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ABSTRACT: Evolution of localized damage zone is a key to catastrophic rupture in
heterogeneous materials. In the present article, the evolutions of strain fields of rock
specimens are investigated experimentally. The observed evolution of fluctuations
and autocorrelations of strain fields under uniaxial compression demonstrates that
the localization of deformation always appears ahead of catastrophic rupture. In
particular, the localization evolves pronotincedly with increasing deformation in the
rock experiments. By means of the definition of the zone with high strain rate and
likely damage localization, it is found that the size of the localized zone decreases
from the sample size at peak.load to an eventual value. Actually, the deformation
field beyond peak load is bound to suffer bifurcation, namely an elastic unloading
part and a continuing but localized damage part will co-exist in series in a specimen.
To describe this continuous bifurcation and localization process observed in experi-
ments, a model on continuum mechanics is developed. The model can explain
why the decreasing width of localized zone can lead stable deformation to unstable,
but it still has not provided the complete equations governing the evolution of the
localized zone.
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INTRODUCTION

HE RUPTURE OF heterogeneous material like concrete, rock, and other

materials is always accompanied by the localization of deformation
and damage in a narrow zone (Rudnicki and Rice, 1975; Scarpelli and
Wood, 1982; Loret and Prevost, 1990; Labuz and Biolzi, 1991; Poirier
et al, 1992; Harris et al., 1995; Tordesillas, 2004; Wallin et al., 2008;
Chow and Jie, 2009; Van and Man, 2009). This implies that when eventual
rupture occurs the scale governing the rupture is much smaller than the
sample size. Therefore, after localization, the response of a sample evolves
from global to local (Labuz and Biolzi, 1991; Hao et al., 2007). Especially
this results in the uncertainty of catastrophic rupture, because of the
unknown size of the localized zone (Hao et al., 2007).

Experiments have revealed that the localized zone at rupture has narrow
but finite widths (Scarpelli and Wood, 1982; Loret and Prevost, 1990; Labuz
and Biolzi, 1991; Tordesillas, 2004; Hao et al., 2007). Hao et al. (2007) found
that the final localized zones are about 6—8 mm, or almost 1/4 of specimen’s
size in their rock experiments and Lockner et al. (1991) reported an exper-
imentally evaluated width of 2-5mm. So, any analysis of macroscopic
behavior excluding localization would be deficient. In addition, previous
experiments have also revealed that the localized zone width may be strongly
dependent on microscopic structure. For example Harris et al. (1995)
reported that the width of localized zone can be up to 17 times of the average
particle diameter, and around 10 particle diameters reported by Scarpelli
and Wood (1982) and Roscoe (1970), 3—4 particle diameters reported by
Calvetti et al. (1997). Moreover, the localized zones are also influenced by
particle strength and the strength of interface between particles. It is
reported (Tapponnier and Brace, 1976; Aydin and Johnson, 1978) that the
crushing of individual grains and the transgranular cracks will appear
during the formation of localized zone. These factors lead to even more
complicated nucleation and evolution of localized zone. Hence, how the
localized zone nucleates and grows remains an enigma.

On the other hand, the evolution of localized patterns is critical to the
forecast of catastrophic rupture and the understanding of the failure mech-
anism of heterogeneous materials (Labuz and Biolzi, 1991; Hao et al., 2007).
For instance, it is found that catastrophic rupture may be foreseen with
acceptable error of 6% based on elastic and statistical brittle model
(ESB), provided the width of localized zone is available (Bai and Hao,
2007). So, to determine the width of the localized zone and its evolution
law becomes an unavoidable task in damage mechanics.

In the present article, a combined experimental and analytical study of the
evolution of localized deformation zone is reported. To understand the
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evolution of the localized zone observed in experiments, a model based on
continuum mechanics-is given. In order to capture the characteristics of the
localized zone and its evolution, we firstly introduce the experimentally
observed fluctuation and autocorrelation of strain fields of rock specimens
under uniaxial compression, and then turn to the observation of the evolu-
tion and the analysis of the evolution of the localized zone.

EXPERIMENTAL OBSERVATIONS OF LOCALIZED
DEFORMATION ZONE

In order to unveil the characteristics of the evolution of localized zone, the
temporal evolution of fluctuations and the spatial autocorrelations of strains
field of rock specimens were investigated under uniaxial compression, with
the digital speckle correlation method (DSCM). The testing machine is
servo-controlled and the specimens with dimensions of 20 x 16 x 40 mm?
were loaded at a constant rate of 0.02mm/min. The DSCM was coordinated
with the loading system in order to detect the localization of deformation
(Hao et al., 2007). The detailed testing process is described in the previous
paper (Hao et al., 2007).

The fluctuations of strain are calculated to describe the evolution of non-
uniform strain field. The relevant calculations are as follows:

(1) Mesh the sample surface with different window size d, and then
move the window step by step and calculate the average strain
g;=1/N Zfi(falculatmg window) o where ¢, is the strain of the i-point in a
window, N is the total of points in the window and subscript J represents
the serial number of the windows, respectively.

(2) Calculate the fluctuation:

Fluctuation(d) = %ZH: (g5 — (&), (D
J=1

for a certain window size d, where (¢} is the average on the whole sample
surface and # is the total of the windows, respectively.

(3) Calculate the fluctuations for different window size d.
(4) Calculate the fluctuations at different loading time.

On the other hand, we adopted Moran’s 7 index (Moran, 1948; Getis and
Ord, 1992) as a measure of the spatial autocorrelation of strain fields.
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The greater the index I is the more closely the spatial autocorrelation. The
index, represented by 7, is calculated with:

Z Z Wilei — )( <<9))
ot o

j=1 je=1 i=1

where Wj; is a weight matrix, for which ;=1 if element / is connected to
element j, otherwise W;=0.

To give a better evaluation of the spatial autocorrelation, we calculate the
values of Moran’s [ at different window size d as follows:

. Z Z Wild)(e; — () (g5 — (&)
l— ]—

Id) =5 x ; )
2 Z Wy(d) ; (e —

i=1j=1

where Wy(d) =1 when the distance between the elements 7 and j are equal or
less than d, otherwise W;{d)=0. From Equation (3), we can see if ¢; and ¢;
deviate from the average strain (¢) in the same way, their contribution to the
index I(d) is positive. Otherwise their contribution to Moran’s [ is negative.
So, the larger the Moran’s [ is, the higher spatial autocorrelauon the strain
fields have.

The temporal evolution and the spatial autocorrelation of fluctuations in
seven samples are investigated, among which two sample’s results are shown
in Figures 1—4, where time ¢ =0 is set at the occurrence of eventual rupture,
so the negative values denote the time lag ahead of the rupture. It can be
seen that the autocorrelation of strains increase with the increasing fluctua-
tions. This indicates that, with further deformation, the strain nonunifor-
mity and the autocorrelation of strains are enhanced correspondingly.
Especially,when rupture is approaching, the fluctuations and autocorrela-
tions of all windows increase. This implicates that some high strain fields
emerge and the localization of deformation appears ahead of the eventual
macroscopic rupture. It should be noted that the strain fluctuations and the
strain spatial autocorrelations in all samples increase with the decreasing
window size, namely there is just a slight increase in the fluctuations for
large windows; however, monotonically sharp increase is observed with
smaller windows. And the more close to eventual rupture, the more obvious
this tendency is. These indicate that the localized zone width may evolve
from large to small. In order to obtain a more clear knowledge about the
evolution of the localized zone, in the next section, we will examine the



Evolution of Localized Damage Zone 791

0.01
0.008
0.006

0.004

Values of fluctuation

Time to rupture (ms)

Figure 1. The evolution of strain fluctuations of sample 1.
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Figure 2. The evolution of strain autocorrelation of sample 1.
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Figure 4. The evolution of strain autocorrelation of sample 2.
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Figure 5. The evolution of the zone with high strain rate and likely damage localization in
granite samples.

evolution of the zone with high damage rate in terms of experimental obser-
vation of rock’s surface strain field evolution.

EVOLUTION OF THE ZONE WITH HIGH STRAIN RATE OF
ROCK UNDER UNIAXIAL COMPRESSION

It is clear that the significant strain localization develops ahead of the
rupture of rock specimens under uniaxial compression. So, there must be a
close relation between the localization of damage and deformation. Now, we
propose that the region where the strain rate remains less than the mean
strain rate would not form the localized zone by any means. That is to say,
the zone with high strain rate and likely damage localization can be defined
as follows:

g_(f%a_) > 0 is satisfied at time ¢ and afterwards.

According to this condition, the evolution of the zones with high strain
rate and likely damage localization are calculated based on our experimental
data and shown in Figures 5 and 6, where the size of the zone y is
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Figure 6. The evolution of the zone with high strain rate and likely damage localization in
marble samples.

normalized with the size of the specimen, and the nominal strain ¢ is normal-
ized with the rupture strain &g

It can be seen that the scale 3 evolves from unit to an ultimate size, which
almost equals to the ultimate width of the localized zone determined by the
method in (Hao et al., 2007). This phenomenon is to be kept in mind, an
analysis of the evolution of the localized zone will be given in the next
section.

CONTINUOUS BIFURCATION AND LOCALIZATION

It has been shown in last section that localization is bound to appear
ahead of catastrophic rupture. However, so far, there is still no physical
understanding of how the localized zone evolves. Here, we suggest a pos-
sible mechanism of localization that a new phenomenon — continuous
bifurcation — emerges beyond peak load. That is, in the load-descending
phase there are always two possible ways of deformation: continuing
damage (with increasing deformation) and elastically unloading (with
decreasing deformation), see Figure 7. More importantly, the bifurcation
will keep going on without interruption with the descending load. In fact,
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Figure 7. A sketch of stress—strain relation of continuous bifurcation. At the current stress o,
the strain of the localized zone v is ¢,; whereas tuniwag marked in this figure represents only
the strain of the stripe d(1—y(a,)) in the unloading part (1—y).

we have not had any knowledge of the partition of a macroscopic sample
into the two parts during the continuous bifurcation yet.

In this section, based on the conservation laws of continuum mechanics
and the ESB model (for the details of ESB model under global mean field
approximation, please see Appendix), we intend to gain an insight into the
continuous bifurcation and the evolution of the localized zone. In order to
do this, we consider a stiff loading condition and take the following local
mean field assumptions (Figure 8):

(1) Continuous bifurcation and damage localization appears and evolves
beyond the peak load in a macroscopic sample, see Figure 7.

(2) As soon as damage localization appears, the sample can be regarded as
two parts in series, namely a continuing damage zone and an elastically
unloading zone under the same nominal stress, see Figures 7 and 8.

(3) Mean field approximation works for each zone, see Figure 8.
Additionally, the linear dimension of the localized zone is denoted by
0 <y<1, whilst the unloading zone is 1—y, Figure 8. Together with
assumption 1, at the peak load oy, y=1.

(4) During the loading process, either the whole sample before the peak load
or the part vy beyond the peak load follows the same ESB relation
a=f(¢), see Figure 7.

(5) The unloading in the part (1—v) is assumed to be linearly elastic with
no residual strain in the ESB model, namely ¢,— o= E/(g.)(e,—¢),
where E, is the unloading elastic constant and ¢, and ¢, denote the
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Figure 8. A sketch of local mean field approximation.

state, where the unloading starts, see Figure 7. Actually, the unloading
part (1—y) is by no means uniform as the part v, because the unloading
part 1—vy consists of a series of small parts with different strain
Eunload = Eunload(T, Ty, &,) resulting from elastic unloading with different
starting states (o, &,), see Figure 7.

According to the force balance law, the normal stress in both zones in the
series is equal to the nominal stress ¢. Also, because there are different strain
increments in the two zones under the same stress decrement in the
load-descending phase, we will take the nominal stress ¢ as the independent
variable later. Then, in accord with assumption 4, the strain of the localized
zone vy is:

=l =2
o) =/ = 5
and the tangential modulus of the localized zone E, (o) satisfies:
de, 1
do  E/0)

Q)

d o 1 o
"o (Eu«f)) “E@ B
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Now, let us examine the effect of continuous bifurcation on deformation.
Owing to the continuous bifurcation, the nominal stain of the unloading
zone (1—vy) at stress o, that is, &;,_,(o), should be the accumulation of
the deformations from various unloading stress ¢, in the unloading zone.

(1—y) as:

o1 o)1 — (o) = f cunoa@0)A(1 = 70) = [ 21 = y(eu)
=575 mw+/°““§$f@%m. )

Hence, the deformation rate of the unloading zone with respect to the
nominal stress ¢ can be expressed as:

dle1- (o)1 = Yo/ do = s (1 = 1) = 5 7570
(1= Y(@)E,(0)
+ / o0 do,. (6)

In accord with continuity law, the total strain of the macroscopic sample
should be the weighted sum of the strains of the two zones as:

Erotal = &y Y+ E1—y -

(1-von+

oM

7 o(1 — (o) E,(0)

(00 do,.

5@ O E®

Obviously, only if the evolution law y(c) is available, the nominal
stress—strain relation o(g,,) can be calculated accordingly. Clearly, the
evolution law y(g) cannot be deduced from the above equation based on
continuity and force balance laws. So, we have to resort to energy conser-
vation to see if we can obtain the evolution law of the localized zone y(o).

The total of the work increment on the macroscopic sample with respect
to the nominal stress ¢ should be:

dW/do = odsgra/do = adle, - y + &1, - (1 — p)]/do

(7
= od[o/Eu(0) - (0)]/do + od[ei_,(0) - (1 = y(0))]/do.
In addition, dW/do is equal to 0 when catastrophic rupture occurs.
Substituting Equation (6) into Equation (7), we can obtain
dW o*y(0) 5 / oy(ou) o
+ E (¢,)doy, — ——. 8
"B M7 L Bey M By
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Equation (8) is a certain relation between work increment (note —dW/
do >0 in the load-descending phase) and the size of localized zone v(a).
Now, there are some points worth noting.

(1) Although an integral is involved owing to continuous bifurcation, this
remains a linear dependence of the work increment on localized zone
v(g), due to the extensive nature of deformation.

(2) Since the work increment —d W/do > 0 indicates stable deformation and
dW/de=0 indicates catastrophic rupture, as well as differentiation
E (0,) > 0 in the load-descending phase, the smaller the localized zone
7 in the first two terms is, the more likely the deformation to become
unstable. This is what the experimental observation shows: damage
localization leads to catastrophic failure.

Now, in order to determine the evolution of the localized zone vy (g), we
must know the work increment independently. Unfortunately, it is found
that the energy increment has exactly the same expression of the work incre-
ment, namely energy conservation law leads to an identical equation for any
value of y (g). In one word, we cannot determine the evolution of the
localized zone vy (g), in the light of energy conservation. Therefore, we
must go beyond the continuum mechanics, to seek the mechanism governing
the continuous bifurcation and the evolution of localized zone.

DISCUSSIONS

The experimental observations of rock tests under uniaxial compression
show that with increasing deformation both fluctuations and autocorrela-
tions of strain field increase obviously beyond peak load. Afterwards, defor-
mation concentrates in a narrow zone leading to eventual rupture. By means
of the definition of the zone with high strain rate and likely damage local-
ization, (d(e; — (g))/df) > 0 is satisfied at time ¢ and afterwards, the evolu-
tion of the localized zone v is investigated in rock experiments. In both
granite and marble, the size of the localized zone y decreases from the
sample size, that is, y=1, at peak load to an eventual value.

Based on the observations of the bifurcation of deformation beyond peak
load, a model based on continuous bifurcation is developed. In this model, a
sample will split into an elastically unloading part and a continuing but
localized damage part in series. Although the continuum model is still not
enough to determine the width of the localized damage zone definitely, it
reveals how the decreasing width of localized zone leads to the transition
from stable to unstable deformation in the sample.
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Since the width of localized damage zone is critical to both post-peak
behavior and catastrophic rupture of heterogeneous materials, the establish-
ment of a proper model to depict the evolution of localized damage zone is a
real challenge to damage mechanics.
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APPENDIX
Elastic and Statistically Brittle Constitutive Model

Elastic and statistically brittle (ESB) model is a trans-scale version of
macroscopic constitutive relation for mesoscopically heterogeneous media,
Figure Al.

Suppose that all intact mesoscopic units in the macroscopic sample follow
the same linear elastic law:

oy = Eyeq, (A1)

where o, &, and Eq are the true stress and strain of the meso-units and E, is
the elastic constant, respectively, Figure A2. But, each mesoscopic unit has
its own breaking threshold o, namely as soon as the stress in the unit
reaches its stress threshold o., the unit will suffer brittle breaking and
then it can no longer sustain any load, see Figure A2.

o Macroscopic
- sample

o ‘ Mesoscopic
e unit

Figure A1. A skefch of the trans-scale ESB model: a macroscopic sample consists of a
number of mesoscopic heterogeneous units.
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Figure A2. The elastic and brittle constitutive relation of a mesoscopic unit. Below the stress
threshold o, =Eee. (i.e., within OA), the mesoscopic unit is linear elastic (reversible).
However, as soon the stress in the unit reaches its stress threshold o, the unit will irreversibly
break and its stress will drop to zero (point B).

But the mesoscopic units in the macroscopic sample have different break-
ing thresholds ., which follow a distribution function A(o.), like Weibull

distribution:
m—1 m
W) =m(ﬁ) exp[— (1) } (A2)
n 7

where m and » are Weibull modulus and position parameter, respectively.
Clearly, the position parameter # serves as the scale of the breaking thresh-
olds o,, whereas Weibull modulus m indicates the heterogeneity of the meso-
scopic breaking threshold o.,.

Later, we will use the normalized stress and strain o =stress/y and
e = (strain*Fy)/n in our formulation of ESB model, hence the Weibull
distribution (A2) can be expressed as:

hec) = m(ec)™ exp[—(ec)"], (A2a)

where ¢, is the normalized strain threshold. Figure A3 shows how Weibull
modulus m represents the heterogeneity of the breaking threshold e,.

If global mean field approximation was adopted as conventional damage
mechanics do, all undamaged mesoscopic units would sustain the same true
stress o, =0¢/(I — D) and strain ¢, =¢, where D is damage. On the other hand,
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Figure A3. Weibull distributions of the normalized strain threshold ¢, Equation (A2a),
for different Weibull modulus: m=5 (solid line) and m=15 (dashed line), showing
that the greater the Weibull modulus is, the more homogenous the sample is. Also, the
shaded area under the distribution curve is actually the damage D(e), according to
Equation (A3).

when a mesoscopic unit attains its breaking threshold o, it cannot sustain load
any more, hence damage D in the macroscopic sample can be expressed as:

D= f ¥ he)de, = 1 — exp(—e™), (A3)
0

since the normalized strain of the macroscopic sample ¢ is equal to the true
strain ¢; according to damage mechanics, see Figure A3.

Together with the basic relation in damage mechanics ¢ =(1 — D)e for a
macroscopic element, one can deduce the 1D ESB constitutive relation of o,
e, and D as follows (also see Krajcinovic 1996):

o = F(g) = eexp(—&™), (A4)
o = G(D) = (1 — D)[~In(1 — D)J. (A5)

For simplicity, suppose that unloading be linearly elastic with no residual
strain, the corresponding unloading relation can be written as:

Oy — 0 =g, — &, (A6)

where the subscript # denotes the state, where the unloading starts.
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Figure A4. The ESB constitutive relations for a macroscopic sample consisting of hetero-
geneous mesoscopic units, with Weibull distribution m=5 (solid line) and m=15 (dashed
line), Equation (A4). The comparison of this figure and Figure A2 shows that the greater the
Weibull modulus is, the more prone the macroscopic sample is to homogenous

elastic-brittle.
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Figure A5. The ESB constitutive relation (m =5) with elastic unloading, Equations (A4) and
(A6). The bold solid line shows the variation of nominal stress with increasing strain, but the
dashed lines show different elastic unioadings starting from different stress states.
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Above all, Equations (A4)—(A6) form a complete 1D constitutive relation
of ESB model, see Figure A4. This implies that the ESB model can depict
both phases of increasing and decreasing with one parameter only, that is,
Weibull modulus .

In addition, provided the mean field approximation always works, the
relation of stress versus strain is unique in the load increasing phase,
while in the load decreasing phase, the macroscopic sample can evolve
either with increasing strain and further damage or with deceasing strain
but elastic unloading along with fixed damage, see Figure AS5.
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