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Summary

The critical excavation depth of a jointed rock slope is an important problem in rock engineering.
This paper studies the critical excavation depth for two idealized jointed rock slopes by employing
a face-to-face discrete element method (DEM). The DEM is based on the discontinuity analysis
which can consider anisotropic and discontinuous deformations due to joints and their orienta-
tions. It uses four lump-points at each surface of rock blocks to describe their interactions. The
relationship between the critical excavation depth Ds and the natural slope angle �, the joint
inclination angle � as well as the strength parameters of the joints cr ,�r is analyzed, and the
critical excavation depth obtained with this DEM and the limit equilibrium method (LEM) is
compared. Furthermore, effects of joints on the failure modes are compared between DEM
simulations and experimental observations. It is found that the DEM predicts a lower critical ex-
cavation depth than the LEM if the joint structures in the rock mass are not ignored.

Keywords: Slope stability, discontinuity, critical excavation depth, face-to-face DEM, limit
equilibrium method, joint configuration.

1. Introduction

The excavation of jointed rock slopes may cause landslides and interrupt construction.

Thus slope stability is always a concern during excavation and the maximum excava-

tion depth or critical excavation depth is often the focus. The limit equilibrium method

(LEM) is widely used in the stability analysis of rock slopes (Duncan, 1996; Wang

et al., 2004). It can also be used to get the critical excavation depth. In the LEM, a

sliding surface is assumed to be formed along the weakest layer of shear resistance

which may be obtained through a searching routine (Low et al., 1998). The factor of

safety, which is used to evaluate the stability of a slope, is defined as the ratio of the



resisting force to the sliding force along the sliding surface. The concept of the LEM is

simple and practical, and abundant experience has been accumulated in practice (Chen

et al., 2001; Kentli and Topal, 2004; Kim et al., 2004). However, the LEM cannot

consider the effects of stress and deformation distribution nor multiple structural

interfaces such as joints and fissures in a sliding body (Li et al., 2005). In order to

consider these factors, several numerical methods have been proposed in rock mechan-

ics (see review papers by Jing (2003); Jiang and Hudson (2002)), and the discrete

element method (DEM) is one of promising methods for stability analysis of jointed

rock slopes (Dowding et al., 1983; Lu et al., 2002; Chen and Li, 2004).

The DEM was first proposed by Cundall (1971) to study the movements of gran-

ular assemblies (Cundall and Strack, 1979). This method was coded into a computer

software, UDEC (Board, 1989) which was based on a two-dimensional vertex-to-face

model. Being different from the Cundall’s vertex-to-face model, Dowding (1983)

proposed a face-to-face model to consider the structural interfaces in rock masses.

This face-to-face model constrains the orientation of contact forces, avoiding the

difficulty of the vertex-to-face model in the determination of the direction of contact

forces. It is more reliable and much simpler to search for the contacts in discrete

blocks when displacements are small. This can reduce computation cost (O’Conner

and Dowding, 1992; Dowding et al., 1999; 2000). The face-to-face DEM (called DEM

hereafter) was successfully applied to jointed rock masses in engineering. For exam-

ple, O’Connor and Dowding (1992) applied the 3D-DEM model to analyze mining-

induced subsidence. In recent years, this face-to-face DEM has been extended to

include a hexahedral element (Chen and Li, 2004) and applied to the slope stability

analysis of the Three Gorges project (Lu et al., 2002) and blasting-induced rock mass

vibration (Guo and Li, 2002).

Joint structures play critical roles in the stability of a jointed rock slope during

excavation (Cook, 1992; Gokceoglu et al., 2000; Yoon et al., 2002). However, the re-

lationship between joint structures in a rock mass and the factor of safety of a jointed

rock slope is not clear so far. This paper will study the effect of joint structures on the

critical excavation depth for two typical jointed rock slopes through the face-to-face

3D DEM model. The relationship between slope stability and slope parameters such as

slope geometry, joint structure and joint strength is numerically studied. The DEM

simulations are compared with the LEM closed-form solutions and the LEM numer-

ical results. The failure modes for a rock slope with different joint structures are

experimentally observed and numerically simulated with the DEM. It is found that

joints both along the sliding surface and in the sliding body may affect the critical

excavation depth and that the DEM may predict a lower critical excavation depth than

the LEM.

2. Fundamentals of the Face-to-Face Model

Rock masses can be divided into blocks according to joint orientations and their

spatial distribution. The DEM model in this study involves three primary sets of joints

which cut the rock mass into hexahedron blocks as shown in Fig. 1. The blocks contact

each other at the interface or block surface to form a face-to-face model. Each sur-

face defines four points (called lump points) to transfer the forces on this surface.
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Therefore, these lump points are the acting points of the forces between two adjacent

blocks. Each block has two external forces: body forces and contacting forces from

neighboring blocks. Based on Newton’s second law, the equation of motion of the ith

block is expressed as follows:

mi
€~uu~uui þ cm _~uu~uui þ ck

Xn

j¼1

ð _~uu~uui � _~uu~uujÞ þ k
Xn

j¼1

ð~uui �~uujÞ ¼ ~FF ð1Þ

and

Ii
€~��~��i þ cIr

2
0

_~��~��i þ ck
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k¼1

f~rrk � ½~rrk �ð _~��~��i � _~��~��jÞ�g þ k
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k¼1

f~rrk � ½~rrk �ð~��i � ~��jÞ�g ¼ ~MM; ð2Þ

where mi and Ii are the mass and the moment of inertia of the ith block, respectively,~uui,
_~uu~uui, €~uu~uui, ~��i,

_~��~��i,
€~��~��i are displacement, velocity, acceleration, angular displacement, angular

velocity, and angular acceleration, respectively. The subscript ‘j’ refers to the jth-

neighboring block. n is the block number which is adjacent to the ith block, and n0

the lump points on the ith block. ~FF is the external force such as gravity, and ~MM the

external moment. r0 is the rotating radius and~rrk the vector from the block mass center

to lump points. cI ; cm; ck; k are physical constants.

At each lump point, the normal force Fn and the shear force Fs, which express the

interaction between two adjacent blocks, are expressed as (Wang et al., 2003):

Fn ¼ �kn�un; Fs ¼ �ks�us ð3Þ
where �un and �us are the relative normal and shear displacements, respectively. kn
and ks are the normal and shear stiffnesses.

The criteria of failure at each lump point are as follows:

Fn ¼ 0; Fs ¼ 0; when
Fn

S
� �t ð4Þ

Fs ¼ Fn tan�r þ C when
Fs

S
� cr þ

Fn

S
tan�r; ð5Þ

where S is the area acted on by forces Fn and Fs. cr ¼ C=S the cohesion, and �r the

friction angle of the joints. �t is the tensile strength. When the normal stress at this lump

point is greater than �t, the blocks detach and the future tensile strength is set as zero.

The dynamic relaxation method is used for time integration. Forces and displace-

ments are updated in each computing cycle, and the computation is iterated in each

Fig. 1. Face-to-face model and positions of lump points
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time step. The calculation ends when the kinetic energy converges to zero or a non-

zero value.

3. Critical Excavation Depth for a Typical Jointed Rock Slope

3.1 Geometry Model

Figure 2 is a typical jointed rock slope. Its dimensions are XL ¼ 50 m, YL ¼ 70 m, and

ZL ¼ 50 tan�þ 10ðmÞ, respectively. For convenience, three sets of joints with spacing

of 2 m cut the rock masses into quasi-3D blocks. The parameters for these three sets of

joints are shown in Fig. 2(a). They are  1 ¼ 90�, �1 ¼ �;  2 ¼ 90�, �2 ¼ 90� � � and

 3 ¼ 0�, �3 ¼ 90�, where � is the dip angle of plane AC in Fig. 2(b).

3.2 Criterion for Slope Stability

A block will slide if the shear strength between two adjacent rock blocks cannot resist

the sliding forces imposed by other adjacent blocks. When all sliding surfaces connect

each other to form a continuous surface and this continuous surface goes through the

slope borders, the unstable mass of this slope will move with a constant velocity or

acceleration. At this time, the kinetic energy of the slope is non-zero. Therefore, a

slope is not stable if the velocities of some blocks cannot converge to zero. On the

other hand, a stable slope should have zero kinetic energy. In our DEM computation,

we regard the convergence of kinetic energy to zero as the criterion for slope stability.

3.3 Critical Excavation Depth Calculated by the LEM

The typical rock slope as shown in Fig. 2(b) has a plane sliding surface. The un-

stable mass is a triangular prism �ABC. It is defined by the following geometrical

Fig. 2a, b. Schematic excavation of a jointed rock slope. a Three-dimensional view, b two-dimensional view
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parameters: the natural slope angle �, the joint inclination angle � and the excavation

depth D. The sectional area of this prism is:

S�ABC ¼ f ð�; �;DÞ ¼ 1

2

D2

tan �� tan�
: ð6Þ

If the unit weight of this slope is �, the weight of this triangular prism in unit length is:

G ¼ �S�ABC ¼ 1

2
�

D2

tan �� tan�
: ð7Þ

Its factor of safety is obtained as:

F ¼ Shear strength

Shear force
¼ crD

G sin �ð sin �� cos � tan�Þ þ
tan�r
tan �

¼ 2cr

�D sin � cos �
þ tan�r

tan �
;

ð8Þ

where �r is the friction angle and cr the cohesion along the sliding surface. It is noted

that the critical excavation depth Ds is the excavation depth D when the slope is in its

critical state, that is F ¼ 1. From Eq. (8) this Ds can be obtained as

Ds ¼ gð�; �; cr; �rÞ ¼
2cr

� cos2 �ð tan �� tan�rÞ
: ð9Þ

It is noted that Eq. (9) is meaningful only if �>�r. If � � �r, the excavated slope

will never slide along the joint surface unless additional forces are imposed or strength

in the joint surface is lost (Wei et al., 2005). Furthermore, Eq. (9) does not consider the

effect of joints inside the sliding mass because the LEM regards the triangular sliding

mass as rigid. This closed-form of critical excavation depth is only applicable to the

case in which slope sliding is controlled by only one set of joints along the sliding

surface. If slope sliding is controlled by more than one set of joints, closed-form

solutions are usually not available, and the DEM simulation is usually employed to

investigate the effect of joints.

4. Numerical Simulations with DEM and Discussion

4.1 Graphs of Sliding Blocks and Displacements

In order to compare the above LEM closed-form solution with the DEM simulation, the

slope is assumed to slide along one joint surface only. We evaluate the slope stability

with different excavation depths and monitor the displacements until the slope fails. The

following parameters are used in the computation: the natural slope angle � ¼ 45� and

the joint inclination angle � ¼ 65�. The strength parameters of joints are �r ¼ 30�,

cr ¼ 0:13 MPa and �t ¼ 0:6 MPa. The strength parameters of intact rock are �r ¼ 50�,

cr ¼ 0:60 MPa and �t ¼ 0:6 MPa, and the density of rock mass is � ¼ 26:46 kN=m3.

Figure 3 shows the typical displacements at the point of x0 ¼ 24:5 m, y0 ¼ 47:5 m, and

z0 ¼ 46:3 m when excavation depths vary from 0 to 35 m. It is found that the dis-

placements increase rapidly after the excavation depth exceeds 30 m. All blocks inside
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the sliding triangular area show the same sliding trend. When the excavation depth

reaches 35 m, the displacements increase without limit, which corresponds to sliding

failure. Figure 4(a) and (b) show the distributions of block mass centers and slip points

at two excavation depths, 30 m and 35 m. When the excavation depth is 30 m as shown

in Fig. 4(a), slip points occur in the upper part but have not gone through the slope to

form a sliding surface. This indicates that the slope has not achieved its critical state.

When the excavation depth reaches 35 m, the slip points almost form a sliding surface

as shown in Fig. 4(b), and the slope is in its critical state and slides. The sliding mass

is exactly a triangular prism.

4.2 Effect of Excavation Procedures

It is noted that the above DEM simulations are carried out through a vertical column

excavation procedure as shown in Fig. 5(a). In this excavation procedure, vertical

columns of rock masses from left to right are removed vertically one-by-one. Another

excavation method is that the rock mass is horizontally removed through a horizontal

layer excavation procedure from top to bottom as shown in Fig. 5(b). Figure 6 is the

critical excavation depth when the horizontal layer excavation procedure is imple-

mented. When the excavation depth is only 30 m, a sliding surface has been formed. In

order to achieve the critical excavation depth of 35 m, the cohesion of joints must be

cr ¼ 0:25 MPa. This difference of the critical excavation depth is caused by the

strongly nonlinear process of slope failure in jointed rock slopes. Our numerical

simulation shows that the maximum displacement occurs at the top of the excavation

surface. The vertical column excavation procedure can remove the most dangerous

rock masses in each excavation. This prevents the most dangerous blocks from sliding

or toppling, thus producing a higher critical excavation depth. For the horizontal layer

excavation procedure, the most dangerous rock mass remains there and the displace-

ments are progressively accumulated. These displacement accumulations behind the

Fig. 3. Variation of block displacement with excavation depth D
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excavation surface speed up the toppling at the top front corner or the formation of a

sliding surface, thus producing lower critical excavation depth. These results show that

excavation procedure has a crucial effect on the critical excavation depth. For further

Fig. 4. Sliding point development with vertical column excavation (DEM simulation)

Fig. 5. Two typical excavation procedures
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study and comparison, only the vertical column excavation procedure is implemented

in the hereafter simulations.

4.3 Relationship Between Ds and �

The DEM simulation considers two sets of joints. One is parallel to the sliding

surface and the other is perpendicular to the sliding surface. The parameters are

taken as � ¼ 65�, cr ¼ 0:2 MPa, and �r ¼ 30� along the sliding surface in the

DEM simulations. The joint spacing is assumed to be 2 m. Most slopes in the real

projects have the natural slope angles in the range of 40�–70�. For the LEM

the critical excavation depth is Ds ¼ 54 m regardless of the number of joints

Fig. 6. Sliding point development with horizontal layer excavation (DEM simulation)

Fig. 7. Critical excavation depth Ds with natural slope angle predicted by DEM and LEM
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inside the sliding mass. Figure 7 compares the critical excavation depth when

� � ð45�; 70�Þ for both LEM and DEM simulations. The critical excavation depth

calculated with the DEM decreases with the natural slope angle. This relation is

approximated by

Ds ¼ 76 � 1:02�: ð10Þ

The critical excavation depth is much larger for the LEM than for the DEM.

Fig. 8. Variation of critical excavation depth with joint cohesion cr (predicted by DEM)

Fig. 9. Variation of critical excavation depth with joint friction angle �r (predicted by DEM)
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4.4 Relationships Between Ds � cr and Ds ��r

The DEM considers the effects of joint strength on slope stability through Eqs. (4) and

(5). Figure 8 compares the curves of the critical excavation depth Ds versus joint

cohesion cr. These curves are calculated with the DEM under two joint inclination

angles. The Ds is linear with the cohesion cr in the range shown in the figure. The

higher the cr, the larger Ds. Figure 9 shows the effect of friction angle on the

critical excavation depth calculated by the DEM for cr ¼ 0.12 MPa and 0.2 MPa.

The effect of the �r on slope stability is not as strong as the cr. For example, if

� ¼ 65�, � ¼ 45�, cr ¼ 0:12 MPa, the critical excavation depth Ds changes from

20 m to 15 m when the friction angle �r varies from 32.5� to 0�. The critical ex-

cavation depth reduces slowly with the reduction of friction angle when �r is lower

than 40�.

4.5 Relationship Between Ds and �

Figure 10 shows another typical jointed rock slope. This slope has a plateau at the top.

It may have two potential sliding modes (called as cases 1 and 2) as � changes. For

such a slope, the LEM determines the factor of safety as follows:

In case 1, tan � � ZL
YL�d�Ds= tan� , the sliding part is a triangle. The factor of

safety F is given by Eq. (8) and the critical excavation depth Ds is given by Eq.

(9). That is

Ds ¼
2cr

�ð sin � cos �� cos2 � tan�rÞ
: ð11Þ

Differentiating Eq. (11) with � and letting the derivative be zero, one gets the most

dangerous inclination of joints:

� ¼ �

4
þ �r

2
: ð12Þ

Fig. 10. Two potential sliding surfaces for a excavation slope
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In case 2, ZL
YL�Ds= tan� < tan �< ZL

YL�d�Ds= tan�, the sliding part is a quadrilateral. The F is

obtained as

F ¼ 2ZL cr

� sin2 �½�D2= tan�þDðYL � d þ ZL= tan�Þ þ ZLðZL= tan �þ d � YLÞ�
þ tan�r

tan �
:

ð13Þ

The critical excavation depth Ds can be obtained when F ¼ 1 in Eq. (13). Because

this equation is slope size dependent, it is difficult to obtain a closed-form solution for

the critical excavation depth. A numerical procedure is employed to calculate the

critical excavation depth.

Figure 11 compares the critical excavation depth calculated with the LEM for the

above two cases when � ¼ 45�, cr ¼ 0:2 MPa, and �r ¼ 30�. Although the critical

excavation depth varies, the minimum depth is obtained when the joint inclination

angle is in 55�–65�. Figure 12 is the critical excavation depth calculated with the

DEM for three sets of joints. The results calculated with either LEM (see Fig. 11) or

DEM (see Fig. 12) show similar trends, but the DEM predicts smaller critical excava-

tion depth. The difference may be from the joints that are perpendicular to the slope.

This set of joints forms a crack behind the sliding part under gravity force (Gokceoglu

et al., 2000). Some blocks slide along this crack. Table 1 compares the critical exca-

vation depths and the factors of safety for both LEM and DEM when joint inclination

angles are 60�; 65�; 70�, and 75�. Their difference is obvious. For example, to the same

F ¼ 1, the critical excavation depth is 32 m with the DEM and 54 m with the LEM

when joint inclination angle is equal to 65�. The LEM predicts F> 1:46 while the

DEM already predicts a critical excavation depth. Three sets of joints are selected, but

only one is ‘critical’ to the slope and the other two are parallel to the YZ plane and XZ

plane, respectively. Figure 13 compares the critical excavation depths calculated with

Fig. 11. Variation of excavation depth with joint inclination angle (predicted by LEM)
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Fig. 13. Critical excavation depths predicted by DEM and LEM for one set of joints

Table 1. Comparison of critical excavation depth and factor of safety of DEM and LEM

Joint inclination angle � 60� 65� 70� 75�

Critical excavation depth by the DEM (m) 31 32 36.5 44
Critical excavation depth by the LEM (m) 52.4 54 59 71.5
Factor of safety by LEM at the DEM excavation depth 1.46 1.50 1.49 1.53
Factor of safety by DEM 1.00 1.00 1.00 1.00

Fig. 12. Variation of critical excavation depth with joint inclination angle (predicted by DEM)
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the DEM and LEM of Eq. (9). These two curves are almost identical. This shows that

the DEM can give the same excavation depth as the LEM if the same hypotheses are

used for the joint structures of the rock slope. In summary, because the DEM can take

more sets of joints into consideration, it can go beyond the applicability of the con-

ventional LEM.

5. Joint Structure Effects Observed in Experiments

and DEM Simulations

The above-mentioned DEM simulations indicate that the joints in the sliding rock

mass may have an important influence on the critical excavation depth of a jointed

Table 2. Experimental cases and their joint configurations

Notation Joint configuration Descriptions

Case 1 Big block, persistent joints parallel
and perpendicular to bedding surface

Case 2 Big block, stepped joints

Case 3 Medium block, persistent joints

Case 4 Medium block, stepped joints

Case 5 Mixture of different block sizes
Front big blocks with stepped joints
Back small blocks with persistent joints

Table 3. Geometrical properties of joints

Joint set Joint angle (degree) Joint spacing (m)

Inclination Orientation Big block Medium block Small block

1 90-� 0 0.2 0.1 0.05
2 90 90 0.1 0.1 0.1
3 � 180 0.1 0.1 0.1

Block sizes: 200� 100� 100 mm3 (big); 100� 100� 100 mm3 (medium); 50� 50� 50 mm3 (small)
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rock slope. If this finding is confirmed by experiments, engineering design criteria

should take this joint effect into account. Table 2 lists five artificial jointed rock

slopes used in model experiments. These experiments were conducted to study the

effect of joint structure on the failure modes of rock slopes. In the experiments, the

rock blocks are all made from granite. Three block sizes as given in Table 3 are used

to form these five types of artificial jointed rock slopes in laboratory. Cases 1 and 3

have persistent joints parallel and perpendicular to bedding surface as well as a

steep front. Cases 2 and 4 have a stepped front and joint structures. Case 5 is a

mixture of cases 2 and 3, but the persistent joints are in the back part.

As indicated in Fig. 14, after the blocks have been placed on the test table, the test

table is inclined through increasing � until slope failure occurs. The � at slope failure

is called the failure angle of this slope. The computational parameters of the interfaces

are experimentally determined as �r ¼ 26� and cr ¼ 2:14 Pa. Table 4 compares the

failure angle obtained by DEM simulations, LEM simulations, and experimental

observations. Figure 15 compares the failure modes between the DEM simulations

and experimental observations. Figure 15(a) and (b) are for big blocks and stepped

joints (case 2), Fig. 15(c) and (d) are for medium blocks and stepped joints (case 4),

Fig. 15(e) and (f) are for medium blocks and persistent joints (case 3), and

Fig. 15(g) and (h) are the mixture of different block sizes and joints (case 5). It is

observed that cases 2 and 4 fail by sliding which is essentially governed by the

Fig. 14. Experiment setup for failure angle of jointed slope

Table 4. Comparison of failure angles among experiments, DEM and LEM

Slope type Case 1 Case 2 Case 3 Case 4 Case 5

Slope details Big block,
unbent joint

Big block,
stepped joint

Medium blocks,
unbent joint

Medium blocks,
stepped joint

Mixture

Experiments (deg) 22.14–24.2 25–26.3 9.8–11.6 23–24.9 19.5–21.8
DEM prediction (deg) 23 25.5 10 23.5 21
LEM prediction (deg) 26 26 26 26 26
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friction angle, thus they have similar failure angle. The failure modes for cases 1 and 3

are toppling due to their persistent joints (the photos for case 1 are omitted because

they are similar to case 3). Because case 3 has smaller block sizes than case 1, its

failure angle is much smaller. This scale effect was also observed by Yoon et al.

(2002). Case 5 has a combined failure mode of sliding and toppling, that is, the part

with the big blocks slides and the part with the small blocks topples. The small blocks

first rotate at the front and then slide in the upper part. This causes the big blocks to

slide. The sliding of upper block induces the sliding of big blocks at the lower layers,

producing global failure of the slope. These experimental results reveal that joint

structures in a rock slope have an important effect on the stability of a jointed rock

slope. The figures also indicate that the failure modes in the DEM simulations are in

good agreement with experimental observations. The DEM can reasonably predict the

failure modes of jointed rock slopes even for different joint structures.

Fig. 15. Experimental failure modes of rock slopes with different joint structures and DEM simulations
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6. Conclusions

This paper employs a DEM analysis to determine the relationship between critical

excavation depth and joint inclination angle, the natural slope angle and the joint

strength parameters. The results show that the factor of safety obtained with the

DEM can be lower than that obtained with the LEM. This difference appears to come

mainly from the consideration of joints not only along the sliding surface but also in

other directions. The LEM assumes only one sliding face, whereas the DEM can

handle two or three sets of joints and the sliding may occur along any joint. The

set of joints, which have the weakest strength or the most dangerous orientation, is

critical to the slope stability, but other sets of joints can reduce the integrity of the

jointed slope. This reduced integrity can affect the critical excavation depth. If the

DEM employs the same joint conditions as the LEM along a sliding surface, similar

critical excavation depths are obtained. If a jointed rock slope has more than one

failure mode, the LEM cannot describe all multiple failure modes while the DEM can.

Fig. 15 (continued)
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