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A  variational  method  using  the  principle  of  virtual  work  (PVW)  is presented  to formulate  the  problem  of
the microcantilever  stiction.  Compared  with  the  Rayleigh–Ritz  method  using  the  arc-shaped  or  S-shaped
deflection,  which  prescribes  the  boundary  conditions  and  thus  the  deflection  shape  of a  stuck  cantilever
beam,  the  new  method  uses  the  matching  conditions  and  constraint  condition  derived  from  PVW  and
minimization  of the  system  free  energy  to  describe  the  boundary  conditions  at  the  contact  separation
point.  The  transition  of the  beam  deflection  from  an  arc-shape-like  one  to an  S-shape-like  one  with  the
increase  of the  beam  length  is shown  by the  new  model.  The  (real)  beam  deflection  given  by  this  new
model  deviates  more  or less  from  either  an  arc-shape  or an  S-shape,  which  has  significant  impact  on
the  interpretation  of experimental  data.  The  arc-shaped  or S-shaped  deflection  assumption  ignores  the
beam bending  energy  inside  the  contact  area  and  the  elastic  energy  due  to the  beam/substrate  contact,
which  is  inappropriate  as shown  by  this  study.  Furthermore,  the arc-shaped  or  S-shaped  deflection  only

approximately  describes  the  deflection  shape  of  a  stuck  beam  with  zero  external  load  and  obviously,  the
external  load  changes  the  beam  deflection.  The  Rayleigh–Ritz  method  using  the  arc-shaped  or  S-shaped
deflection  assumption  in essence  can only  be used  to  tell  approximately  whether  stiction  occurs  or  not.
Rather than  assuming  a certain  deflection  shape  and by incorporating  the  external  load,  the  new  method
offers a more  general  and  accurate  study  not  only  on  the microcantilever  beam  stiction  but  also  on  its
de-adherence.
. Introduction

Stiction is one of the most widespread hazards threatening the
eliable operation of the microelectromechanical systems (MEMS)
evices [1,2]. Stiction is often categorized as release-related stiction
nd in-use stiction [1,3]. The capillary force [1,2,4,6–9],  electrostatic
orce [4,9–13],  mechanical load [14] and inertial forces [8] during
he MEMS  release or in-use stage can all be the actuation mecha-
isms to bring the devices into contact with one another or with the
ubstrate. The system free energy of the device in contact consists
f two parts: the mechanical energy and surface energy. Adhesion
nergy is defined as the reduction of the surface energy per unit
rea when combining two surfaces into one interface [15], which
s also referred to as the surface interaction energy [1,2]. Once the
xternal load is retracted, two things happen in terms of the system
ree energy: the increase of the mechanical energy due to the device
eformation and the decrease of the surface energy due to adhe-

ion. In terms of force, the device deformation generates a restoring
orce to try to pull the device back to the free-standing state; the
ensile pressure around the contact separation edge [16,17] due to
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adhesion tries to balance the restoring force and keeps the devices
in a deformed state. The competition between the mechanical and
surface energies determines whether stiction occurs or not. Here
the stiction state is defined as an attachment state after the exter-
nal/actuation load is retracted. Therefore, the external load does
not appear as a parameter in many stiction studies [7,8,18]. The
stable equilibrium of a stiction state corresponds to a local mini-
mum of the system total free energy [5,18] and there is no stiction
if such local minimum does not exist [18]. The peel number of NP

[18], which is defined as a convenient way to tell whether stiction
occurs or not, is given as follows for a cantilever beam

NP = C
E1T3H2

�sL4
u

(1)

C is a constant. E1, T and Lu are Young’s modulus, thickness and
unstuck length of the cantilever, respectively. H is the gap dis-
tance between the undeformed beam and substrate as shown in
Fig. 1(a). �s is the adhesion energy. Stiction occurs when NP ≤ 1
and no stiction when NP > 1 [18]. NP = 1 corresponds to the can-

tilever equilibrium obtained by minimizing the system free energy
as shown in Appendix A. The dimensionless peel number can also
be viewed as the order of the ratio of the mechanical energy to the
surface energy [2,19].  By setting NP = 1, a critical length, Lcrit, which

dx.doi.org/10.1016/j.sna.2011.09.001
http://www.sciencedirect.com/science/journal/09244247
http://www.elsevier.com/locate/sna
mailto:zhangyin@lnm.imech.ac.cn
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ig. 1. (a) The schematic diagram of a stuck cantilever under a concentrated load P
he  location of P and x1 is the separation point. (b) The arc-shaped and S-shaped de

s variably referred to as the detachment length [4,7,18] or as the
ength of the shortest adhered beam [20], is obtained as follows:

crit = 4

√
C

E1T3H2

�s
(2)

hen E1, T, H and �s are fixed, the cantilever beam with a length
maller than this critical length peels-off from the substrate; oth-
rwise, the beam is stuck. Eq. (2) can also be rewritten as follows
o quantify the adhesion energy of �s in those experiments using
he cantilever array with different lengths [8–10,18,20]

s = C
E1H2T3

L4
crit

(3)

qs. (1)–(3) are three different but equivalent ways of characteriz-
ng the beam stiction. The key issue in these three equations is the
alculation of the system mechanical energy, which is embodied

n the constant of C. C = 3/8 if the cantilever is assumed to have an
rc-shaped deflection [3,4,18]; C = 3/2 if the cantilever is assumed
o have an S-shaped deflection [5,8,9].  Obviously, different C s have
ignificant impact on the cantilever stiction criteria as indicated by
 uniformly distributed load q. L is the beam length and H is the gap distance; xo is
ns. Sarc and Ss are the unstuck lengths of an arc-shape and an S-shape.

the above three equations. For example, four times difference of
�s results from the different C s of an arc-shape and an S-shape
as indicated by Eq. (3).  The arc-shaped and S-shaped deflections
are shown in Fig. 1(b) and their derivation is given in Appendix
A. The arc-shaped and S-shaped deflection shapes (assumptions)
have been the cornerstone in the above beam stiction studies. The
description on the formation of arc- and S-shape is no more than
the following (vague) summary [20]: longer beam forms an S-shape
and its unstuck length is appreciably shorter than the beam length;
shorter beam forms an arc-shape and its unstuck length is approxi-
mately equal to the beam length. However, none of the above three
equations can tell when an arc-shape or an S-shape is formed for a
beam with a given length. On the contrary, the above three equa-
tions actually indicate that the beam length (L) has nothing to do
with the peel number, detachment length and adhesion energy
measurement, respectively. How the beam dimensions together
with the adhesion energy and external load influence the stuck

beam deflection shape remains as an unanswered question in the
previous studies.

Legtenberg et al. [7] applied the Rayleigh–Ritz method to cal-
culate the mechanical energy of a stuck clamped–clamped beam
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y assuming its deflection shape. The Rayleigh–Ritz method [21] is
n approximate method whose accuracy depends on the assumed
eflection shape. The arc-shape and S-shape as indicated by their
ames also assume the cantilever deflection shape by prescrib-

ng certain boundary conditions at the contact separation point as
hown in Appendix A. The method with the arc-shape or S-shape
ssumption in essence is the Rayleigh–Ritz method. The boundary
onditions at the contact separation point are (assumed) hinged
or an arc-shape and (assumed) clamped for an S-shape. There are
ome arguments on the choice of arc-shape and S-shape in the can-
ilever stiction study. Because C = 3/8 for an arc-shape and C = 3/2
or an S-shape, Lcrit of an arc-shape is a shorter one. Lcrit is found
rom the stuck beam with the shortest length in the cantilever
eam array experiments [10,20].  Therefore, an arc-shape is a nat-
ral choice in those cantilever beam array experiments [3,4,18].
owever, it is found that the experimentally measured adhesion
nergies from the arc-shaped and S-shaped cantilevers are consis-
ently different [1,8]. de Boer and Michalske [8] argued that (only)
the S-shaped cantilever beam configuration should be adopted
or detailed studies of adhesion forces in surface micromachin-
ng”. Furthermore, Yang [5] argued that the boundary conditions
t the contact separation point cannot be the hinged ones, which
s another way of saying that the arc-shaped deflection cannot be
ormed. The arc-shaped deflection is an idealized point contact sce-
ario as analyzed in Appendix A, whose small contact area can

ntroduce significant statistical errors to impact the experimen-
al results and interpretation [1].  An arc-shape and an S-shape
re the stuck cantilever deflections under zero external load as
hown in Appendix A. Once an actuation force such as an elec-
rostatic force [4,9–13] or a mechanical load [14] is exerted, the
eam deflection will deviate more or less from an arc-shape or
n S-shape, which directly impacts the calculation of the system
echanical energy. In the de-adherence studies of the stuck beams

11–13],  the beam deflection under different loads needs to be
losely monitored to tell whether the de-adherence occurs or not.
ixing the beam deflection shape as an arc-shape or an S-shape is
bviously not a good choice, which can cause significant error. Yang
ncorporated a uniformly distributed load in the stiction study of

 clamped–clamped beam [5].  However, Yang’s energy approach,
hich also prescribes the boundary conditions at the separation
oints, shows that there is no difference between a compressive

oad (pushing down) and a tensile load (pulling up) as reflected in
ang’s Eqs. (16) and (29)[5].

The energy approach [5,8,18] and the fracture mechanics
pproach [8–10,14], which either assumes an arc/S-shaped deflec-
ion or specifies the boundary conditions, are two  major methods
n the beam stiction study. In the energy approach, the total system
ree energy UT = UB + US (UB is the mechanical energy of a bending
eam and US is its surface energy) and the equilibrium is obtained
y requiring ∂UT/∂a = 0 (a is the (unknown) contact length) [5,18].

n the fracture approach, ∂UB/∂a yields a quantity called the energy
elease rate and ∂UB/∂a = �s is required when there is no crack prop-
gation [8–10,14]. ∂UT/∂a = 0 and ∂UB/∂a = �s yield the same results
s shown by de Boer and Michalske [8].  Both the energy method
5,8,18] and the fracture mechanics method [8–10,14] only account
or the mechanical energy of the bending beam in the unstuck part;
he mechanical energy inside the contact area including the bend-
ng energy and elastic energy due to the beam/substrate contact
eformation are not included in these two methods. It is reason-
ble to ignore the beam bending energy inside the contact area
f an arc-shaped or S-shaped deflection is assumed: an arc-shape
s a point contact and the deflection of an S-shape is a flat one

nside the contact area. However, we show that a point contact
annot occur in adhesive contact and the (long) beam deflection
nside the contact area is not exactly flat. The energy method [5]
nd the fracture mechanics method [8] are more or less inspired
tuators A 171 (2011) 381– 390 383

by Obreimoff’s classical paper in 1930 on the mica splitting test
[22], which does not account for the mechanical energy inside the
contact area, either. There is one critical difference in the adhesion
energy between the Obreimoff’s mica splitting test and the micro-
cantilever beam stiction test. Obreimoff’s splitting test of mica
which is atomically smooth is actually the cleavage of mica and
the adhesion energy is “the extremely high value” of 2 × 104 mJ/m2

[22]. This large adhesion energy makes the deformation of the mica
lamina inside contact area (unsplit part) extremely small compared
with that of the split part. However, the real contact area in MEMS
stiction is a small portion of the nominal area due to the surface
roughness [1,2]. The (nominal) adhesion energy measured by the
(hydrophilic) polysilicon beam stiction test ranges from 0.25 mJ/m2

[20] to 270 ± 100 mJ/m2 [18], which is several orders of magnitude
smaller than that of mica. At the same time Young’s modulus of
polysilicon (170 GPa [18]) is similar to that of mica (196 GPa [22]).
It is a safe way  to incorporate the mechanical energy inside the
contact area into the system free energy in the study of MEMS
stiction.

The inconsistency and unreliability of the experimental data
obtained in the beam stiction test have been noticed [1,23].  van
Spengen et al. [1] concluded that “the surface interaction energy
measurement using stuck beams needs considerably more research
before we  can conclude anything definite about the precise mag-
nitude of the measured surface interaction energy”. Most of the
previous studies, according to van Spengen et al. [2],  have “never
come further than a peel number”. A more comprehensive way
of studying the beam stiction should include the effect of surface
roughness [1,2,23], whose distribution determines how two sur-
faces contact each other. A more accurate description on the stuck
beam deflection in essence only offers a better characterization of
the nominal adhesion energy. However, it is still a valuable tool
and allows us to observe trends [1].  The principle of virtual work
(PVW) is used in this study to derive the governing equation and
matching/boundary conditions of a stuck cantilever. Unlike that
an arc-shape or an S-shape specifies the boundary conditions at
the contact separation points, the matching conditions determine
what kind of the boundary conditions should be formed at the con-
tact separation point, which are neither hinged nor clamped. The
model presented here incorporates the cantilever beam dimen-
sions, adhesion and external load and shows how these quantities
change the beam deflection shape rather than prescribing it. By
doing so, a more general and accurate method of describing the
stuck cantilever deflection is presented.

2. Model development

Fig. 1(a) shows a cantilever beam under a concentrated load P
and a uniformly distributed load q. The coordinate system is also
shown in the figure. The governing equations are different for the
free-standing and stiction states. For brevity, the governing equa-
tion for the free-standing state is directly given as follows [24,25]:

E1I
d4W

dx4
= PıD(x − xo) + q (4)

E1 is the beam Young’s modulus, I is the area moment of iner-
tia defined as I = BT3/6 (2B  is the beam width and T is the beam
thickness). W = W(x) is the beam deflection. ıD(x − xo) is the Dirac
delta function and xo is the location of the concentrated force P. The
following boundary conditions hold for a cantilever beam:

W(0) = 0,
dW

(0) = 0,
d2W

(L) = 0,
d3W

(L) = 0 (5)

dx dx2 dx3

L is the beam length. The above four equations indicate the zero
displacement and slope at the fixed end and zero moment and shear
at the free end. W is solved by integrating Eq. (4) and applying the
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concentrated force inside contact zone). (3) F = 2 × 10−2 and �o = 0.45l, Q = 0 (concen-
rated force outside contact zone). (4) Q = 2 × 10−2 and F = 0 (uniformly distributed
oad).

oundary conditions of Eq. (5) as follows:

 =

⎧⎪⎪⎨
⎪⎪⎩

P

6E1I
(3xox2 − x3)+ q

E1I

(
L2x2

4
− Lx3

6
+ x4

24

)
, 0 ≤ x ≤ xo

P

6E1I
(3x2

ox − x3
o)+ q

E1I

(
L2x2

4
− Lx3

6
+ x4

24

)
, xo < x ≤ L

(6)

hen the beam is stuck with the substrate, the beam deflection is
ivided into two parts as follows:

 =
{

W1, 0 ≤ x ≤ x1
W2, x1 ≤ x ≤ L

(7)

s shown in Fig. 1(a) x1 is the point where the beam separates from
he substrate, which is also the crack tip locations from the view-
oint of fracture mechanics [8–10,14]. W1 is the beam displacement

n the suspension/unstuck zone and W2 is the beam displacement
n the contact/stuck zone. When a beam under a concentrated load,
here is a contact scenario called discontinuous contact [24,26] in
hich there are multiple contact zones. In non-adhesive contact,

he concentrated compressive load required for the discontinuous
ontact is so large that the beam breaks down long before this load
an be reached [24]. However, in adhesive contact, a beam can take

 tensile load and the cantilever free end may  separate from the
ubstrate, which makes the above assumption of two  zones invalid.
he limitation of Eq. (7) will be discussed later in details.

The bending energy UB, which consist of both unstuck and stuck
arts, is the following

B = E1I

2

∫ L

0

d2W

dx2
dx = E1I

2

(∫ x1

0

d2W1

dx2
dx +

∫ L

x1

d2W2

dx2
dx

)
(8)

F of the energy stored by the elastic foundation due to the
eam/substrate contact is given as follows:

F = k

2

∫ L

(W2 − H)2 dx (9)

x1

 is the gap distance between the undeformed beam and substrate
s shown in Fig. 2(a) and k is the modulus of elastic foundation. Eq.
9) indicates that the potential energy is stored by a series of springs
tuators A 171 (2011) 381– 390

with stiffness k. For a rectangular beam indenting a substrate which
is modeled as an elastic half space, k is given as follows [27]

k = 0.71E2

(
E2B4

E1I

)1/3

= 1.28E2

(
B

T

)  (
E2

E1

)1/3
(10)

E2 is Young’s modulus of substrate.
The surface energy, US, is given as the following [5,7,18]

US = −2B�s(L − x1) (11)

2B is the beam width and L − x1 is the beam contact length.
2B(L − x1) is thus the contact/stuck area. �s is the adhesion energy
between the beam and substrate, which is also known as the sur-
face interaction energy [1,2] and the Dupré work of adhesion [19].
It is noticed that US is negative, which physically means that the
system free energy reduces when combining two  surfaces into one
interface [15]. This reduction of surface energy is the mechanism
responsible for the microstructure stiction. On  the other side, the
restoring force due to the mechanical energy (UB and UF) tries to
pull the beam back to the free-standing state. Uforce, the work done
by P and q, is given as follows:

Uforce =
∫ W

0

q dW +
∫ W

0

PıD(x − xo) dW (12)

By applying the principle of virtual work (PVW) [25,26], i.e.,
ı(UB + UF + US − Uforce) = 0, the following matching/boundary condi-
tions at x = x1 are obtained

W1(x1) = W2(x1),
dW1

dx
(x1) = dW2

dx
(x1),

d2W1

dx2
(x1) = d2W2

dx2
(x1),

d3W1

dx3
(x1) = d3W2

dx3
(x1) (13)

It is noticed that the same matching conditions are also obtained
by Ghatak et al. [28]. The boundary conditions at x = 0 and x = L are
also obtained by PVW as follows:

W1(0) = 0,
dW1

dx
(0) = 0,

d2W2

dx2
(L) = 0,

d3W2

dx3
(L) = 0 (14)

It is noticed that the adhesion energy (�s) and the elastic foundation
modulus (k) have no impact on the cantilever boundary conditions,
which are the same as Eq. (5).  The governing equation is also derived
from PVW. Because the concentrated force P can be either inside
the contact zone or outside the contact zone, there are two sets of
governing equations for these two scenarios. When P is inside the
contact zone, i.e., xo > x1, the governing equation is as follows:⎧⎪⎨
⎪⎩

E1I
d4W1

dx4
= q, 0 ≤ x ≤ x1

E1I
d4W2

dx4
+ k(W2 − H) = q + PıD(x − xo), x1 ≤ x ≤ L

(15)

The previous receding contact mechanics models explicitly or
implicitly assume that the concentrated load is inside the contact
area [24–26,29].  However, the concentrated load can be outside
the contact area. For example, the concentrated force exerted by
a nanoindenter in Jones’ experiment [14] is outside the contact
area. When P is outside the contact zone, i.e., xo < x1, the governing
equation is as follows:⎧⎪⎨
⎪⎩

E1I
d4W1

dx4
= q + PıD(x − xo), 0 ≤ x ≤ x1

E1I
d4W2

dx4
+ k(W2 − H) = q, x1 ≤ x ≤ L

(16)
Keep in mind that the separation point of x1 is unknown. The total
free energy of the system is

UT = UB + UF + US (17)



nd Ac

F

−

T

a

r
t

w

W

W

F
s

m
i

[

�

ˇ

ˇ
f

ˇ

F
w
o
t
o
u
m

w

T
l

w

T
a

w

Y. Zhang, Y.-p. Zhao / Sensors a

or equilibrium, dUT/dx1 vanishes giving [5,7,16,18]

k

2
[W2(x1) − H]2 + 2B�s = 0 (18)

o derive Eq. (18), the derivative properties such as
d

dx1

(∫ x1
0

d2W1
dx2 dx

)
= d2W1

dx2 (x1), d
dx1

(∫ L

x1

d2W2
dx2 dx

)
= − d2W2

dx2 (x1)

nd d
dx1

[
∫ L

x1
(W2 − H)2 dx]  = [W2(x1) − H]2 together with

d2W1
dx2 (x1) = d2W2

dx2 (x1) of matching condition are applied. W2(x1) is

eadily solved from Eq. (18) as W2(x1) = H ±
√

4B�s/k. Because
he elastic foundation does not allow the sink-in phenomenon,

hich corresponds to the solution of W2(x1) = H +
√

4B�s
k [29],

2(x1) can only have the following solution

2(x1) = H −
√

4B�s

k
= H − 1.77

√
T�s

E2

(
E1

E2

)1/3
(19)

or non-adhesive contact of �s = 0, Eq. (19) recovers the con-
traint condition of reference [25]. From the viewpoint of fracture

echanics, this
√

4B�s/k (or 1.77
√

T�s/E2 × (E1/E2)1/3) as shown
n Fig. 1(a) is the critical normal crack opening displacements [29].

The following nondimensionalization scheme is introduced
24–26]

 = ˇx, wi = ˇWi (i = 1, 2),  �1 = ˇx1, h = ˇH, l = ˇL,

F = P

4ˇ2E1I
, Q = q

ˇ3E1I
(20)

ˇ is defined as [24,25]

 = 4

√
k

4E1I
(21)

 has the unit of m−1. Substitute k of Eq. (10) into Eq. (21),  ̌ is
ound as

 ≈ 1.18
(

E2

E1

)1/3 1
T

(22)

or two solids with similar Young’s moduli (i.e., E1 ≈ E2),  ̌ ≈ 1/T,
hich is to say that the nondimensionalization scheme of Eq. (20)

n the beam dimensions is to give the ratios of the beam dimensions
o its thickness. For example, l = ˇL ∝ L/T indicates the slenderness
f beam. Now Eq. (6),  the beam solution of the free-standing state
nder a concentrated load and uniformly distributed load, is nondi-
ensionalized as the following

 =

⎧⎪⎪⎨
⎪⎪⎩

2F

3
(3�o�2 − �3) + Q

(
l2�2

4
− l�3

6
+ �4

24

)
, 0 ≤ x ≤ xo

2F

3
(3�2

o � − �3
o ) + Q

(
l2�2

4
− l�3

6
+ �4

24

)
, xo < x ≤ L

(23)

he matching conditions of Eq. (13) are nondimensionalized as fol-
ows:

1(�1) = w2(�1),
dw1

d�
(�1) = dw2

d�
(�1),

d2W1

d�2
(�1) = d2W2

d�2
(�1),

d3w1

d�3
(�1) = d3w2

d�3
(�1) (24)

he boundary conditions of Eq. (14) are now nondimensionalized

s

1(0) = 0,
dw1

d�
(0) = 0,

d2W2

d�2
(l) = 0,

d3w2

d�3
(l) = 0 (25)
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Eq. (19), the constraint condition of adhesive contact, is nondimen-
sionalized as follows:

w2(�1) = h −
√

˛

2
(26)

˛ is a dimensionless parameter defined as

˛ = 4B�s

E1Iˇ2
= 24�s

E1T3ˇ2
(27)

Eq. (15), the governing equation of the concentrated load inside the
contact zone, is nondimensionalized as follows:⎧⎪⎨
⎪⎩

d4w1

d�4
= Q, 0 ≤ � ≤ �1

1
4

d4w2

d�4
+ w2 − h = Q

4
+ FıD(� − �o), �1 ≤ � ≤ l

(28)

Eq. (16), the governing equation of the concentrated load outside
the contact zone, is nondimensionalized as⎧⎪⎨
⎪⎩

d4w1

d�4
= Q + 4FıD(� − �o), 0 ≤ � ≤ �1

1
4

d4w2

d�4
+ w2 − h = Q

4
, �1 ≤ � ≤ l

(29)

The solution to Eq. (28) as given in the following equation consists
of two  parts: homogeneous solution and particular solution. The
difficulty is to find the particular solution and Weitsman gave the
detailed procedures of deriving the particular solution [24]

w =

⎧⎪⎪⎨
⎪⎪⎩

w1 = A1�3 + B1�2 + C1� + D1 + Q

24
�4, 0 ≤ � ≤ �1

w2 = A2 cosh � sin � + B2 cosh � cos � + C2 sinh � sin �

+D2 sinh � cos � − F

2
sinh |� − �o| cos(� − �o)

+ F

2
cosh(� − �o) sin |� − �o| + 1

4
Q + h, �1 ≤ � ≤ l

(30)

It is worth pointing out that Eq. (30) is different from the solution
given by Weitsman [24]. The beam studied by Weitsman is an infi-
nite one and the vanishing of bending moment is assumed at the
contact separation, which in general is inappropriate and a gen-
eral solution is given by Zhang and Murphy [25,29].  As mentioned
above, Yang argued that the bending moment at the contact sepa-
ration point cannot be zero in an adhesive contact [5].  The solution
of Eq. (30) does not prescribe any specific conditions at the contact
separation point of �1. Eq. (30) is also different from those solutions
given in Refs. [25,29] because of the different contact scenarios and
coordinate systems. However, the ideas of deriving the beam solu-
tion with a concentrated inside the contact zones in those Refs.
[24,25,29] apply.

The solution to Eq. (29) of the concentrated force outside the
contact zone is now derived as follows:

w =

⎧⎨
⎩

w1 = A1�3 + B1�2 + C1� + D1 + Q

24
�4 + 4FH3(� − �o), 0 ≤ � ≤ �1

w2 = A2 cosh � sin � + B2 cosh � cos � + C2 sinh � sin �

+D2 sinh � cos � + 1
4

Q + h, �1 ≤ � ≤ l

(31)

H3(� − �o) is a function defined as follows:

H3(� − �o)=
∫ l

0

∫ l

0

∫ l

0

∫ l

0

ıD(� − �o) d� d� d� d�=
{

0, � − �o ≤ 0
(� − �o)3

6
, � − �o > 0

(32)

Ai, Bi, Ci and Di (i = 1 and 2) are the eight unknown constants to
be determined. These eight unknowns together with �1 are the nine
unknowns in total to be solved. Eqs. (24)–(26) offer nine equations
in total to solve these nine unknowns. Because �1, the separation
point of the stuck beam, is unknown, solving these nine unknowns
is a highly nonlinear problem and the Newton–Rhapson method

[30] is applied. To apply the Newton-Rhapson method, there are
following four steps: (1) first, guess a set of values for Ai, Bi, Ci and
Di (i = 1 and 2) and �1; (2) for a given concentrated load location
of �o, compare �o and �1 to determine whether the concentrated
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Fig. 4. The deflection shapes of a slender beam with l = 10 and  ̨ = 0.02 under four
different loading scenarios: (1) F = Q = 0 (stiction state). (2) F = 2 × 10−2 and �o = l, Q = 0
(concentrated force inside contact zone). (3) F = 2 × 10−2 and �o = 0.45l, Q = 0 (concen-
ig. 3. Deflection comparison of a “chunky” beam (l = 4.5 and  ̨ = 0.02), arc-shape
nd  S-shape.

oad is inside the contact zone (�o > �1) or outside the contact zone
�o > �1) and corresponding solution form (either Eq. (30) or (31))
pplies; (3) apply the Newton–Rhapson method to obtain Ai, Bi, Ci,
i and �1; (4) go back to step (2) and iterate until the convergence

s reached. The results converge very quickly after a few iterations
nd are not (very) sensitive to the initial guessed values.

. Results and discussion

h is fixed as 1 in this study. The different deflections of
 chunky beam with l = 4.5 and  ̨ = 0.02 under different load-
ngs are shown in Fig. 2. In conjunction with Eqs. (22) and
27), the dimensionless parameter  ̨ has the following form:

 = 4B�s/(E1Iˇ2) ∝ 24(�s/E1)(1/T), which in essence indicates the
nfluence of adhesion compared with an elastic one. Here �s/E1
s very small, which is around 10−9 to 10−12 m [31–33] for vari-
us materials. Usually the thickness of a MEMS  structure is around
0−6 m or larger.  ̨ = 0.02 thus physically indicates a very strong
dhesion effect. As indicated by the constraint condition of Eq. (26),
ll the beam deflections under different loadings separates from
he substrate with the same vertical displacement of h − (

√
˛/2) ≈

.9293. However, their contact lengths are different. �1 = 4.2 and
he contact length is l − �1 = 0.3 for F = Q = 0 (stiction state); �1 = 3.96
nd the contact length is l − �1 = 0.54 for F = 2 × 10−2, �o = l = 4.5 and

 = 0 (concentrated load inside the contact zone); �1 = 3.87 and the
ontact length is l − �1 = 0.63 for F = 2 × 10−2, �o = 0.45l = 2.025 and

 = 0 (concentrated load outside the contact zone); �1 = 4.05 and the
ontact length is l − �1 = 0.45 for F = 0 and Q = 2 × 10−2 (uniformly
istributed loading). As seen in Fig. 2, the unstuck or contact length

s determined by the load magnitude, the loading type (concen-
rated or uniformly distributed) and loading location.

The external load does not appear as a parameter in the deriva-
ions of arc- and S-shaped deflections as seen in both Appendix A
nd the previous studies [7,8,18]. Again, it is emphasized that stic-
ion here is defined as an attachment state under zero external load.
ig. 3 compares the stiction shape derived by this new method with
he arc- and S-shaped deflections, which are described by Eqs. (47)
nd (48) in Appendix A, respectively. Clearly, our stiction shape

F = Q = 0 case) of l = 4.5 and  ̨ = 0.02 is different from either arc-
hape or S-shape. The unstuck length predicted by our model is

1 = 4.2; the unstuck length of arc-shape is sarc = 4
√

9h2/  ̨ = 4.61
nd that of S-shape is ss =

√
2sarc = 6.51. It is noticed that the
trated force outside contact zone). (4) Q = 2 × 10−2 and F = 0 (uniformly distributed
load).

beam predicted by our model separates from the substrate with
the vertical displacement of h − (

√
˛/2) ≈ 0.9293; the vertical dis-

placements at the separation points are h = 1 for both arc- and
S-shapes. The contact zone is now divided into two parts in terms
of contact pressure: a zone around the beam free end (i.e., w(�) >
1) is with compressive pressure and a zone around the contact
separation point (i.e., the zone of 0.9293 ≤ w(�) < 1) is with ten-
sile pressure. This resembles the Johnson–Kendall–Roberts (JKR)
contact scenario of two spheres: the inner circular zone is with
compressive pressure and outer annulus zone is with tensile pres-
sure [16,17]. In terms of force equilibrium, the tensile pressure due
to adhesion in the zone around the contact separation point bal-
ances the restoring forces due to the beam bending and contact
deformations. The beam length of l = 4.5 is smaller than sarc and ss.
Therefore, if either an arc-shape or an S-shape assumption is used
to predict the beam stiction, the beam with l = 4.5 and  ̨ = 0.02 can-
not adhere to the substrate. In our computation, this l = 4.5 is the
critical length and no stiction can occur with the length shorter than
this value. Clearly, in Fig. 3 the arc-shape deflection is a much better
approximation than S-shape for the (real) beam stiction shape.

Fig. 4 shows the deflection shapes of a slender beam with
l = 10 and  ̨ = 0.02. Now the deflection curve of F = Q = 0 (stiction
state) overlaps in most part with that of F = 2 × 10−2, �o = l = 10 and
Q = 0 (the concentrated load inside the contact zone); their dif-
ference only enlarges around the cantilever free end due to that
the concentrated load applied at the end pushes the beam deeper
into the substrate; their separation point are around �1 = 5.49. The
deflection curve of F = 2 × 10−2, �o = 0.45l = 4.5 and Q = 0 (the con-
centrated load outside the contact zone) is similar to that of F = 0 and
Q = 2 × 10−2 (uniformly distributed loading): there are some differ-
ences in the unstuck part and the contact parts are overlapped. For
these two  loading cases, the separation points are around �1 = 4.53.
Fig. 5 compares the stiction shape (F = Q = 0) of a slender beam with
arc- and S-shapes. With the fixed values of h = 1 and  ̨ = 0.02, the
unstuck lengths, sarc = 4.61 and ss = 6.51 of arc-shape and S-shapes,
respectively, remain unchanged. Now the S-shape closely matches

the deflection curve of the new model. There is only some small dif-
ference in the contact area. Again, with the fixed values of h and ˛
the deflection curve of the new model separates from the substrate
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are the tensile (pulling up) force. A uniformly distributed load is
-shape.

ith the same vertical displacement of 0.9293. But the unstuck
ength changes as �1 = 5.49. The advantage of the new model is
ow standing out: rather than prescribing the boundary conditions
t the separation point as done by the arc-shape and S-shape, the
ew model configures its deflection through the matching condi-
ions and constraint conditions. It is also worth emphasizing that
hough the stiction shape of the new model closely matches the
-shape, their unstuck lengths are different, which has significant
mpact on the interpretation on the adhesion energy measurement.
or example, ss = 6.51 of S-shape corresponds to  ̨ = 0.02; suppose
hat �1 = 5.49 predicted by our model is the unstuck length mea-
ured in experiment and ss = �1 = 5.49 corresponds to  ̨ = 0.396 of
n S-shape. Therefore, an  ̨ error of 98% results from these two
ifferent modelings.

There are three major sources contributing to the deflection
ifference between the new model and arc/S-shaped deflections:
1) Boundary conditions: at the separation point, the boundary
onditions are the hinged ones for arc-shape and clamped ones
or S-shape as indicated by Eqs. (37) and (39) in Appendix A,
espectively; rather than prescribing the boundary conditions at
he separation point, the boundary conditions of the new model
re described by the matching condition of Eq. (13) and constraint
ondition of Eq. (19). (2) The difference in the bending energy: the
ending energy of the new model consists of two parts, i.e., the
ending energies of both unstuck part and contact/stuck part as
iven by Eq. (8);  the bending energy of both arc- and S-shapes only
ccount the unstuck part as seen in Eqs. (42) and (43) in Appendix
. For arc-shape, the contact is (assumed to be) a point contact and

or S-shape, the deflection in the contact area is (assumed to be)
at. The bending energy inside contact area is thus zero with the
ssumption of arc/S-shaped deflection. However, the deflection is
either exactly arc-shape (as seen in Fig. 2) nor S-shape (as seen in
ig. 5). Therefore, the bending energy inside contact area should not
e ignored. (3) The elastic energy due to the contact deformation
etween the beam and substrate. As seen in Eq. (17), this elastic
nergy of UF contributes to the total system free energy; however,
here is no such elastic energy in the total system free energy of Eq.
45) for both arc-and S-shaped deflections. As mentioned above,

rc-shape is an idealized point contact scenario. As seen in Fig. 2
he beam part near the cantilever free end penetrates into the sub-
trate (i.e., w > h) and this contact energy is not a small amount as
Fig. 6. The deflection shapes of a slender beam (l = 10 and  ̨ = 0.02) before and after
contact for two loading scenarios: F = 7.5 × 10−4, Q = 0 (concentrated load only) and
F  = 0, Q = 8 × 10−4 (distributed load only).

compared with the bending energy of the unstuck part. Therefore,
this contact elastic energy should not be ignored, either.

Fig. 6 compares the beam deflection shapes just before and after
contact. The beam is with l = 10 and  ̨ = 0.02. Before contact, the
beam is governed by Eq. (4).  If we set w(l) = h, � = l and �o = l, F is
found from Eq. (23) for the free-standing beam as follows:

F = 3h

4l3
= 7.5 × 10−4 (33)

This F value physically means if only a concentrated load with this
magnitude is applied at the cantilever free end, the vertical dis-
placement of the free end is h, which just touches the substrate.
Similarly, if only a uniformly distributed load is applied and the
beam free end just touches the substrate, Q is found as follows:

Q = 8h

l4
= 8 × 10−4 (34)

After the contact is initiated, Eq. (28) or (29) becomes the governing
equation depending on whether the concentrated load is inside or
outside the contact area. As seen in Fig. 6 there are abrupt deflection
shape changes in both the concentrated loading and uniformly dis-
tributed loading cases. It is also noticed that once the contact starts,
the contact length is a finite one rather than a point contact, which
has been observed by Liu [34]. When a microcantilever is rinsed by
a liquid or under an electrostatic loading, the (attractive) nonlin-
ear capillary/electrostatic force is the driving force to push down
the cantilever to bring it into contact with the substrate. The com-
petition between the capillary/electrostatic force and beam elastic
restoring force results in an instability called pull-in instability [35],
which leads to an abrupt contact of microstructure with substrate
[6,35].  Mathematically, the abrupt change of deflection shape is due
to the governing equation change from the free-standing state to an
adhesive contact state. Physically, in the free-standing state, there
are no adhesion and contact deformation between the beam and
substrate.

The new model is also capable of studying the de-adherence of
microcantilever by simply changing the F or Q. Here the positive F
and Q are the compressive (pushing down) force and negative ones
applied and the beam length is l = 10 in Fig. 7. Fig. 7(a) plots the can-
tilever free end displacement of w(l) as a function of Q for different
˛s. Interestingly, the cantilever free end displacements decrease
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of Eq. (28) or Eq. (29) invalid. The governing equation for the
noncontact–contact–noncontact configuration as seen in Refs.
[24–26,29] needs to be re-derived for the adhesive contact of a
cantilever beam.
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Fig. 7. Jump-off of a stuck slender beam (l = 10): (a) The cantilever tip

nd then increase with the decrease of Q. With the change of Q, the
eam changes its equilibrium configuration: when Q is compressive
nd  ̨ is relatively large, the beam deforms like an S-shape as shown
n Fig. 5; when the beam is about to separate/jump-off from the sub-
trate (Q is tensile or even compressive for small  ̨ cases), the beam
eforms like an arc-shape as seen in Fig. 3 and the beam part around
he free end penetrates deeper into the substrate, which is reason
or the increase of the cantilever free end displacement with the
ecrease of Q in the stage about to separate. Similarly, Jones et al.
14] found from their load-deflection experimental data that the
tiffness of a stuck cantilever changes in both loading and unload-
ng stages, which indicates the transition between an arc-shape
nd an S-shape. In contrast, the contact length of l − �1 decreases
onotonously with the decrease of Q as shown in Fig. 7(b). It is

oticed that around separation the slopes of both Fig. 7(a) and (b)
ecome very steep, which physically leads to an abrupt jump-off
ehavior. In the adhesive contact of spheres, the JKR theory also
redicts such abrupt jump-off behavior during the separation pro-
ess [16,17]. The beam jumps-off at Q = 1.6 × 10−3 for  ̨ = 5 × 10−3,
hich physically means that there is no stiction state for this small

 case and an extra compressive external load is needed to keep
he beam in contact with the substrate; the beam jumps-off at

 = − 2.4 × 10−3 for  ̨ = 1 × 10−2, at Q = − 6 × 10−3 for  ̨ = 1.5 × 10−2

nd at Q = − 9.4 × 10−3 for  ̨ = 2 × 10−2. Clearly, except the case of
 = 5 × 10−3, a larger tensile force is required to separate the stuck
eam with a larger  ̨ from the substrate. It is not hard to understand
his from a viewpoint of fracture mechanics [8–10,14,20] on the de-
dherence of microcantilever: the separation of a stuck cantilever
rom a substrate in essence is to make one interface into two sur-
aces, which increases surface energy and more external work/force
s thus required for a larger  ̨ (�s). Similarly, the JKR contact the-
ry also predicts that the tensile peel-off force is proportional to �s

16,17].

Only the uniformly distributed loading is selected in Fig. 7

o study the beam de-adherence because the beam deflection
nder a uniformly distributed loading can always keep the
oncontact–contact configuration as prescribed by Eq. (7).  When
lacement as a function of Q. (b) The contact length as a function of Q.

a tensile concentrated load is applied, the noncontact–contact con-
figuration of deflection can break. As seen in Fig. 8, a concentrated
force is applied at the free end of a cantilever with l = 10 and

 ̨ = 0.02. When F is compressive or tensile with F > − 3.4 × 10−2, this
noncontact–contact configuration still remains. Once a larger ten-
sile force (i.e., F < − 3.4 × 10−2) is applied, the cantilever free end
will separate from the substrate: a noncontact–contact–noncontact
configuration is formed, which makes the governing equation
Fig. 8. Separation of the cantilever free end from the substrate and a deflection shape
with a noncontact–contact–noncontact configuration under a tensile concentrated
load.
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. Summary

A  general approach of studying the microcantilever stiction
s presented. The principle of virtual work is used to derive the
overning equation by assuming the deflection shape with a
oncontact–contact configuration. The minimization of the system

ree energy results in the constraint condition, which determines
he separation point. There are two sets of the governing equation
epending on whether the concentrated load is inside or outside
he contact zone. The governing equations becomes invalid when

 noncontact–contact–noncontact zone is formed by a tensile con-
entrated load. This new approach shows that the deflection shape
f a stuck cantilever beam is a function of the beam dimensions
nd mechanical properties, gap distance, adhesion, loading type
nd magnitude. The transition and change of the cantilever deflec-
ion shape are demonstrated by changing the beam dimensions
nd loadings. In comparison, the arc-shaped and S-shaped deflec-
ions only offer an approximation for the zero loading case, which
eviates more or less from the one predicted by this approach.
he difference of the deflection shapes has a direct impact on the
alculation of the system energy and thus the interpretation of
xperimental data. In essence, this new approach offers a more
ccurate model on the stuck cantilever by not prescribing its deflec-
ion shape.
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ppendix A. Stiction with an arc-shape and an S-shape

Fig. 1(b) shows the arc-shaped and S-shaped deformations. Here
tiction is defined as a state with no external load, the following
overning equation holds:

1I
d4W

dx4
= 0 (35)

q. (35) is readily solved as follows:

(x)  = Ax3 + Bx2 + Cx + D (36)

, B, C and D are the four unknown constants to be determined by
he boundary conditions.

For an arc-shaped beam, one end is fixed and the other is hinged.
herefore, the following boundary conditions hold:

(0) = 0,
dW

dx
(0) = 0, W(S) = H,

d2W

dx2
(S) = 0 (37)

 is the unstuck length. W(x) of an arc-shaped beam is then solved
s follows [9]

(x) = − H

2S3
x3 + 3H

2S2
x2 (38)

or an S-shaped beam, both ends are fixed. Therefore, the following
oundary conditions hold:

(0) = 0,
dW

dx
(0) = 0, W(S) = H,

dW

dx
(S) = 0 (39)
(x) of an S-shaped beam is then solved as follows [9]

(x) = −2H

S3
x3 + 3H

S2
x2 (40)
tuators A 171 (2011) 381– 390 389

In both Eqs. (38) and (40), S is unknown. To solve S, the system free
energy is needed. The beam bending energy, Ub is given as follows:

Ub = E1I

2

∫ S

0

(
d2W

dx2

)2

dx (41)

For arc-shape, substitute Eq. (38) into Eq. (42) and we have

Uarc
b = E1I

2

∫ S

0

(
−3H

S3
x + 3H

S2

)2
dx = 3E1I

2
H2

S3
= E1BT3H2

4S3
(42)

Here I = BT3/6 (2B  is the beam width). For S-shape, substitute Eq.
(40) into Eq. (42) and we  have

US
b = E1I

2

∫ S

0

(
−12H

S3
x + 6H

S2

)2
dx = 6E1IH2

S3
= E1BT3H2

S3
(43)

The surface energy US is as follows:

US = −2B�s(L − S) (44)

Again, 2B here is the beam width and L − S is the beam contact
length. The system total free energy is

Ut = Ub + US =

⎧⎪⎨
⎪⎩

E1BT3H2

4S3
− 2B�s(L − S), arc-shape

E1BT3H2

S3
− 2B�s(L − S), S-shape

(45)

Compared with the total energy of Eq. (17), besides the difference in
the bending energy, Ut here does not have UF, the elastic energy due
to the contact between the beam and substrate. For equilibrium,
dUt/dS = 0, which yields S for arc-shape and S-shape as follows [5]⎧⎪⎨
⎪⎩

S4 = S4
arc = 3

8
E1H2T3

�s
= 9E1IH2

4B�s
, arc-shape

S4 = S4
s = 3

2
E1H2T3

�s
= 9E1IH2

B�s
, S-shape

(46)

Clearly, Ss =
√

2Sarc = 4

√
3
2

E1H2T3

�s
[5]. It is also noticed from the

above equation that the unstuck lengths of both Sarc and Ss are
independent of the beam length L. For S-shape, the unstuck part
is described by Eq. (40) and stuck part (Ss ≤ x ≤ L) is a flat one as
shown in Fig. 1(b). However, there is a problem for the arc-shaped
deformation if L > Sarc. The rotation angle of arc-shape at the hinged
end is not zero, the beam part of Sarc ≤ x ≤ L has to penetrate into the
substrate, which causes large contact energy and is not accounted
by Eq. (45). When L ≈ Sarc, such penetration is allowed as shown in
Fig. 3; When L is much larger than Sarc, the arc-shaped deflection is
not allowed. Arc-shape in essence is an idealized deflection shape
of point contact with L = Sarc.

The arc-shaped deflection of Eq. (38) is now nondimensionalized
as follows:

w(�) = − h

2s3
arc

�3 + 3h

2s2
arc

�2 (47)

Here sarc = ˇSarc = 4
√

9h2/˛. The S-shaped deflection of Eq (40) is
nondimensionalized as follows:

w(�) = −2h

s3
s

�3 + 3h

s2
s

�2 (48)

Here ss = ˇSs = 4
√

36h2/  ̨ =
√

2sarc .
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