula and plate dimensions given
above, the first nine modes with the lowest eigenfrequencies are
1-1, 1-2, 2-1, 1-3, 2-2, 2-3, 1-4, 3-1, and 3-2 modes �m−n mode in
this case is sin�m�x /a�sin�n�y /b��. However, in order to com-
pare with Wu and Luo’s ANCM results �30�, m is simply taken
from 1 to 6 and n is taken from 1 to 5. So there are a total of 30
modes used in computation. The reason of taking so many modes
in computation is that the concentrated mass/spring can severely
distort the mode shapes of a uniform plate and large mode number
is required to have a good approximation for the real dynamic
deflection curve.

Newton–Rhapson method �37� is also used to solve the charac-
teristic equation of det�C�=0 to find the eigenfrequencies. The
first six lowest eigenfrequencies obtained by FSTM are given in
Table 3 to be compared with Wu and Luo’s results by FEM and
ANCM �30�.

The first four lowest eigenfrequencies obtained by FSTM agree
well with Wu and Luo’s by both FEM and ANCM. But �5 differs
significantly. It is noticed that �6 of FSTM is very close to Wu
and Luo’s �5. When Newton–Rhapson method is used to solve
the eigenvalue problem of det�C�=0, the upper and lower bounds
of each eigenfrequency must be carefully chosen before starting
the computation �37�. Otherwise, Newton–Rhapson method may
miss the eigenfrequency but find another.

Wu and Luo’s FEM and ANCM formulations are an eigenvalue
problem of a 175�175 matrix �175 elements are used in the FEM
formulation� and a 30�30 matrix �30 modes are used in the
ANCM formulation� �30�, respectively. Although 30 modes are
also used in FSTM, the computation by the FSTM formulation
mainly depends on the total number of concentrated mass and
spring as reflected in Eq. �45�. So here the FSTM in essence is an
eigenvalue problem of a 6�6 matrix.

4 Concluding Remarks
The analytical method is capable of computing the eigenfre-

quencies of the beam carrying arbitrary concentrated mass/spring
at arbitrary location with high accuracy. Its eigenfrequency com-
putation is to solve an eigenvalue problem of 4�r+s+1��4�r+s
+1� matrix �r+s is the total number of concentrated mass and
spring�. However, its eigenvalue problem formulation is relatively
difficult, which in general needs to be derived case by case. The
Galerkin method, FMTM, and FSTM use the mode shapes of a
uniform beam/plate to approximate the deflection curve of the
beam/plate carrying concentrated mass/spring. Unlike the Ray-
leigh method, which requires the construction/guess of a close
approximation deflection curve to guarantee the accuracy, the
Galerkin method, FMTM, and FSTM can systematically obtain
the better approximation deflection curve by incorporating more
modes. Compared with the analytical method, the Galerkin
method, FMTM, and FSTM can all easily and systematically for-
mulate the eigenvalue problem. Because of the different formula-
tions, the Galerkin method is an eigenvalue problem of an N
�N matrix �N is the mode number�, and FMTM and FSTM are
eigenvalue problems of an �r+s�� �r+s� matrix. As demonstrated

s „rad/s… computed by FEM, ANCM and FSTM

�3 �4 �5 �6

7.158 82.898 105.352 Not available
8.084 81.638 104.038 Not available
0.071 84.813 95.414 103.164
cie
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Dow
n the computation example, FMTM shows good convergence and
ccuracy when the concentrated mass is large. With large concen-
rated mass or large spring stiffness, which severely distorts the

ode shape of a uniform beam/plate and needs large number of
ode shapes to approximate the deflection, FMTM and FSTM

oth have the advantages of high accuracy and much less compu-
ation. The analytical method has great difficulty of incorporating
he damping effect in its eigenfrequency formulation, which is not
problem at all for FMTM, FSTM, and the Galerkin method. But
MTM has the difficulty of computing the case when the concen-

rated mass is small or close to the node and the clamped/hinged
nd. Therefore, FMTM is not a good choice for the mass sensor
pplication of detecting tiny accreted mass. In contrast to FMTM,
he Galerkin method shows good convergence and accuracy when
he concentrated mass is small, but poor convergence and accu-
acy when the concentrated mass is large. When the concentrated
ass is small, the beam deflection shape is not significantly dif-

erent from the mode shape of a uniform beam; the Galerkin
ethod with one mode approximation �i.e., Eq. �21�� can thus

ccurately compute the mass sensor eigenfrequency with little
omputation effort, which makes it very suitable to be used in the
ass sensor application of detecting tiny accreted mass.
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