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Abstract  In the present paper, a liquid (or melt) film of relatively high temperature ejected from a 
vessel and painted on the moving solid film is analyzed by using the second-order fluid model of 
the non-Newtonian fluid. The thermocapillary flow driven by the temperature gradient on the free 
surface of a Newtonian liquid film was discussed before. The effect of rheological fluid on thermo-
capillary flow is considered in the present paper. The analysis is based on the approximations of 
lubrication theory and perturbation theory. The equation of liquid height and the process of thermal 
hydrodynamics of the non-Newtonian liquid film are obtained, and the case of weak effect of the 
rheological fluid is solved in detail. 
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In the previous papers [1,2], the thermocapillary flow in addition to a Newtonian liquid film jet 
painted on a moving boundary was studied. The thermocapillary flow is induced by the gradient 
of surface tension caused by the heat transfer from the melt of relatively high temperature to the 
environmental gas of relatively low temperature. The temperature of the liquid or the melt, ejected 
from a nozzle of a manufacture vessel, is higher than the environmental gas temperature, and then, 
there is a strong heat exchange, especially in the region near the exit of vessel. The heat transfer 
from the liquid film to the environmental gas forms a temperature gradient and then the surface 
tension gradient on the free surface, and induces the thermocapillary flow, which will, of course, 
change the cross-section of the jet liquid. The thermocapillary effect may enlarge the cross-section, 
and then apply to the polymer processing. In fact, the viscous and elastic properties of the poly-
mers are various and complicated, and some of them can be described by the Newtonian fluid, but 
most of them, especially the polymer of larger molecular chain, show rheological property. 
Therefore, it is necessary to study the effect of rheological liquid on the thermocapillary flow.  

The processing of film and polymer requires an understanding of the parameters of hydrody-
namic process, such as temperature, pressure, flow field and the diameter or height distribution 
(see, for example, refs. [3, 4]). The Swell or Die Swell effect on the change of cross-section in a 
polymer jet is often observed in the processing, and is explained usually by the rheology property 
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of the liquid medium. Tanner suggested a theory of Die-Swell, which assumes that the velocity 
has only one component along the jet[5]. Because of the non-uniformity of the cross-section, the 
flow field in the Die-Swell theory should be at least two-dimensional. Most explanations of the 
Die-Swell effect due to the rheological fluid property are qualitative[6,7]. It is believed that the dif-
ference in normal stresses may enlarge the cross-section of the melt jet. 

It is known that, the thermocapillary flow can be induced in a thin liquid layer located on a 
solid wall with non-uniform temperature distribution, and the heat transfer from the liquid to the 
gas will result in non-uniformity of the liquid thickness. By using the approximation of the lubri-
cation theory, an ordinary differential equation of liquid thickness and its solution for given 
boundary temperature were obtained for unsteady case in a thin liquid layer[8]. A similar method 
was employed to discuss the steady cases where a smooth condition at the symmetric 
cross-section was improved[9]. The problem of motionless and infinitely extending solid boundary 
was studied in refs. [8, 9]. Furthermore, the experiments show that the solutal capillary flow in-
duced by the surfactant of the liquid may increase the thickness of the liquid layer[10]. 

In the present paper, the change of cross-section due to both the thermocapillary flow in a 
two-dimensional and steady model is discussed for the jet liquid film of a non-Newtonian fluid on 
a moving solid boundary. In the case of weak non-Newtonian fluid, the zero’s order solution re-
duces to the problem of the Newtonian fluid case. The results show that both the rheological effect 
and the thermocapillary flow can enlarge the cross-section of the liquid jet.  

1  The model of non-Newtonian liquid film jet 

A simplified model is proposed as shown in fig.1, where the liquid film is ejected from a 
nozzle of a melt or liquid vessel and then attached on a moving solid film of constant thickness hs, 
and the Cartesian coordinate system (x, y, z) is adopted. The two-dimensional process (x, z) is as-
sumed with  The melt or liquid flows from the exit of the vessel for a long distance.  / 0.y∂ ∂ =

 
Fig. 1.  Schematic diagram of the physical model of a non-Newtonian jet liquid film. 
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There is a small geometrical aspect ratio ε = he/l << 1, where he is the initial height of liquid layer 
at x = 0 and l is a typical distance in the longitudinal direction. The liquid temperature Te at the 
exit is higher than the environmental gas temperature Tg and the temperature Tl  at x = l.  A mov-
ing solid film is touched smoothly with the lower boundary of the vessel, and moves with the 
same velocity us of the liquid at z = 0. 

The liquid is considered as an incompressible fluid with constant kinematic viscosity v and 
thermal diffusivity κ. The steady and two-dimensional conservation relationships of a 
non-Newtonian fluid may be written as  

 0,u w
x z

∂ ∂
+ =

∂ ∂
 (1.1) 

 1 1 ,xx xzu u pu w
x z x x z

π π
ρ ρ

∂ ∂∂ ∂ ∂ ⎛+ = − + +⎜∂ ∂ ∂ ∂ ∂⎝ ⎠
⎞
⎟  (1.2) 

 1 1 ,xz zzw w pu w
x z z x z

π π
ρ ρ

∂ ∂∂ ∂ ∂ ⎛+ = − + +⎜∂ ∂ ∂ ∂ ∂⎝ ⎠
⎞
⎟  (1.3) 

 
2 2

2 2 ,T T T Tu w
x z x z

κ
⎛ ⎞∂ ∂ ∂ ∂

+ = +⎜
∂ ∂ ∂ ∂⎝ ⎠
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where ρ, p and T are respectively the density, pressure and temperature of the liquid, (u,0,w) is 
velocity vector, and πxx, πxz, and πzz are the components of a stress tensor π. 

The boundary conditions for the liquid layer can be written as[1]

 z=0: u=us,   w=0,   T=Ts(x),  (1.5) 

 ( ) : ,dhz h x u w
dx

= =   (1.6) 

 ( ) ( )2 22xx x xz x z zz z
c

p n n n p n
R

2 ,σπ π π− + + + − + =  (1.7) 

 
'

( ) ( ) ( ) '
1 '( )

T
xx x x xz z x x z zz z z

T Tp n n n p n h ,
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σ
π τ π τ τ π τ ∂ ∂⎛− + + + + − + = − +⎜ ∂ ∂+ ⎝ ⎠

⎞
⎟  (1.8) 

 ( ),g
Tk H T T
n

∂
= − −

∂
 (1.9) 

where h’ = dh/dx, T* is a reference constant temperature, n is the unit normal vector, k and H are 
respectively the thermal conductivity of liquid and the heat transfer coefficient of gas, and the ra-
diation effect is omitted in (1.9). The unit normal vector n and unit tangent vector τ are respec-
tively  

2 2

1 1( ,0, ) ( , 0, 1), ( ,0, ) (1, 0, ).
1 1

x z x zn n h h
h h

τ τ′ ′= − =
′ ′+ +

 

And the curvature of the free surface is  
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Temperature Ts (x) in condition (1.5) is the temperature at the boundary z = 0, and should be 
solved, in general, together with the Laplace equation and related boundary conditions for the 
solid temperature Ts(x,z) in the film in region -hs ≤z≤0. Obviously, a linear distribution of x is 

the solution of the problem, such as  
 Ts(x, z) = Ts (x) = Te – ( Te− Tl )(x / l),  (1.10) 
and Te and Tl are respectively the temperatures at x = 0 and x = l.  

To discuss the rheology fluid, the Coleman-Noll second order fluids based on the Riv-
lin-Ericksen stress tensor is introduced as follows (see, for example, (2.33) of ref. [11]):  

π = μA1 + α 1*A2 + α 2*A1
2,  (1.11) 

where π  is the stress tensor, A1 and A2 are Rivlin-Ericksen tensors;  μ, α1* and α 2* are viscoe-
lastic coefficients, and there are α1* > 0 and α 2* < 0. Coefficient μ reduces to the viscose coeffi-
cient of Newtonian fluid if α1* = α 2* = 0. For the case of steady and two-dimensional problem 
   ( , ),     =0,    ( , ).u u x z v w w x z= =  (1.12) 

The components of stress tensor are written as 
2 2 22 2

* *
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(1.15) 
The first normal stress difference N1 = − 2α2* is positive, and the second normal stress difference 
N2 = α1* + 2 α 2* is small. Substituting non-Newtonian relationship (1.13)—(1.15), basic equa-

tions (1.1)—(1.4) can be solved under the boundary conditions. 

2  Lubrication approximation 

Non-dimensional quantities and parameters may be introduced based on the lubrication the-
ory as follows[5]: 

* *
1 * 2 *

1 2, , , , ,e

e e

hx z h
l h h l l

,
l

α υ αξ ζ η ε α α
μ μ

= = = = = =
υ  

 2

* * *
, , ,u w pU W P

T
ε ε

υ υ μυ
= = = Θ

l

*
,T

=    
(2.1) 
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where the typical temperature T* and the typical velocity v* are adopted respectively as  
 * s * *(0),     ' / .T T v Tεσ μ= = −   (2.2) 

The basic feature of the lubrication problem is that there are two typical scales of different orders 
of magnitudes; that is, one of the typical scales l is much larger than the other he, and then other 
quantities have different orders of magnitude. The non-dimensional parameter in this case are the 
Reynolds number Re and Peclet number Pe 

 * *,    .l lRe Peυ υ
ν κ

= =   (2.3) 

The Prandtl number and Marangoni number may be given as Re = Pr Ma and Ma = −σT’T*l/κν = 
ε Pe. Non-dimensional equations can then be written as 
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and, similar to the those in ref. [1], the boundary conditions are given as 
 s0 : (const),  0,  = ( );sU U Wζ ξ= = = Θ Θ   (2.8) 

 ( ) : ( , ) ' ( , ),W Uζ η ξ ξ η η ξ η= =   (2.9) 
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where the Capillary number C=−σ’TT*/σo is usually much smaller than unity, and the 
non-dimensional Boit number is defined by Bi = Hhe/k.  

3  Perturbation method 

The non-dimensional equations and boundary conditions show the relationships of the orders 
of magnitude, and the perturbation method may be applied by the expansion based on the small 
parameter ε. By the order of magnitude analysis (OMA), it is required that 
 Re = O(1), Pe = O(1), Bi = O (1), C = ε2/α = O (ε 2),  (3.1) 
where the coefficient of surface tension α is a constant, and the reological coefficients α1 and α 2 

are considered as O(1) in this section. It is noted that definitions of the Reynolds number and the 
Peclet number in (3.3) are 1/ε that of the usual definitions, because the typical velocity v* is 1/ε 
that of the usual typical thermocapillary velocity. The quantities may be expanded as follows: 

 
0 0 0

,    ,    ,     .n n n
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n n n n
U U W Wε ε ε η

∞ ∞ ∞ ∞

= = = =

= = Θ = Θ =∑ ∑ ∑ ∑ε η   (3.2) 

Substituting relation (3.2) into the equations and boundary conditions, the problem may be solved 
order by order.  

The zero’s order relationships may be written as  

 0 0 0,U W∂ ∂
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and the boundary conditions are 
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∂ζ
Θ
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Basic equations (3.3) and (3.6) are the same as in ref. [1]. However, there are additional terms re-
lated to the rheological effect on the right-hand side of (3.4) and (3.5). Note that  is decoupled 

and can be found by solving (3.6) to satisfy boundary conditions (3.7) and (3.11). 
0Θ

Eq. (3.6) means that the temperature is a linear function of ζ , and may be obtained as fol-

lows by using boundary conditions (3.7) and (3.11): 

( ) ( ) ( )0 0, ,s fξ ζ ξ ξ ζΘ = Θ +   ( )
( )

0
0

.
1

s gBi
f

Bi
ξ

η

Θ − Θ
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+
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Relationship f o(ξ) shows that the heat transfers from the solid of temperature Θs to the free surface 
of temperature Θ(0)(ξ, η(0)), and then to the gas of temperature Θg.  

Integrating eq. (3.5), we have 

 ( ) ( )
2

*0
0 1 22 ,UP Pα α ζ

ζ
⎛ ⎞∂

= + +⎜ ⎟∂⎝ ⎠
  (3.13) 

where the integration function P*(ζ) can be determined by boundary condition (3.10). Substituting 
relationship (3.13) into eq. (3.4), we have  
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Eq. (3.14) shows that the fluid field depends only on the elastic coefficient α2, and this conclusion 
agrees with the Tanner’s theory[12]. The solution of non-Newtonian fluid field can be solved by eqs. 
(3.3) and (3.14) under the boundary conditions for zero’s order. 
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4  Weak non-Newtonian fluid 

To simplify the problem, a weak non-Newtonian fluid approximation is discussed in detail in 
this section as the first step, and the coefficients α 1 and α 2 are written as  

 1 1α εβ= ,  2 2α εβ= .  (4.1) 

In addition to relationships (3.1), by substituting expansions (3.2) into the basic equations and 
boundary conditions, the relationships of zero’s order reduce to that of Newtonian fluid, and are 
the same as those given in ref. [1]. The velocity fields of zero’s order are 

 

3
20

0 3( ,  )= ( ) ,
2 s

dU A
d

ηαξ ζ ζ ξ ζ
ξ

− + +U
 

(4.2) 

 
4

30
0 4

1( , ) ,
6 2

d dAW
dd

ηα 2ξ ζ ζ ζ
ξξ

= −   (4.3) 

where α is the coefficient of surface tension given by (3.1), and the function A is defined as  
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and f0(ξ ) is given in (3.12). 
For the weak non-Newtonian fluid approximation, the first order equations are 
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The terms on the right-hand side of eqs (4.5)—(4.8) are given functions of zero’s order quantities, 
and the equations of the first order are linear. The related boundary conditions for the first order 
are as follows: 

 ( ) ( ) ( )1 1 10 : , 0 0, , 0 0, , 0 0;U Wζ ξ ξ ξ= = = Θ =   (4.9) 

 ( ) ( ) ( )0 1
0 1 0 1 0 0 0: , , ,d dW U U

d d
,η ηζ η ξ η ξ η ξ η

ξ ξ
= = +   (4.10) 

 

( ) ( ) ( )

( ) ( )

1 0 1 0 1 0 0

0 0 0 00 1
2

, , ,
   

, ,1                        1 4 ,
2

U d
d

U d dU
d

ξ η ξ η ξ η η
ζ ξ ζ ξ

ξ η ξ ηη
d
ηβ

ζ ζ ξ ζ ξ

∂ ∂Θ ∂Θ
= − −

∂ ∂ ∂

∂ ∂Θ⎡ ⎤∂
+ + −⎢ ⎥∂ ∂ ∂⎣ ⎦

   

(4.11) 
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 ( )
22

01
1 0 1 22

( , ), ( 2 ) UdP
d

ξ ηηξ η α β β
ζξ

⎛ ⎞∂
= − + + ⎜ ∂⎝ ⎠

,⎟   (4.12) 

 
( ) ( ) ( )1 0 0

1 0 0 0
,

, ,
2 g

dBiBi
d

ξ η
.η

ξ η ξ η
ζ ξ

∂Θ
⎡ ⎤= − Θ − Θ − Θ⎣ ⎦∂

  (4.13) 

It is noted that the boundary conditions of the first order relationships are also linear. 
Temperature equation (4.8) can be solved under boundary conditions (4.9) and (4.13), and we 

have 

 ( ) ( )1 1, fξ ζ ξ ζΘ = ,  ( ) ( )0 0 0
1

0

,
.

2 1
g dBif

Bi d
ξ η η

ξ
η ξ

Θ − Θ
= −

+
  (4.14) 

Integration of eq. (4.7) yields 

 ( ) ( ) ( )
2

0
1 1 2 *, 2 UP ,Pξ ζ β β ξ

ζ
⎛ ⎞∂

= + +⎜ ⎟∂⎝ ⎠
  (4.15) 

and function P*(ξ ) is determined by boundary condition (4.12). Substituting (4.15) into eq. (4.6), 
we have the equation for velocity: 

 
22

0 0 0 01 *
2 0 02 2 2U U U UU dU W

d
β .P

ξ ζ ζ ξ ζ ξ ζ ξζ

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂∂ ∂ ∂ ∂⎢ ⎥= − + − + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
  (4.16) 

The first term on the right-hand side of relation (4.15) gives the contribution of the second differ-
ence of normal stresses, which is small and can be omitted in most cases of non-Newtonian fluid. 
By using boundary condition (4.12), (4.15) gives 

 ( )
2

1
* 2 .dP

d
ηξ α

ξ
= −   (4.17) 

By using the zero order’s relation (4.2) and (4.3), the solution of (4.16) is  

( ) ( )
332

0 0 01 1
1 0 0 03 3

5 4 3 2
5 34 2

2

4 3 2
5 0 4 0 3 0 1 0

6

1,
2 2 2

                
15 6 6 2

1 2 1                
3 3 2

d d dd d dU f A
d d d dd d

df dfdf df
d d d d

df df df dff
d d d d

η η ηη ηζ α
1 0fξ ζ α η ζ ζ ζη ζ η

ξ ξ ξ ξξ ξ

ζ ζ ζ ζβ
ξ ξ ξ ξ

η η η η
ξ ξ ξ ξ

⎛ ⎞
= − − − + −⎜ ⎟

⎝ ⎠
⎧⎡ ⎤⎪+ − + + +⎨⎢ ⎥
⎪⎣ ⎦⎩

⎡
− − + + + .ζ

⎫⎤ ⎪
⎢ ⎥ ⎬
⎢ ⎥ ⎪⎣ ⎦ ⎭

   

(4.18) 

Furthermore, (4.5) gives 

( ) ( )

( )

24 3 22
3 2 0 01 1 1

1 0 4 3 2

32 2
0 0 0 0 01

1 03

, 3
6 2 2

1                
2 2 2 2

d fd d dW
dd d d

df d d dd d dA f
d d d d d dd

η ζη η ηα ζξ ζ ζ ζ η
ξξ ξ ξ

αη η η ηηζ ζ η
ξ ξ ξ ξ ξ ξξ

= − − +

⎡ ⎤
+ + − +⎢ ⎥

⎣ ⎦
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6 5 4 3
5 34 2

2

4 3 2
26 5 0 4 0 3 0 2 0

90 30 24 6

1 1 1 1 ,
6 3 4 2

df dfdf df
d d d d

df df df df df
d d d d d

ζ ζ ζ ζβ
ξ ξ ξ ξ

η η η η
ζ

ξ ξ ξ ξ ξ

⎧⎡ ⎤⎪+ − − −⎨⎢ ⎥
⎪⎣⎩

⎫⎡ ⎤

⎦

⎪+ − + + + ⎬⎢ ⎥
⎪⎣ ⎦ ⎭

  

(4.19) 

where the functions f i ( i = 2, 3, 4, 5) in solutions (4.19) and (4.20) are defined as follows: 

( ) ( )2 4 ,s
dAf A U
d

ξ
ξ

= −  ( ) ( )
4 3

0 0
3 4 34 3 4s

d d dAf U A A
dd d

η ηξ α α ,
ξξ ξ

⎛ ⎞
= − − +⎜ ⎟⎜ ⎟

⎝ ⎠
 

( )
3 4 4

0 0 0
4 3 4 42 ,d d ddf A

dd d d
η η η

ξ α α
ξξ ξ ξ

⎡ ⎤⎛ ⎞
= +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (4.20) 

 ( )
23 4

2 0 0 0 0
5 63 4

( , ),   ( ) 2 .d d U df f
dd d

η η ξ η
ξ α ξ

η
ζ ξξ ξ

⎛ ⎞∂
= = ⎜ ⎟∂⎝ ⎠

  (4.21) 

Functions f 0(ξ ) and f 1(ξ ) are given respectively in (3.12) and (4.14). 

5  First order profile of film thickness 

The solutions of the first order velocity and pressure depend on the first order film thickness 
η1. Substituting (4.18) and (4.19) into boundary condition (4.10), the equation for η1 is demon-
strated as follows: 

34 3 2
0 0 0 0 0 01 1 1

4 3 2 2 2 3 3
0 0 00 0 0

3
0 0 0 0 1 0 6 02

6 03
0

2 3
0 0

3
0

33 3 1   
2 2 2

33
2 2 2

3  
2

sd f df f d d Ud d d dA
d d dd d d d

d d d df df dd A f
d d d d d dd

d d
d d

η ηη η η ηα
η ξ α α η ξ ξ η ξξ ξ ξ ξη η η

αη η η η η ηβ η
αη ξ ξ ξ ξ α ξ ξξ

η ηα
α η ξ ξ

⎡ ⎤
+ − + − − − −⎢ ⎥

⎢ ⎥⎣ ⎦
⎡ ⎤ ⎡ ⎤

= − + − +⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

⎛ ⎞
+ −⎜ ⎟

⎝ ⎠

1

d
η

2
0 0 1 0

2 2
0 0

3 2
20 5 0 0 3 02 4 2

5 0 4 0 3
0

1 1
2

7 3 53 1 14 3 5  .
45 10 24 3 15 2 6

d d df
d d d

df df ddf df ff f f
d d d d d

η η η
ξ ξ ξη η

η η η ηβ η η 2

α ξ ξ ξ ξ η

⎡ ⎤⎛ ⎞
⎢ ⎥+⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪+ − + + + + − + + +⎢ ⎥⎨ ⎬⎢ ⎥
⎢ ⎥ ⎣ ⎦⎪ ⎪⎣ ⎦⎩ ⎭ξ

 

(5.1) 

Thickness equation (5.1) is a linear ordinary equation of the fourth order, and all the coefficients 
are given functions of zero’s order solutions. The last two terms on the right-hand side of (5.1) 
give the influence of rheology. The related boundary conditions for η1 can be given as  

 ( ) ( ) ( ) ( )2 3
1 1 1

1
0 0 0

0 0,   0,   0,   0
d d d

d d d
η η η

η
ξ ξ ξ

.= = = =   (5.2) 

Eq. (5.1) is solved under boundary conditions (5.2). 
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A typical case of the zero’s order solution is discussed. The typical parameters are adopted as  
   (5.3) 0.5,   0.1,   0.1,   4,   0.5.g sU Bα = Θ = Θ = = =l i

The typical boundary conditions for zero’s order problem are given as 

 ( ) ( )0
0

0
0 1,   0.5

d
d

η
η

ξ
= = , 

( ) ( )
2

0
0

0
0,   1 1,

d
d
η

η
ξ

= =   (5.4) 

and the temperature distribution at the solid boundary is  
 1 (1 ) .s λ ξΘ = − − Θ   (5.5) 

The profile of zero’s order thickness is solved in the same way as in ref. [1], and the solution of 
case (5.4) is shown in fig.2.  

By using the solutions of the zero’s order relationships, the first order equation (5.1) is solved 
under boundary conditions (5.2), and the solutions for β 2 = 0, −0.2, −0.4, −0.6 and –0.8 are given 
in fig. 3. The values of height profile η1 for the case of β 2 = 0 are nearly zero, and the height pro-
files for cases of non-zero β 2 give the influence of rheological fluid. The results show that the 
rheological effect enlarges the cross-section of the liquid jet, and the conclusion agrees with the 
usual one.  

 
Fig. 2.  Zero’s order cross-section profile of liquid jet in case of 
η o(0) = 1, ηo′ (0) = 0.5, ηo″ (0) = 0 and ηo(1) = 1.  

 
Fig. 3.  First order cross-section profiles of liquid jet for β 2 = 0, 
−0.2, −0.4, −0.6 and –0.8. 

 

6  Discussions 

The lubrication approximation and the perturbation method are employed to discuss the 
problem of jet liquid film of a non-Newtonian fluid, and the analytical solutions of temperature, 
pressure and velocity depending on the height of liquid film have been obtained. The results show 
that the influence of thermocapillary effect is to enlarge the cross-section of the jet liquid due to 
the heat transfer from the solid boundary to the melt, and the crossing of the free surface deter-
mines obviously the velocity distribution. Furthermore, the pressure distribution is mainly deter-
mined by the rheology property of the non-Newtonian fluid, which also enlarges the cross-section 
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of the liquid jet. The results of the present paper show mainly the mechanism of the cross-section 
variation due to both the thermocapillary effect and the rheological effect of a non-Newtonian 
fluid. 

A non-Newtonian fluid of the second-order fluid model is assumed in the present paper, and 
this model has obviously limitations and cannot be applied to many sorts of polymers. However, 
the polymers are various, and some of the polymers can even be described by the Newtonian fluid. 
The discussion of the present paper only applies to special sorts of polymer that can be described 
approximately by the second-order fluid model. The jet process of the weak non-Newtonian ap-
proximation discussed in the present paper simplifies the complex process, and the zero’s order 
solution reduces to the Newtonian fluid as discussed in ref. [4]. The results show that as in the 
case of Newtonian fluid, the heat transfer may induce the thermocapillary flow and may increase 
the cross-section of the liquid jet even for a non-Newtonian fluid.  

It should be noted that the approximations of lubrication theory, perturbation theory and 
weak non-Newtonian approximations have obvious limitations. The Barus effect can have larger 
variation of cross-section, which may be two or three times that of the cross-section of the vessel 
exit, and the region of the enlarging cross-section is near the melt vessel exit. More studies should 
be conducted, especially in connection with the manufacture processing. The conclusions are es-
pecially for the case of a weak non-Newtonian model for simplification of the mathematical 
treatment, and more attention should be paid to the rheological fluid of other models related to the 
real cases of polymer application. 
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