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Abstract: R ecently Homolle and H adjiconstantinou presented a new particle simulation method, i. e LVDSMC
method! ! which incorporates the variance reduction idea thus attaining significant computational efficiency for low
speed flows. In the present paper two improvements of this LVDSMC method are proposed. Firstly, additional aux
iliary particles different from deviational particles used in the original LVDSMC are suggested to be introduced and
the numerical error caused by the accumulation of the net number of deviational particles created can be restrained
through employing such auxiliary particles, which is especially crucial in treating problems in and near free molecular
regime. Secondly, an alternative principle used to determine the increment of the velocity parameter in the increment

of the underlying Maxwell Boltzmann distribution in LVDSMC collision process is proposed to make easier the calcur
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lation of the momentum and energy fluxes across the surface of the boundary.
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0 Introduction

For micro scale low speed gas flow problems
especially those in MEMS/NEMS applications, the
Navier- Stokes equation is no longer valid and the
Boltzmann equation is an appropriate one to treat
them. Although the linearized Boltzmann equation
can be used in place of the Boltzmann equation for
low speed gas flow problems, it remains a formida
ble task to solve the former for its high dimensional-
ity and huge time consumption to treat its collision
integral. DSMC'? method is a reliable method to
treat gas flow problems but is very time consuming
to treat low speed problem for the small information
to noise ratio. A method of variance reduction, em-
bedded in the finite difference method, was pro

[3]

posed to solve Boltzmann equation in'”', in which

the collision integral is written as the sum of alinear

: 2009 03 23; : 2009 05 14
(10621202),

(1982), -, ,

(90205024) ,

term and a quadratic term (small in case of slow mo-
tion) and only the former is taken into consideration
for low speed problems. Although the method of
variance reduction shows significant computational
efficiency compared to traditional Monte Carlo
method used to treat the collision integral in solving
Boltzmann equation, it retains the disadvantages of
the finite difference method compared to particle
methods like DSM C method.

Recently, T. M. M. Homolleand N. G. Had

U proposed a new particle method

LVDSM C method which incorporates the idea of the

variance reduction method and retains the algorith-

jiconstantinou

mic structure of DSM C method. By simulating only
the deviation from equilibrium, it achieved a signifi-
cant computational efficiency for low speed problem-
scompared to DSMC method and at the same time en-
joys many advantages of particle method like DSMC

(10425211)
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method. Based on LVDSMC method, two natural
improvements are proposed in this paper. First, a
new kind of computational particles is proposed in
section 1 to be employed to overcome the accumula
tion of numerical error caused by the net number of
deviational particles in and near free molecular
flows. Then, the procedure used to determine AUwus
in LVDSM C collision process is proposed in section
2 to be altered a little to make easier the calculation

of the momentum and energy fluxes at the boundary.

1 A new kind of computational particles
used to avoid the accumulation of sta

tistical error
During the simulation process of LVDSMC

method , there are three cases where new deviatiomr
al particles will be introduced into computational do-

main. Firstly, deviational particles are created imr

MB

side cells according to { At/ K1-K 2]fd- A"} in the
collision process. Here and throughout the whole
paper the notations of ! are used. Secondly, devia
tional particles are created at the interfaces between
two neighboring cells according to (¢ * n)[f""" (¢)-
"™ (¢)] in the advection process. T hirdly, devie
tional particles are created at the interfaces between
boundary and its adjacent cells according to (¢ * n)
[ )= MY ce) ], (e m) > 0 in the advec
tion process in the case Unay * n= 0, where Ubduy is
the velocity of the boundary and f‘w(bdm” (¢) is the
equivalent underlying distribution function of the
boundary and fMB((EH)(C) is the underlying distribu
tion function of its adjacent cell and n is the mnner
normal vector of the boundary. There aretwo cases
where existing deviational particles will be removed
from computational domain. In the collision process
existing deviational particles are deleted with a
probability proportional to v( ®) At and in the advec
tion process existing deviational particles are deleted
with equal numbers of positive deviational particles
and negative deviational particles among those devr
ational particles arriving at a same part of the
boundary during a same time step.

As defined and discussed in'”, the mass comr

servation equation of the collision process is:
[w[At[Kn - K2jf = N™)de=0 (1)

In the case Uns * n= 0 (Ums is the velocity pa-

MB (el . .
") the mass conservation equation

rameter of f
of the advection process at boundary leads to a new
equation related to the process of creating deviatiorr
al particles at boundary:

(com)[f"""" (c)-

(en)>0

fMB(mll) (c)]dc — O

(2)

Although the condition Ums ¢ n= 0 is very se-
vere, it is a convenient choice to meet this condition
in LVDSM C simulation process, which will be dis
cussed in section 1. 2. Eq.(1) and (2) demand that
the net numbers of deviational particles created dur

ing a time step is zero:

J
nfula), aeat = n;gﬂ),crml = ngn(i) = O (3)
=1

where j is the number of deviational particles
created according to the integral kernel of Eq. (1) or
(2) during a time step and sgn(i) equals 1 if the de-
viational particles i is positive and equals-1 if nega-
tive. The existence of numerical error usually makes
the net number nbel.ca and nut eex not zero and devi-
ational particles corresponding to the net number
may remain inside the computational domain and
their persistent movements lead to the accumulation
of numerical error which is remarkable especially for
problems in and near free molecular regime (see the
numerical example at the end of this paragraph).

T he authors suggest here to employ new kind
of computational particles (named auxiliary parti-
cles) to counteract the net number of deviational
particles created during each time step. The idea of
introducing auxiliary particles is that if bl e (or
Nid.cea) not equals zero, a number (the absolute
value of nbelaea, or of . aat) of auxiliary particles
are created according to the same principle as devia-
tional particles. And sgn(i) of auxiliary particles is
assigned to 1 if ' cr (0T %l wea) is smaller than ze
ro or to -1 if bigger than zero. It is stipulated that

the movements of auxiliary particles do not contrib-
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ute to the transportations of mass, momentum and

energy and auxiliary particles are not used to calewr
late integrals'! like J‘F(m)fd(m)d ¢i in the collision

process. Auxiliary particles are used only to alter
the net number of computational particles arriving
at a part of the boundary during atime step now irr
cluding deviational particles and auxiliary particles.
It is important that auxiliary particles are created
according to the same principle as deviational parti-
cles so that they can move along with deviational
particles and may arrive at a same part of the bound
ary during a same time step as those deviational par
ticles created during the same time step.

In order to show the accumulation process of
numerical error caused by the net number and the
effect of using auxiliary particles, the Couette flow
problem in free molecular regime is simulated by
LVDSMC method. The upper plate is stationary
and the velocity of the lower plate is 10m/ s and the
temperature of the two plates is 7= 300K. The dis
tance between the two plates is 10 nm and diffuse
reflection boundary condition is used. T he number
density of gas (Argon) is n= 2X 10” and the molec
ular mass is m= 66. 3x 10”g. The theoretical shear
stresses subjected by the upper plate and lower

plates are'':

pper ower kT _
T = - T = m(Ui- Ua)n o= 1322.2Pa
(4)

In LVDSM C simulation of this problem, the
initial underlying /"

fWB(C) 23-[kT V2, n;k?z] (5)

which remains unchanged for no collision be

for each cell is:

tween molecules in free molecular problems and e
quals to the equivalent underlying distribution func
tion of the upper plate throughout the simulation
process. During each time step, deviational particles
are created only according to the difference between
S () of the lower plate and F™ " (¢) of its
neighboring cell. The recorded data of the simula

tion process by original LV DSMC method indicates

28
that:
400
D (rhewa )i = 765153
=1
400
D (ri e )i = 763636
=1
nZOO, existing = 4656
nZOO, existing = 3 139
400 400
Z(n‘r, (',r(tal) 1= Z( n_L (',nat)l
=1 =1
= 77400, existing — 72,400, existing (6)

where (ni, wea ) 1(0or (Nl aea)1) is the number of posi
tive (or negative) deviational particles created at the
lower plate during time step [ and nioo.eising ( OF
nao, eisiing) 15 the number of positive ( or negative)
deviational particles remained inside the computa
tional domain after 400 time steps. It is noted that

small relative error (only about 0. 2 percents) be-
400 400
tween IZZI(TLT,MFM) 1 and I;(nicrem)z leads to big rela
tive error betw een nioo, exitig and 1400, exising, which will
increase with time step. The net number of N existing
— Nieiig can not be cancelled during simulation
process of original LVDSM C method and those devr
ational particles corresponding to ni eising — Nl existing
will come and go incessantly between the two
plates, which results in additional transportations to
the two plates. Figure 1 shows that the statistical
solutions of the two shear stresses by original
LVDSMC method deviate from their analytical val
ues of Eq. (4) and are bigger than the analytical val-
ues because ni exising is bigger than ni exiaing after about
400 time steps. T he sampling process usually needs
to last enough time steps to get smooth solutions,
which makes the deviation from correct values more
remarkable. But after introducing the suggested
the LVDSMC simulation results

of the shear stresses acting on the two plates agree

auxiliary particles,

well with analytical values (see Fig. 2).

For problems near the free molecular regime,
the accumulation of net number is also obvious be-
cause only few of deviational particles corresponding
to the net number can be deleted with probability

proportional to v( ©) At in collision process.
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Fig.1 The shear stresses acting on the two plates calculated

by the original LVDSMC method ( free molecular
Couette flow, Argon, n= 2Xx 10, U=10n/s, T= 300K)
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Fig. 2 The shear stresses acting on the two plates calculated by the
LVDSMC method after employing auxiliary partides ( free molecular
Couette flow, Argon,n=2x10%, U= 10nYs, T= 300K)

2 LVDSMC
( Couette ,
n= 2x 10%, U= 10m/s, T= 300K)

2 An altermation used in the procedure
to determine AUz

In the advection process, the movement corre
sponding to /™ can be neglected if f"” is independ-
ent of space. When considering a cell £ in the cases
where """ is dependent of space, the movement cor

MB

responding to " of all cells can be divided into two

parts: part I isof the case in which the underlying
distributions of all cells are the same asfm(k) and

part Il is of the case in which the underlying distri-

fMB(A-) T hen
. 2

can be neglected for its independence of

bution of any cell h equals f "™ —
part I
space and only part Il needs to be taken into consid
eration. The method proposed n Ref. [ 4] to deal
with the movement corresponding to f"” deals in
fact with only part I and only takes into considera-
tion the neighboring cells of cell £ instead of all
cells. When cell £ is adjacent to the boundary, the
boundary can be considered as a neighboring cell in
the case Uniay * n= 0. The effect of part I can be
implemented by distributing deviational particles at
the surface of cell £ and then moving them for a ran-
domly chosen fraction of a time step.

As discussed above, the advection process of
LVDSMC contains three parts:

ments of the existing deviational particles lasting for

first, the move-
a time step; second, the movements of newly crea
ted deviational particles lasting for a randomly cho-
sen fraction of a time step; third, the movement
corresponding to part I of each cell. The move
ment corresponding to part [ is neglected in
LVDSM C method because it does not contribute to
the change of distribution function. But, it must be
taken into consideration when calculating the fluxes
of any quantity of interest across the boundary. In
fact, compared to the movements of existing devia-
tional particles and newly created deviational parti-
cles, the movement corresponding to part I cormr
tributes most to the normal pressure of the bounda-
ry. Taken the calculation sample described in sec
tion 1. 1 again, the fluxes of normal momentum
across the surfaces of the two plates carried by the
movements of deviational particles, denoted by
p paide and pm1ﬁulk~, are shown in figure 3. The calcu-
lation result shows that p piie andpljﬁfif-le fluctuate a-
round zero and their absolute values are much smal
ler than the actual flux of normal momentum nkT =
8.28 % 104pa, which is about the flux carried by the
movement corresponding to part I (see Eq.(8)).
After cognizing the contribution of part I to fluxes
across the surface of the boundary, it is desirable to
know how to calculate fluxes contributed by part I

and how to simplify the calculation of those fluxes.
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Fig.3 The fluxes of normal momentum carried by the
movement of deviational particles ( free molecular Couette
flow, Argon, n= 2x 10%, U= 10n/'s, T= 300K)

3
( Couette s
n=2x 103, U= 10m/s, T= 300K)
In the case Uay * n= 0, the expression of the
flux I' (Q) of Q(c) in unit time across unit area of
the boundary carried by the movement correspond

ing to part [ is:

v = |

- e e ()
where n is the inner normal vector of the boundary
and """ is the underlying distribution of the cell
adjacent to the boundary. Let Q(¢) be the momerr
tum component mc. normal to the boundary, the
momentum component mct parallel to the boundary
and the translational energy mc’/2, respectively,
the flux I'" (Q) will be a part of the normal pres
sure, the shear stress and the heat flux, respective
ly. The solution of I'" (Q) is usually complicated if
Uw * nZ0. If Uns * n= 0, Eq.(7) has simple solur
tions for different Q(¢) of interest:
I (mea) = nuskT ws

I (met)= 0
' (me’/2) = 0 (8)
where nus and Twus are the number density and

temperature of f"* "

In LVDSMC collision process, the increment
AUws used to determine Af " and update Uns of f"”

is calculated ™ :

AUns = ﬁjm{wuﬂ(m)dm (9)

which usually lead to Uws * (n) 70 for numeri-
cal error. As AUus( also Anug and Acup) can be de
termined by arbitrary methods different from Egq.
(9), using the tangential part AUvs — (AUvs * n)n
of AUms calculated by Eq. (9) in place of AUus
would have some advantages. In the case when the
initial Uws is zero or parallel to the boundary,
adding AUus— ( AUug * n)n to Uns assures Uus * n
= 0 throughout the simulation process. If the initial
Unp is not zero and not parallel to the boundary, it
is simple to assign AUws to — (Ums * n)n at any a
time step, where Uus is the velocity parameter at
that time step. Then, using the tangential part
AUug— ( AUus * n)n of AUus calculated by Eq. (9)
in place of AUms can also make Eq.(8) valid during
the following time steps.

For problems of complicated configuration, let
Uup and Twus of the underlying distribution of cells
adjacent to the boundary be the same as the bounda-
ry, in which the advection process at the complicat-
ed boundary related to part II can be neglected be-

MB( beary) (

cause the f ¢) of the boundary is the same as

the /" (¢) of its neighboring cells.

3 Conclusions

Additional computational particles (named aux
iliary particles) different from deviational particles
used in the original LVDSM C method are introduced
to counteract the net number of deviational particles
created during the simulation process, which can o
vercome the accumulation of numerical error in
problems near free molecular regime. An alternative
principle used to determine AUus in LVDSM C collr
sion process is proposed, which makes easier the
calculation of the total fluxes of momentum and en-

ergy across the surface of the boundary.
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