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In the Hertz and JKR theories, parabolic assumptions for the rounded profiles of the sphere or cylinder are
adopted under the condition that the contact radius (width) should be very small compared to the radius of
the sphere or cylinder. However, a large contact radius (width) is often found in experiments even under a zero
external loading. We aim at extending the plane strain JKR theory to the case with a large contact width. The
relation between the external loading and the contact width is given. Solutions for the Hertz, JKR and rounded-
profile cases are compared and analyzed. It is found that when the ratio of 𝑎/𝑅 is approximately larger than
about 0.4, the parabolic assumptions in the Hertz and JKR theories are no longer valid and the exact rounded
profile function should be used.

PACS: 46. 55.+d, 62. 20.−x, 04. 20. Jb

Contact mechanics pioneered by Hertz[1] has been
widely applied in many branches of engineering, par-
ticularly in the studies of tribology and indentation.
Since the 1970s, molecular interactions between con-
tacting objects have also been incorporated into con-
tact mechanics models. Johnson et al.[2] developed the
JKR model of adhesive contact based on a balance be-
tween elastic and surface energies. On the other hand,
Derjaguin et al.[3] proposed the DMT model in which
the stress field remains in the Hertz profile within
the contact region while intermolecular adhesion is as-
sessed outside the contact area. A more general model
(MD model) was developed by Maugis[4] who showed
that the JKR and DMT models can in fact be unified
within a Dugdale type of cohesive model of adhesive
contact.
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Fig. 1. Plane strain model of an elastic cylinder of radius
𝑅 in adhesive contact with an elastic half-space. (a) The
contact half-width 𝑎 is very small and the classical two-
dimensional JKR theory can be adopted. (b) The contact
half-width 𝑎 is much larger, which results in the classical
JKR theory invalid.

The adhesive contact mechanics represented by
JKR and DMT models has triggered extensive re-
search efforts over the past three decades.[5−14] In al-

most all the works, parabolic approximation for the
rounded profile of the sphere or cylinder is adopted,
which is only valid for the cases with small contact
radii as shown in Fig. 1(a). However, many experi-
ments have found that small particles could have a
large contact radius in adhesive contact with elastic
substrates, even under a zero external loading[15,16]

as shown schematically in Fig. 1(b). Extension of the
classical JKR theory to the case with a large contact
radius is needed. The sphere case has been success-
fully extended by Maugis.[17] In this Letter, we extend
the two-dimensional plane strain JKR theory (a long
cylinder in adhesive contact with a half space) to the
corresponding two-dimensional case with a large con-
tact width.

The normal displacement along the contact inter-
face between an elastic cylinder and an elastic half-
space can be written as

𝑢𝑦 = 𝛿𝑦 − 𝑓(𝑥), (1)

where 𝛿𝑦 denotes the relative displacement of the cen-
ters of the cylinder and the half space during contact
formation, 𝑓(𝑥) is a function describing the profile of
the rounded cylinder.

The normal displacement along the contact inter-
face can be related to the interfacial normal traction
𝑝(𝑥) via Green’s functions as

1

𝜋𝐸*

∫︁ 𝑎

−𝑎

𝑝(𝑠)

𝑥− 𝑠
𝑑𝑠 =

𝜕𝑢𝑦

𝜕𝑥
, (2)

where the effect of tangential traction in the contact
region can be neglected according to Johnson[18] and
Chen and Gao.[19] 𝐸* denotes the effective Young’s
modulus, which is composed of Young’s moduli 𝐸1

and 𝐸2, and Poisson’s ratios 𝜈1 and 𝜈2, of the cylinder
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and the half space, 1/𝐸* = (1−𝜈21)/𝐸1 +(1−𝜈22)/𝐸2.
Combining Eqs. (1) and (2) yields

1

𝜋𝐸*

∫︁ 𝑎

−𝑎

𝑝(𝑠)

𝑥− 𝑠
𝑑𝑠 = − 𝑓 ′(𝑥). (3)

In both Hertz and JKR theories, the parabolic ap-
proximation, i.e., 𝑓(𝑟) = 𝑟2/(2𝑅) or 𝑓(𝑥) = 𝑥2/(2𝑅),
for the rounded profile of the sphere (3D case) or the
cylinder (2D case), was used, which is only valid for
the case with a small contact radius. For the case with
a large contact radius, the profile should be described
by an exact function 𝑓(𝑥) = 𝑅 −

√
𝑅2 − 𝑥2 and the

differential of the profile function with respect to 𝑥 is

𝑓 ′(𝑥) =
𝑥√

𝑅2 − 𝑥2
. (4)

Solving Eqs. (3) and (4) subject to the boundary con-
dition

∫︀ 𝑎

−𝑎
𝑝(𝑥)𝑑𝑥 = 𝐹 yields the solution to the in-

terfacial normal traction 𝑝(𝑥). The whole solving pro-
cess is standard but very complex. Similar method has
been used by Chen and Gao,[19] so that we skip all the
details here and present the final interfacial tractions
in the contact region,

𝑝(𝑥) =
−𝐸*

2𝜋(𝑎2 − 𝑥2)
1
2

∫︁ 𝑎

−𝑎

𝑠(𝑎2 − 𝑠2)
1
2

(𝑥− 𝑠)
√
𝑅2 − 𝑠2

𝑑𝑠

+
𝐹

𝜋(𝑎2 − 𝑥2)
1
2

. (5)

From Eq. (5), one can see that the normal traction in
the contact region is singular, which is very similar to
that of an interface crack model in fracture mechanics.
According to the knowledge in fracture mechanics, the
stress intensity factor near the contact edges can be
obtained as

𝐾I = − lim
𝑥→𝑎

√︀
2𝜋(𝑎− 𝑥)𝑝(𝑥)

=
𝐸*

2
√
𝜋𝑎

∫︁ 𝑎

−𝑎

𝑠(𝑎2 − 𝑠2)1/2

(𝑎− 𝑠)
√
𝑅2 − 𝑠2

𝑑𝑠− 𝐹√
𝜋𝑎

, (6)

where the negative sign in front of the right side is due
to the definition that compressive traction is assumed
to be positive.

The dynamic Griffith energy balance criterion can
be expressed as

𝐺 =
𝐾2

I

2𝐸* = 𝑤, (7)

where 𝑤 is the work of adhesion, 𝑤 = 𝑤1 +𝑤2−2𝑤12,
𝑤1 and 𝑤2 are the intrinsic surface energies of the two
solids, and 𝑤12 is the surface energy of the contact
interface.

Substituting the stress intensity factor in Eq. (6)
into the Griffith energy balance criterion yields the
controlling equation
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2𝐸*
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𝐸*

2
√
𝜋𝑎

∫︁ 𝑎

−𝑎

𝑠(𝑎2 − 𝑠2)
1
2

(𝑎− 𝑠)
√
𝑅2 − 𝑠2

𝑑𝑠− 𝐹√
𝜋𝑎

]︃2

= 𝑤,

(8)

which relates the contact half-width 𝑎 to the external
loading 𝐹 , so that the external loading can be explic-
itly expressed as a function of the contact half-width
𝑎 as

𝐹

𝐸*𝑅
=

𝑎2

2𝑅2

∫︁ 1

−1

𝑡(1 − 𝑡2)1/2

(1 − 𝑡)
√︀

1 − 𝑎2𝑡2/𝑅2
𝑑𝑡−

√︂
2𝜋𝑎𝑤

𝐸*𝑅2
.

(9)
Let us introduce the dimensionless parameters

𝑌 =
𝐹

𝐸*𝑅
, 𝑋 =

𝑎

𝑅
, 𝑚 =

√︂
2𝜋𝑤

𝐸*𝑅
. (10)

With these notations, Eq. (9) becomes

𝑌 =
1

2
𝑋2

∫︁ 1

−1

𝑡(1 − 𝑡2)1/2

(1 − 𝑡)
√

1 −𝑋2𝑡2
𝑑𝑡−𝑚𝑋1/2. (11)

For the case with a small contact radius, i.e., 𝑎 ≪ 𝑅,
we have ∫︁ 1

−1

𝑡(1 − 𝑡2)1/2

(1 − 𝑡)
√︀

1 − 𝑎2𝑡2/𝑅2
𝑑𝑡 ≈ 𝜋

2
. (12)

Equation (9) will reduce to the classical plane strain
JKR solution[7,9] as

𝐹

𝐸*𝑅
=

𝜋𝑎2

4𝑅2
−

√︂
2𝜋𝑎𝑤

𝐸*𝑅2
. (13)

Using the dimensionless parameters in Eq. (10),
Eq. (13) can be rewritten as

𝑌 =
𝜋

4
𝑋2 −𝑚𝑋1/2. (14)

Figure 2 shows the relation between the dimensionless
external force 𝐹/(𝐸*𝑅) and the dimensionless contact
half-width 𝑎/𝑅 for both the classical JKR and the
present theories with various values of the parameter
𝑚. From the numerical calculations, one can see that
the JKR approximation is valid with less than 4% rel-
ative error of 𝐹/(𝐸*𝑅), only when the ratio of 𝑎/𝑅 is
smaller than about 0.4 for each value of parameter 𝑚.
If 𝑎/𝑅 is larger than 0.4, relative errors will increase
and the real rounded profile should be considered to
find the correct contact solution.

Next, we concentrate on the extension of the two-
dimensional Hertz solution. In the classical plane
strain or three-dimensional Hertz solution, molecular
interaction force between contact surfaces is not con-
sidered, i.e., the work of adhesion 𝑤 is zero, which
means 𝑚 = 0. Following from Eq. (11) we have

𝑌 =
1

2
𝑋2

∫︁ 1

−1

𝑡(1 − 𝑡2)1/2

(1 − 𝑡)
√

1 −𝑋2𝑡2
𝑑𝑡, (15)

which describes the extension of plane strain Hertz
solution.
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Fig. 2. Dimensionless external loading 𝐹/(𝐸*𝑅) as a
function of the dimensionless contact half-width 𝑎/𝑅 pre-
dicted by the classical JKR and the present theories for
different values of parameter 𝑚.

Fig. 3. Dimensionless external loading 𝐹/(𝐸*𝑅) as a
function of the dimensionless contact half-width 𝑎/𝑅 in
the form of Hertz contact predicted with the parabolic
assumption and the real rounded profile function, respec-
tively.

The classical plane strain Hertz solution can be
obtained from Eq. (14) as

𝑌 =
𝜋

4
𝑋2. (16)

Figure 3 shows the relation between the dimensionless
external force 𝐹/(𝐸*𝑅) and the dimensionless contact
half-width 𝑎/𝑅 for both the classical Hertz solution
and its extension with a real rounded profile function,
from which one can see that even in the Hertz solu-
tion, when the ratio of 𝑎/𝑅 is larger than about 0.4,
the parabolic assumption can no longer be valid and
the exact rounded profile function should be used to
find the contact solution.

For the case of zero applied load, the dimension-
less contact half-width 𝑎0/𝑅 under zero load (𝐹 = 0)
can be found for adhesive contact models with differ-
ent profile functions. For the case with a parabolic
assumption, the explicit solution to the dimensionless

contact half-width can be expressed as

𝑋 =
(︁16𝑚2

𝜋2

)︁1/3

, (17)

which is identical to the classical plane strain JKR
solution,[7,9]

𝑎0 =
(︁32𝑅2𝑤

𝜋𝐸*

)︁1/3

. (18)

However, for the case with a real rounded profile,
the corresponding contact half-width can be obtained
from Eq. (11) and expressed by an implicit equation,

𝑚 =
1

2
𝑋3/2

∫︁ 1

−1

𝑡(1 − 𝑡2)1/2

(1 − 𝑡)
√

1 −𝑋2𝑡2
𝑑𝑡. (19)

Numerical calculation is used to solve Eq. (19). The
dimensionless contact half-width as a function of the
parameter 𝑚 is shown in Fig. 4. One can see that
when 𝑚 = 𝜋/4, the classical JKR solution would pre-
dict 𝑎0 = 𝑅, i.e., the contact half-width equals to the
cylinder radius due to the surface-energy driven.[20] In
fact, the classical plane strain JKR solution is invalid
theoretically without the condition of a very small con-
tact width. While in the case with a real rounded
profile function, only when 𝑚 → ∞, 𝑎0 = 𝑅 can be
asymptotically realized.

Fig. 4. Relation between the dimensionless contact half-
width 𝑎0/𝑅 and the parameter 𝑚 predicted by theories
with parabolic assumption and real rounded profile func-
tion, respectively, where 𝑎0 denotes the contact half-width
under zero external loading.

In conclusion, for the plane strain adhesive contact
model between a cylinder and a soft elastic substrate,
the ratio of the contact width to the cylinder radius
can be so large that the parabolic approximation for
the cylinder profile in the classical JKR theory is no
longer valid. The use of an exact expression for the
cylinder profile allows the classical JKR theory to be
extended to the case with a larger contact width. It
is found that when the ratio of 𝑎/𝑅 is approximately
smaller than about 0.4, the parabolic assumption in
the classical two-dimensional Hertz and JKR theories
can be reasonable to approximate the rounded profile.
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