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Abstract-A variational method is developed for adiabatic compression of plasma with both poloidal and 
toroidal rotation. 

1. I N T R O D U C T I O N  
ADIABATIC COMPRESSION HEATING is considered as one of the methods to further 
increase the temperature of the confined plasma for a number of experiments such as 
the Russian T-14 Tokamak, the German ZEPHYR, and the PDX and spheromak 
plasma at Los Alamos. It is known that the large toroidally unbalanced forces 
associated with neutral beam injection induce plasma flows which may approach a 
modest fraction of the hydrogen ion thermal velocity (BRAU et al., 1983). Therefore 
considerable interest in the behaviour of a confined plasma with mass flow has grown 
in recent years. The presence of large flows may cause an appreciable change in the 
equilibrium state as well as in its stability. 

It is essential to develop a computationally fast, yet sufficiently accurate, method 
that will enable a thorough investigation of an adiabatically compressed plasma with 
poloidal and toroidal rotation. The adiabatic compression of a plasma with poloidal 
rotation has not yet, to our knowledge, been treated analytically before. The work in 
this paper aims to develop a variational method for the computation of the adiabatic 
compression of a plasma with poloidal and toroidal rotation in a realistic geometry. 

For the work described here, transport processes are neglected ; therefore the plasma 
is governed by ideal MHD equations. In reality, the final plasma states may be 
strongly affected by transport processes, so a full calculation with transport is also 
required in addition to the present work. A work on this line is reported (KERNER 
and WEITZER, 1985). Another basic idea in the adiabatic compression approximation 
is to assume that the compression takes place on a time scale much slower than a 
typical Alfvkn wave transit time across the major dimensions of the device, yet fast 
enough for transport to be neglected. The wave causes a fast equilibrium, hence the 
plasma may be seen as creeping from one equilibrium state to the next, and a sequence 
of different equilibrium states may be determined without following the full dynamics. 
GRAD et al. (1975) treated the adiabatic compression of plasma without flows by 
introducing a so-called “queer differential equation” to describe the equilibrium states 
and the alternating dimensions method to solve the equation. For the case of plasmas 
with toroidal rotation, HAMEIRI (1983a) introduced a variational principle due to 
Woltijer to determine the free functions involved in the Grad-Shafranov equation, so 
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that the alternating dimensions method can still be applied. This technique can 
significantly increase the computer time and storage requirements. We notice that the 
efficient variational method developed by LAO et al. (1981) and Wu and PAN 
(1983) independently for finding approximate solutions to the Grad-Shafranov can be 
extended to the generalized Grad-Shafranov equation for our case. In LAO'S scheme, 
the flux surface coordinates (R(y,B), Z(y, e)) are expanded in Fourier series in a 
poloidal angle 8,  where y labels the magnetic surface. Through the use of the vari- 
ational method, the Fourier amplitudes of R and Z are obtained by solving a set of 
coupled ordinary differential equations, which are the moment of the Grad-Shafranov 
equation. 

This technique is further developed in this paper by constructing a new Lagrangian 
appropriate to the generalized Grad-Shafranov equation. There is some difficulty in 
determining the arbitrary functions involved in our equation. However, these can be 
approximately expressed in terms of the given constants of plasma motion and the 
geometric factor of flux surface, if beta or the Mach number is small. Consequently 
this complicated problem is greatly simplified to solving a set of nonlinear coupled 
ordinary differential equations. 

2.  THE GENERALIZED GRAD-SHAFRANOV EQUATION AND 
CONSERVATION-LAW CONSTRAINT 

For simplicity, the generalized Grad-Shafranov equation obtained by HAMEIRI 
(1983b) for an axisymmetric ideal MHD equilibrium state with flow is shown below 
without repeating the derivation : 

where the symbols E,  $, i, P, p ,  s and y have their usual meaning and the total 
magnetic field B is defined in toroidal coordinates as 

where $ is the ignorable toroidal angle. The dot in equation (1) denotes d/d$, and 
F($),  a($), H($)  and S($) are five arbitrary functions of $, which have the following 
relations derived from the ideal MHD equations (HAMEIRI, 1983b) : 

B v- -'[i+RFQ] 1-F2/p R 

;" [ I ( V $ ) ' + B ;  - TR2Q2+ ---Sp;'-' ? 
2p2  R2 I '  y - 1  = H($).  

(4) 
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Equation (3) shows that the lines of force are frozen into the fluid; hence any closed 
constant $ surface always consists of the same fluid particles, and the flow has one 
component parallel to 8 with magnitude proportional to F($),  superimposed on a 
rigid rotation of each individual flux surface. The familiar function I ($)  is not exactly 
the usual total poloidal current, and should be modified by the plasma flow as shown 
in equation (4). H($)  is the analogue of the Bernoulli function in fluid dynamics. In 
deriving the above relations, the equation of state P = S($)py was used. 

Equation (1) is an elliptic PDE (HAMEIRI, 1983a), when 

F2/p  < yP/(yP + B2). 

Therefore it requires either Dirichlet or Neumann boundary conditions to solve the 
problem of slow poroidal flow. 

What distinguishes the present problem from the usual one in a static equilibrium 
state is that, during the adiabatic compression, only S($) remains unchanged, the 
other functions F($),  a($), H($)  and I ($) ,  instead of being given, must be determined 
in such a way that the dynamical conservation laws of an evolving plasma are obeyed. 
It can be shown that these conservation-law constraints are 

mass 

angular momentum 

toroidal flux 

circulation 

where 

with 

where X is the area of flux surface and v is the volume inside a closed flux surface. 
The volume integral in (10) is taken within each flux tube. dv is the volume element 
in a plasma. Equations (6)-(9) show that within each moving flux tube the mass 
angular momentum, toroidal magnetic flux and circulation remain constant during 
compression. 



3 .  VARIATIONAL METHOD 
Consider the volume integral 

where L is the Lagrangian and the integration is over the entire plasma volume, V. 
A variation of Q with respect to $, subject to the boundary condition S $  = 0, yields 
the Euler equation 

- 0. 
aL a aL a aL 
a$ d ~ a l l / ~  aza$, 

Since the Lagrangian (LAU et al., 1981 ; Wu and PAN, 1983), whose variation gives 
the Grad-Shafranov equation, is 

we may write the Lagrangian for equation (1) as 

L = [$B;-P-:B;-~U;]R 

or 

It can be shown that d L j d p  = 0. 
Substitution of (14) in (13) and some calculations lead to the generalized Grad- 

Shafranov equation (1). It shows that the Lagrangian L given in (14) is the correct 
Lagrangian associated with (l), and that Q is stationary with respect to $ for $ 
satisfying the generalized Grad-Shafranov equation. Since the Lagrangian has been 
found, the variational method developed by LAO et al. (1981) for the usual Grad- 
Shafranov equation can be extended to our case. Notice that p = p ( $ ,  R, V$); 
however, in the above calculations p may be taken as a constant because of the 
property aLjap = 0. 

3.1. Transformed Euler equation 

the independent variables (R, Z)  to (y, 0)  coordinates 
Following LAO et al. (1981), we consider the transformation in equation (12) of 

f a  f 2 n  
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where y = a denotes the outermost flux surface and the subscripts y and 8 denote 
differentiation with respect to these variables. The transformed Lagrangian is given 
by 

*'2 L* = (1-F2/p)(Ri+Zj)-- 
2Rz 

-~ " S+pH] (16) 
Y-1 

with 

and 
d 

( ) ' = - .  
dy 

(17) 

In the representation of Q given by (1 5 ) ,  R and Z are taken as dependent variables. 
Since Q is a scalar value, its stationary value must be independent of any trans- 
formation. Therefore the variation of Q with respect to R and Z subject to the 
boundary constraints 6R = 6Z = 0 should reproduce the inverse equilibrium equation 
(1) as shown below. 

The variations of Q with respect to R and Z with the fixed boundary constraints 
6R = 0 and 6Z = 0 yield the Euler equations, respectively 

and 

where 

1 F2 $'(Ri+Zi) G = ' {' ay [ (1 - --) z R  ] - [ (1 - :) & (R, Zo + Z,Rs) 

D * B F + R ~ u ~ ~ + B ~ R ~ + ~ H -  ~ P Y S ] ] .  (20) 
Y-1 

It can easily be verified that G = 0 is the inverse generalized Grad-Shafranov equation 
(1). 

3.2. Fourier series transformation of coordinates 

in 8 
Following LAO et al. (1981), the coordinate transformation as a Fourier series 
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and 

CO 

~ ( q ,  e )  = 1 ~ , ( y )  sinno 
n= 1 

is adopted, where y($) is the flux surface label, 0 is a poloidal angle increasing 271 the 
short way around the torus, and $ is defined as the magnetic flux enclosed between 
the flux surface q($)  and the axis of symmetry. The amplitudes R,(y), R,(y) and Z,(q) 
describe the shift, the minor radius and the ellipticity of the flux surface, respectively, 
whereas the amplitudes R,(q) and Z,(q) describe the triangularity of the flux surface. 
It is found that, in practice, only a few leading terms are sufficient to describe the flux 
contours. Thus, the present problem may be reduced to a problem for solving just a 
few coupled nonlinear ordinary differential equations for R, and 2,. 

3.3. Moment equation for the inverse mapping 
It has been proven that the flux surface described either by $(R, Z) ,  or by R(q, 0 )  

and Z(y, e), is such that Q is stationary. This provides a method to calculate the 
Fourier amplitudes R, and 2, in such a way that Q is stationary with respect to the 
variations of these amplitudes subject to the boundary conditions 6R, = SZ,. 

The use of the specific convenient truncated Fourier representation (LAO et al., 
1981) 

r 1 

and the variations of Q with respect to Rn(q) and E(q) lead to a new set of Euler 
equations 

where the prime denotes differentiation with respect to q,  and (( f )) is the poloidal 
angle averaging operator defined as 
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(27) 

and 

M I  = ERo sin 8+Za COS 8 (29) 

M 2  = ERo sin 28 - ZB cos 28 (30) 

M,  = E R , s i n n 8 - Z a c o ~ n 8 ;  n = 3 ,  ..., n, (31) 

“r 
M E  = R,,R, sin ne. 

n =  1 

Equations (25) and (26) comprise a system of coupled, second order, nonlinear 
ordinary differential equations in q for the Fourier amplitudes E and R,. The five free 
functions involved in G will be found from the four conservation-law constraints (6)- 
(9) and the Bernoulii equation (5). Here a truncated Fourier series is taken, because 
the flux surface can be approximately described by a few leading terms. 

4 .  DETERMINATION OF I ( $ ) ,  H ( $ ) ,  Cl($), F ( $ )  AND p ( $ ,  R ,  V $ )  
The poloidal and toroidal rotation velocities reported by BRAU et al. (1983) are 

less than 3 x IO5 cm SKI, thus we assume the plasma velocity given by (3) is small 
compared with the Alfven or sound speed 

and parallel Mach number 

1 2  

MIl = .,/ (5) = O ( E ) ,  

or 

c 

= = Ji M , , a  = O(E)  < ( “ U ’ P / ( ~ P $ B ’ ) ) ’ ~ ~ ,  

where 
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Here U,, denotes the plasma velocity parallel to the magnetic field up to a rigid rotation 
of each flux surface. In this case equation (1) is an elliptic PDE. 

With the assumption given in equation (34) in mind, from (3) and (9, we find the 
terms F2/p ,  R U - B F ,  R 2 p U o h  in G shown in equation (20) are of order E’ in coni- 
parison with the rest of the terms. Therefore, for an accuracy of order &’, we calculate 
F, !2 to order E and H,  I ,  P to order c 2  by using equations (3)-(9) as shown below : 
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where the superscript (2) denotes order c 2 .  
Since all free functions including Pare explicitly expressed in terms of the unchanged 

conservative quantities and geometric factors as shown in equations (37)-(49), there- 
after the set of coupled ordinary differential equations (25) and (26) can be solved 
numerically by substituting (42)-(49) into G, with different boundary conditions 
prescribed by the compression method. 

It is interesting to investigate whether the plasma can speed up to a supersonic level 
due to the conservation of angular momentum during a compression. At this point, 
one can calculate the free functions and p to higher orders of the Mach number in a 
similar way to that just developed. Jn reality, the poloidal velocity damps out much 
faster than the toroidal velocity due to the fast dissipation of parallel stress, and 
therefore the compression of rotating plasmas without poloidal flow is relevant (PAN 
and Fu, 1989) for the case when the compression is much slower than the parallel 
thermalization time. 

To conclude, the variational method developed in this paper has provided a com- 
putationally efficient and powerful method for an adiabatic compression of a plasma 
with both toroidal and poloidal rotation. The essential idea of the variational method 
was applied successfully by Wu and PAN (1983) elsewhere. 

A numerical computation concerning the present problem will be reported later. 
This technique has applications to both laboratory and astrophysical plasmas. The 
compression or equilibrium state of plasmas with larger poloidal flows is not discusscd 
here because equation (1) becomes hyperbolic in this case. 
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