

气雾化NdFeB 粉末的磁性能与 热处理工艺的关系

李清泉^{*} 童立荣 徐清洲

麻润海 欧阳通 田筱淑

(中国科学院力学研究所,北京 100080)

摘要 对气雾化NdFeB 粉末的磁性能与回火温度、保温时间、回火气氛、冷却方式等热处理工艺参数和粉末粒度的关系进行了初步研究,优化了工艺条件。回火态的粉末磁性能优良,接近实用水平。气雾化NdFeB 粉末有望成为粘结磁体的原料。

主题词 气体雾化法 NdFeB 磁性能 热处理

1 引言

研究气雾化 N dFeB 粉的磁性能主要是 为粘结磁体提供理想的原料。与烧结磁体具 相比, 粘结磁体具有如下的优点:

(1) 工艺过程简单, 原料利用率高, 易实现批量生产, 成本低。

(2) 形状自由度大, 易制成各种形状复杂的部件, 也可与其它部件压制在一起。

(3)成品件的尺寸精度高,批量件性能 一致性好。

(4) 机械性能好,可进行再加工。

(5) 电阻率高, 易多极充磁。

目前,粘结磁体的应用领域在不断地扩 大,其增长速度超过任何一种磁性材料^(1,2)。

粘结磁体的质量虽然与粘结工艺有关, 但是主要取决于磁粉的性能。目前,通用的粘 结磁体用粉主要用快淬法 (MQ)和氢处理法 (HDDR)生产。此外,气体雾化法生产 N d-FeB 粉的研究开发工作也十分活跃^[3-13]。

与MQ 法和HDDR 法相比, 气体雾化有如下的特点:

 (1) 气体雾化法是一种快速凝固法, 它 可直接生产出晶粒细小, 成分均匀的粉末。

(2) 在保护气氛中生产出来的粉末, 含 氧量低, 颗粒外形为球形, 流动性好, 填充密 度高。

有关气雾化NdFeB 粉末的性能曾在文 献 [14]中报导过。本实验主要研究这种粉末 的磁性能与热处理工艺的关系。同时研究了 优化工艺条件下粉末的磁性能。

2 实验方法

本文所研究的合金成分如表1所示。

表1 合金成分表, at%

Table 1 Alloy composition

序号	N d	Dy	Fe	Co	A 1	В
1	15.4	-	78 6	-	-	60
2	16 5	-	75.0	-	1. 0	7.5
3	14.5	1. 0	73.8	2 2	1. 0	7.5

首先,在氩气保护下用中频感应炉将原 料熔成预合金锭。然后在气体雾化制粉实验 装置中重熔制粉。有关实验装置的详细情况

* 李清泉, 副研究员, 主要从事气雾化微细金属粉末生产工艺的研究工作。 收稿日期: 1996 2 16

© 1994-2009 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.r

参见文献[15]。

本实验的雾化制粉条件:

雾化介质: 氩气, 其纯度大于 99. 99%。

合金熔液过热至1400。

雾化压力: 8M Pa。

漏咀直径: ∅4mm。

预抽真空度: 1 × 10⁻² Pa。

制出的合金粉末用标准筛进行筛分,借助扫描电镜观察粉末颗粒的形貌,用光学显微镜观察粉末的金相组织,试样表面用硝酸酒精处理,用 X-ray 分析粉末的相结构和相组成。

热处理工艺是在配有DW T-702 控温仪的 SK-4-12 管式电阻炉中进行的, 装试样的管可抽空或充气。

采用 9500V SM 型振动样品磁强计测量 处理前后粉末的磁性能。

3 试验结果

3.1 原始(或称雾化态)合金粉末的性能

图 1 给出了粉末的扫描电镜照片, 颗粒 外形为球形。

图 2 是粉末的X-ray 衍射图。由 此图可 知, 气雾化N dFeB 合金粉末只有四方结构的 N d2Fei4B 相的衍射峰, 没有观察到其它相的 衍射峰。图 3 是粉末截面的光学显微照片。每 个颗粒主要由N d2Fei4B 相的枝状晶和胞状 晶组成, 晶粒间存在一些晶界相, 这种组织与 铸造N dFeB 合金的金相组织相似。

2[#] 和 3[#] 原始粉末磁性能随粒度的变化 分别示于表 2 和表 3。从表中的数据可知, 雾 化 N dFeB 粉末的比剩余磁化强度 α 和内禀 矫顽力 Hc 都有随粒度减小而增大的趋势。 - 100 目的混合粉的 α 和 Hc 的值也比较 高。表 2 中- 120+ 150 目和表 3 中- 100+ 120 目所对应的比饱和磁化强度 α 的值过 高, 这可能是由称重或其它原因带来的误差 造成的。由于消除了质量的影响, 矩形比 S R. 随粒度变化的规律就比较合理了。

图 1 粉末的扫描电镜照片 × 300

Fig 1 Scanning electronic microscope photo of powder

图 2 粉末的 X 射线衍射谱

Fig 2 X ray diffraction spectrum of powder

图 3 粉末截面的金相照片 × 200 Fig 3 Metallographic photo of powder section

Table 2	Changement of magn	etic properties of $2^{\#}$	raw powder with par	rticle sizes
粒度,目	0₅, em u∕g	<i>G</i> r, em u∕g	iH c, O e	S R.
+ 75	71. 38	15. 25	1105	0 2136
- 75+ 100	70 86	17. 65	1381	0 2491
- 100+ 120	63 29	15.05	1298	0 2378
- 120+ 150	91. 30	22 65	1321	0 2481
- 150+ 200	75.90	19. 61	1492	0 2583
- 200+ 300	76 82	24.70	2175	0 3216
- 300+ 400	80 43	33 09	3427	0 4114
- 400	80 07	35. 29	3838	0 4407
- 100	80 99	35. 88	3708	0 4430

表 2 2[#] 原始粉末的磁性能随粒度的变化(外加磁场 Hext= 20KOe)

表 3 3[#] 原始粉末的磁性能随粒度的变化(外加磁场 Hext= 20KOe)

Table 3 Changement of magnetic properties of $3^{\#}$ raw powder with particle sizes

粒度,目	σ₅, em u∕g	0∓, em u∕g	iHc,Oe	S. R.
+ 75	68 80	19. 82	1869	0 2965
- 75+ 100	75. 67	29. 55	3236	0 3905
- 100+ 120	132 7	57.72	3642	0 4351
- 120+ 150	67.8	31.01	4319	0 4574
- 150+ 200	66 74	31. 25	4613	0 4701
- 200+ 300	71.48	36 48	4716	0 5103
- 300+ 400	62 76	32 17	5766	0 5125
- 400	67. 29	40 85	5888	0 5354
- 100+ 400	77. 73	40 79	4610	0 5248

3.2 回火态合金粉末的磁性能

三种雾化 N dFeB 粉末是 1993 年生产 的,当时对部分粉末进行了热处理,1994 年 进行了其余部分热处理。热处理的工艺参数 包括:回火温度 T、保温时间 t、粒度大小、回 火气氛和回火后的冷却方式等。在两种外加 磁场 Heat分别为 20 和 28KO e 条件下,测量 的磁性能包括:比饱和磁化强度 α ,比剩余磁 化强度 α 以及它们的比值 S R. = α/α 和内 禀矫顽力 iHc,最大磁能积(BH)max。 表 4 和表 5 示出了在保温时间一定的情况下, 2[#]、3[#] 混合粉的磁性能随回火温度的变化。

由此可知,回火温度在 600~ 700 范围 内 Hc 和 S R 值较高,在 700 时最高。回火 温度偏低或过高均使 Hc 和 S R. 值下降。

3 2 2 保温时间与磁性能的关系

表 6 和表 7 给出了在回火温度一定的条 件下, 2[#] 和 3[#] 粉末的磁性能随保温时间的变 化。 表 4 2[#] 回火粉末的磁性能随回火温度的变化 (粒度-100目,保温时间 t= 60m in,

外加磁场 Hext= 20KOe)

Table 4Changement of magnetic properties of $2^{\#}$ tempered powder with tempering temperatures

mperea powaei	will thingst	
Τ,	iHc,Oe	S. R.
500	1925	0 3055
600	3852	0 4251
650	3429	0 4612
700	4492	0 4742
800	3156	0 4613
900	3360	0 4420

表 5 3[#] 回火粉末的磁性能随回火温度的变化

(粒度- 100+ 400 目, 保温时间 t= 60m in,

外加磁场 Hext= 20KOe)

Table 5 Changement of magnetic properties of $3^{\#}$

tempered powder with tempering temperatures

Τ,	iHc,Oe	S. R.
500	2157	0 3294
600	2510	0 3812
650	2330	0 3840
700	2633	0 4028
800	2039	0 4062
900	1341	0 3199

表 6 2[#] 回火粉末的磁性能随回火保温时间的变化 (回火温度 T= 700 ,外加磁场 Hext= 20KOe)

T 11 (01	P 4 *	4. C. 7#	4	1 41 1 111		•
Table b	C han gement of	r maonerie	nroperties of Z	tem nered	nowder with hold n	g ime ior iem	nerng
Table 0	Changanarto	magnetic	properties or =	unpereu	ponder minimulai	s this rol will	per mg

粒度,目	保温时间 t,m in	σ _s , em u∕g	or, em u∕g_	iHc,Oe	S R.
- 100	30	79.11	42 32	6119	0 5349
	60	78 18	41. 68	5873	0 5331
	120	78 57	36 37	3831	0 4628
- 300+ 400	30	77. 24	42 09	6027	0 5449
	60	76 69	41. 45	6191	0 5404
77.70	120	76 37	34.11	3285	0 4467

表 7 3# 回火粉末的磁性能随回火保温时间的变化

(回火温度 T= 700 ,外加磁场 Hext= 20KOe)

Table 7	Changement of	fmagnetic	properties of 3"	tempered p	owder with	holding time fo	or tempering
---------	---------------	-----------	------------------	------------	------------	-----------------	--------------

测量日期	粒度,目	保温时间 t,m in	σ _s , em u∕g	$\sigma_{\rm r},{\rm em}{\rm u}/{\rm g}$	iHc,Oe	S. R.
931103	- 100+ 400	原始粉	77. 73	40 79	4610	0 5248
		30	69.17	37. 49	5888	0 5420
		60	71.61	34.68	5706	0 4843
		120	72 57	35.44	4146	0 4883
940620	- 100+ 400	原始粉	78 56	41. 05	4765	0 5226
		15	68 90	36 15	5586	0 5247
		30	69.51	36 82	6024	0 5297
		60	55.44	29.69	4454	0 5356
		120	71.90	37.01	5591	0 5147
931103	- 300+ 400	原始粉	74.29	40 85	5888	0 5354
		30	69.52	38 79	6513	0 5581
		60	73 06	36 76	5881	0 5031
		120	70 40	36 92	5181	0 5245

从表中的数据可知,保温时间在 30 和 60m in 之间均可,保温时间为 30m in 较好。此 外,保温时间与粒度的关系不大。表 7 中给出 的三组数据是不同时期进行热处理和测试的 结果,由此可以看出,气雾化NdFeB 粉末只 要妥善保存,性能相当稳定。

© 1994-2009 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.r

3 2 3 回火粉末的粒度与磁性能的关系

表 & 表 9 和表 10 给出了回火粉末的磁 性能与粒度的关系。其中 1[#]、2[#] 粉末的 *α* 和 H c 随粒度减小而增加的趋势比较明显; 而 3^{*} 粉末的这种趋势不明显; 仅-400 目粉末的 iHc 较高。2^{*}、3^{*} 回火态混合粉的磁性能 也很好。

表 8 1[#] 回火粉末的磁性能随粒度的变化

(回火温度 T= 700 ,保温时间 t= 30m in,外加磁场 Hext= 28KOe)

Table 8 Changement of magnetic properties of $1^{\#}$ tempered powder with particle sizes

粒度,目	$\sigma_{\rm s}$, em u/g	$\sigma_{\rm r}$, em u/g	iH c, O e	S R.
- 120+ 150	96 99	35. 67	2562	0.3678
- 150+ 200	89.56	37.98	3238	0. 4238
- 200+ 300	92 65	56 06	7679	0. 6058
- 300+ 400	92 57	61.84	8883	0. 6680
- 400+ 500	89.93	59.76	8722	0. 6649
- 500	91. 62	46 08	3519	0. 5029

表 9 2[#] 回火粉末的磁性能随粒度的变化

(回火温度 T= 700, 保温时间 t= 60m in, 外加磁场 Hext= 20KOe)

Table 9	Chan gem en t	of magnetic	properties of	2"	tem pered	powder	with	particle si	izes
---------	---------------	-------------	---------------	----	-----------	--------	------	-------------	------

粒度,目	σ _s , em u∕g	σ _r , em u∕g	iH c,O e	S. R.
- 75+ 100	79. 92	27. 45	2706	0. 3435
- 100+ 120	79. 27	28 16	2563	0. 3552
- 150+ 200	81.66	33. 91	3439	0. 4153
- 300+ 400	76 69	41. 45	6191	0. 5404
- 400	75.27	42 34	6422	0. 5625
- 100	78 18	41. 68	5873	0. 5331

表 10 3[#] 回火粉末的磁性能随粒度的变化

(回火温度 T= 700, 保温时间 t= 60m in, 外加磁场 Hext= 20KOe)

Table 10 Changement of magnetic properties of $3^{\#}$ tempered powder with particle sizes

粒度,目	σ₅, em u∕g	or, em u∕g	iH c,O e	S. R.
- 75+ 100	70 63	38 67	6233	0. 5476
- 100+ 120	70 91	39. 64	6644	0. 5591
- 150+ 200	71.96	38 09	5781	0. 5294
- 300+ 400	73.06	36 76	5881	0 5031
- 400	68 03	38 53	7141	0. 5663
- 100+ 400	71.61	34.68	5706	0 4843

3 2 4 回火气氛 外加磁场与磁性能的关系 表 11 给出了 3[#] 粉末的磁性能与回火气 氛和外加磁场的关系。由表可知,不论是原始

粉还是回火粉,磁性能随外加磁场的增加而 增加,回火的气氛对磁性能也有很大的影响。

表 11 3[#] 回火粉末的磁性能随回火气氛和外加磁场的变化

(粒度-100+400目)

Table 11 Changement of magnetic properties of $3^{\#}$ tempered powder with tempering a tmosphere plus magnetic fields

测量日期	T () × t (m in)	气氛	Hext, KO e	σ₅, em u∕g	σ _r , em u∕g	iH c, O e	S R.
940620	原始粉		20	78 56	41.05	4765	0 5226
940609			28	80 17	49.31	7068	0 6150
931103	700 × 60	А	20	71.61	34.69	5706	0 4843
940618		В	20	71.91	39.43	9058	0 5483
940628		в	26	79.65	52 17	9597	0 6550
940625		В	28	76 44	49.76	11043	0 6510

3.2.5 回火后冷却方式与磁性能的关系

表 12 给出了 1[#] 粉末的回火制度与磁性 能的关系, 其中主要说明回火后冷却方式的 影响。回火后装粉的管子不论在空气中或在

水中冷却,对粉末的磁性能影响不十分明显。 此外,磁性能对回火温度和保温时间不象 2^{*}、3^{*} 粉末那样敏感。

表 12 1[#] 粉末的磁性能随回火制度的变化 (粒度- 200+ 300 目, 外加磁场 Hext= 28KOe)

Table 12	Changement of	fmagnetic	properties of	1#	powder with	tempering system
----------	---------------	-----------	---------------	----	-------------	------------------

T () x t (m in)	冷却介质	σ₅, em u/g	oF, em u∕g	iH c, O e	S. R.
650 × 15	空气	97. 98	57. 60	6754	0 5879
30	空气	93.07	57. 53	8127	0 6181
60	空气	95. 32	59.74	8001	0 6267
120	空气	94.17	56 76	6911	0 6027
650 × 15	水	94.05	57.82	8212	0 6148
30	水	94.74	58 44	7851	0 6168
60	水	95.30	59.09	7555	0 6200
120	水	92 36	56 56	7949	0 6123
700 × 15	空气	90 75	55. 22	8408	0 6085
30	空气	92 65	56 06	7679	0 6050
30	水	94.86	57. 21	7904	0 6031
60	水	94.68	59. 52	8154	0 6286
120	空气	95.26	58 91	7237	0 6184

表 13 优化回火制度下雾化粉末的磁性能

Table 13	Magnetic	properties of	a tom ized	powder i	under o	ptin ized	tem per ing	system
	8							

成分序号	粒度,目	T () × t (m in)	σs, emu∕g	o₁, em u∕g	iHc,Oe	S. R.
1#	- 200+ 300	700 × 30	91.49	60 41	8139	0 6602
		700 × 60	94.61	63.26	8157	0 6686
	- 300+ 400	700 × 30	94.30	63.94	8530	0 6730
2#	- 100	700 × 60	86 60	58 08	8633	0 6707
3#	- 100+ 400	700 × 30	80 78	55.80	11063	0 6907
		700 × 60	77.46	52 06	11786	0 6718
	- 200+ 300	675 × 30	79.49	49.30	11043	0 6618
	- 300+ 400	700 × 30	78 80	55. 27	10742	0 7015

7

3 2 6 在优化热处理制度下的雾化粉末的 磁性能

表 13 和表 14 给出了一部分在优化热处 理制度下雾化N dFeB 粉末的磁性能。由表可 见, 1[#] 粉末的 α 和 α 值高, 相应的 (BH)max 高; 3[#] 粉末的 iHc 值高; 2[#] 粉末的 iHc 值与 1[#] 相近, (BH)_{max}值与 3[#] 相近。此外, 这些粉 对热处理制度和粒度的要求范围很宽。这对 工业化生产十分有利。

表 14 优化回火制度下雾化粉末的磁能积

Table 14	Magnetic energy	flux of a tom ized	powder under	optin ized	tempering system
----------	-----------------	--------------------	--------------	------------	------------------

成分序号	粒度,目	Br, G	iHc,Oe	(BH) _{max} ,M GO e
1#	- 200+ 300	6042	8157	5. 920
	- 300+ 400	6203	8615	6 805
2#	- 100	5547	8633	5. 260
3#	- 100+ 400	5238	11680	5. 288
	- 300+ 400	5279	10742	5. 243

4 讨论

4.1 实验结果的比较

4.1.1 磁性能与粒度

原始粉的磁性能随粒度的减小而增加这 是一致的结论^[8,9,13]。但是经回火后有的随粒 度减小而增加^[9],有的与粒度关系不大,甚至 粒度细的磁性能反而低^{(13]},这些现象与本实 验结果相似。

4.1.2 磁性能与回火温度

回火温度一般在 500~ 700 之间较 好^(9,13)。

4.1.3 磁性能与保温时间

保温时间一般选择 1h 左右^(b),有的长达 10~22h⁽¹³⁾,有关这方面的优化数据不多。本 实验选用 0 5~1h 的回火时间效果较好。若 时间大于 2h,磁性能会下降。

4.1.4 粘结NdFeB 磁体产品性能

与市场上部分粘结NdFeB磁体的性能 相比,本实验经热处理的雾化NdFeB粉末已 接近实用水平。

4.2 改善雾化NdFeB 粉末的磁性能

N dFeB 系永磁体的主要磁性相是金属 间化合物N d₂Fe₁₄B,为四方结构,C 轴为易磁 化轴⁽¹⁶⁾.其饱和磁化强度M_s= 16KG,各向 异性场为 65~ 70KO e,理论磁能积 (BH)max = 64M GO e, 居里点 T_c= 313 , 在 0~ 150 的温度范围内剩磁 B_r和内禀矫顽力 iHc 的 温度系数分别为-0 126% / 和-0 71% / 。与其它磁体相比, 除温度系数较高 外, N dFeB 系永磁体具有优异的磁性能, 改 善雾化 N dFeB 粉末的磁性能, 主要是提高 iHc 和 (BH)_{max}, 降低温度系数。

为了得到优异的NdFeB 粉末的磁性能, 通常从三个方面着手:

(1)选择与制粉工艺相适应的合金成分;

(2) 减小雾化粉的颗粒直径;

(3) 寻找最佳的热处理工艺。

4.2.1 关于雾化粉末的成分配比

对于烧结法, 永磁合金中Nd 和B 的含 量分别比Nd2Fei4B 化合物含量多时才能获 得好的永磁性能, 一般含 14~ 17at%Nd 和 6 5~ 8at%B。具有良好磁性能的快淬Nd-FeB 合金成分与Nd2Fei4B 化合物十分接近, 而且B 的含量要低, 一般不大于 5at%。对于 雾化粉的合金成分还处于摸索阶段。本实验 研究了三种成分, 表 14 的结果给出了初步的 启示: 提高B₁, 应尽量提高 Fe 的含量; 提高 iHc 和降低温度系数, 加Dy 和Co 是可行的 办法。 用重稀土元素Dy 部分地替代Nd, 主要 是为了提高各向异性场。因Dy2Fe14B 的各向 异性场为158KOe, 比Nd2Fe14B 高得多, 加入 Dy 有利于提高 iHc 和合金的温度稳定性。然 而由于Dy 原子与 Fe 原子的反磁交互作用, 加入Dy 会降低合金的剩磁B₅

用 Co 部分地替代 Fe 是提高 N d₂Fe₁₄B 相的居里温度最有效的办法, 即提高合金的 温度稳定性。居里温度的提高是由 Co- Co 间的强烈交互作用。然而 Co- Co 之间的交 互作用能高于 Co- Fe 和 Fe- Fe 间的交互 作用能, 导致合金矫顽力下降。此外, Co 还可 提高磁体的耐腐蚀性能。

加入部分A1,作为Fe的代位元素,大多数研究者认为有利于提高矫顽力。 文献〔17〕 的研究表明,在NdDyFeCoB系合金中,加入 A1均有利于提高矫顽力。

4.2.2 减小雾化粉末的颗粒直径

雾化 N dFeB 粉末的磁性能随粒度的减 小而增加,因此细化粉末是改善磁性能的一 条重要途径。雾化粉的一种快速凝固粉,其冷 却速率在铸锭-破碎粉和快淬粉之间,粉越 细,晶粒也越细。晶粒小于单畴粒子的临界尺 寸 0 3μm 的细粉,是理想的粘结各向同性磁 体的原料。关于细化粉末,文献 (18)已探索出 一套办法。 N dFeB 磁体的矫顽力不仅取决于 N d2Fel4B 相的各相异性场强度,而且还与合 金的微观组织结构密切相关。实验表明雾化 态的粉磁性能低,即与微观组织有关。文献 (9)的热差分析结果表明,快速凝固的雾化粉 中可能有介稳相,甚至还有非晶相。此外,文 献〔14〕的分析指出,雾化粉的矫顽力机制可 能与反磁化畴形核机制相近。因此,雾化粉必 须象烧结磁体那样,进行回火处理,调整晶面 和晶界相的结构,改善磁性能。实验表明,优 化热处理工艺能大幅度地提高雾化粉的磁性 能。

5 结论

(1)雾化NdFeB 粉的磁性能较低,经过 回火处理后,其磁性能大幅度提高,回火温度 在 650~700、保温时间在 30~60m in 之间 为宜。

(2) 进一步优化热处理工艺及合金成 分,雾化NdFeB 粉有可能成为粘结各向同性 永磁体的优质、廉价的原料。

本课题得到国家科委和中国科学院的大力资助,并列为院"八五"重点科研项目(应用研究,编号 KM 85-31);得到中国科学院院士吴承康先生,物 理所副所长詹文山研究员的指导和支持,得到国家 磁学开放实验室杨伏明,赵建纲,沈保根等教授的支 持和帮助。在此,一并表示衷心的谢意。

4.2.3 优化热处理工艺

6 参考文献

1 肖文涛 Nd-Fe-B 型粘结磁体的发展现状 国外金属材料, 1991, 4:16

2 张正义, 肖耀福, 裘宝琴, 等 HDD 法粘结 NdFeB 磁体的磁性能 北京科技大学学报, 1993, 15(1): 115.

- 3 Method for making rare-earth element containing permanent magnets US patent 4585473 1986
- 4 磁石用Nd-B-Fe 系合金粉末の制造方法 JP, 昭 63- 109010 1988
- 5 磁石用合金粉末 JP, 昭 63- 216307. 1988
- 6 永久磁石用合金粉末 JP, 昭 63- 216308 1988
- 7 希土类- 铁系永久磁石の制造方法 JP, 昭 63- 224306 1988
- 8 磁性粉末の制造方法 JP, 平 1- 194304 1989.
- 9 M asam i Yam amoto, A kihisa Inoue, T suyoshiM asumoto. Production of N d-Fe-B alloy pow ders using highpressure gas atom ization and their hard magnetic properties M etallurgical Transactions A, 1989, 20A: 5
- 10 希土类-Fe-B 系磁性粉末の制造方法 JP, 平 1- 205402 1989.
- © 1994-2009 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.r

- 11 永久磁石の制造方法 JP, 平 2- 162704 1990
- 12 M ethod of making bonded or sintered permanent magnet US patent, 5240513 1993
- 13 M ethod for producing permanent m agnet alloy particles for use in producing bonded permanent m agnets EP, 0396235 A 2 1990
- 14 李清泉,徐清洲,麻润海,等.雾化NdFeB 合金粉末的组织结构与磁性能 粉末冶金技术, 1995, 13(1):3
- 15 李清泉, 麻润海, 徐清洲, 等. 高温合金气体雾化制粉技术的实验研究 有色金属与稀土应用, 1995, 1:3
- 16 周寿增 稀土永磁材料及其应用 冶金工业出版社, 1990
- 17 A S Kin. M agnetic properties of N dD yFeCoA B alloys J Appl Phys, 1988, 63 (8): 3975.
- 18 李清泉, 欧阳通, 麻润海, 等. 气雾化微细金属粉的生产工艺研究 粉末冶金技术, 1996, 14(3): 181~ 188

R ELA TION S BETWEEN MAGNETIC PROPERTIES OF GAS-A TOM IZED N dFeB POWDER AND HEAT TREATMENT TECHNOLOGY

L i Qingquan Tong L irong Xu Qingzhou Ma Runha i Ouyang Tong Tian Xiaoshu (M echan ical Research Institute, A cadem ia Sin ica, Beijing 100080)

Abstract An in itial research has been made on the relations between the magnetic properties of gas-atom ized NdFeB powder and the technological parameters of heat treatment including tempering temperatures, holding time, tempering atmosphere, cooling mode, etc and particle sizes Technological conditions have been optimized The powder as-tempered has superior properties, approximating to a level of practical use Gas-atom ized NdFeB powder is expected to be the raw materials for bonded magnets

Key words gas-atom izing process NdFeB magnetic property heat treatment

· 简讯 ·

乌克兰专家来京举行技术讲座

应北京市粉末冶金研究所的邀请,乌克兰科学院材料学问题研究所 和 , 两位 科学院院士(均为该所副所长),于九月上旬来华进行技术交流。该研究所技术力量雄厚,在国际上知名度极 高。为满足粉末冶金及相关行业企事业单位生产和技术开发需要,北京机械工程学会粉末冶金分会和北京市 粉末冶金研究所于9月9日联合举办了"乌克兰材料学问题技术讲座",来自北京和天津有关生产企业、科研 院所及高等院校的代表参加了讲座,讲座内容涉及粉末冶金发展现状、多孔材料、精细陶瓷、电工合金和注射 成形等领域。两位专家既介绍了乌克兰材料学问题研究所目前的科研成果,也介绍了相应领域国际上其它国 家的发展状况。

(学会秘书处 供稿)