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A Unified Guide to Two Opposite Size Effects in Nano Elastic Materials *
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The microstructural variation near surface of nano elastic materials is analyzed based on different potentials.
The atomic/molecular mechanism underlying the variation and its effect on elastic modulus are such that the
nature of long-range interactions (attractive or repulsive) in the atomic/molecular potentials essentially governs
the variation near surface (looser or tighter) and results in two opposite size effects (decreasing or increasing
modulus) with decreasing size.

PACS: 62. 25.−g, 68. 35. B−, 68. 35.Gy

Recently, the rapid development of nanotechnolo-
gies and extensive use of nano materials have made
the understanding and characterizing of their mechan-
ical properties become an urgent task. On the other
hand, nano materials often exhibit behaviors very dif-
ferent from their conventional counterparts, even their
elastic modulus varies significantly when the sample
size decreases down to nano-scale. Surprisingly, varia-
tions of the modulus are radically different in different
nano materials, either decreasing or increasing modu-
lus with decreasing size.[1−8] Since a small size leads
to a large surface to volume ratio, the surface effects
are usually considered to take the responsibility for
the variations of mechanical properties at nano scale.
Different models, such as continuum theories[4,9−14]

and microscopic models[15−17] have been developed to
explain different surface and size effects. However,
a unified understanding of the surface effects and the
two different size effects still remains open. Obviously,
variations of elastic properties of nano materials with
decreasing size should be attributed to the reconstruc-
tion of the surface layer.

In this Letter, we present a unified interpretation
of two opposite size effects of the elastic modulus, i.e.
either decreasing or increasing modulus with decreas-
ing size, based on atomic/molecular interactions.

First, let us illustrate the importance of the vari-
ation of atomic/molecular spacing near the surface of
a nanofilm with a simple example: the (001) surface
of 𝑓𝑐𝑐 nanofilm in terms of Lennard–Jones potential,

𝑢(𝑟𝑖𝑗) = 4𝜀0
[︀
(𝑟0/𝑟𝑖𝑗)

12 − (𝑟0/𝑟𝑖𝑗)
6
]︀
, (1)

where 𝜀0 and 𝑟0 are the two potential parameters.
Now, examine a nanofilm with 2𝑁 + 1 layers and

its corresponding bulk lattice constant 𝑎0. However,
to form such a film, the bulk should suffer from
a readjustment to achieve a new equilibrium with
two free surfaces. Considering the sufficiently large
length/width to thickness ratio of the nanofilm, we can

simplify the film as a one-dimensional sample that all
atoms distribute uniformly in the length and width
directions and all (001) facets atoms remain copla-
nar after the readjustment. Hence, the spacing of
the layers in thickness acts as the only nonunifor-
mity parameter of the nanofilm. We denote the spac-
ing between the 𝑖th and the (𝑖 + 1)th layer by 𝑑𝑖,
𝑖 = 1, . . . , 2𝑁 . The series of spacing 𝑑𝑖 can be de-
termined by solving the force equilibrium equation of
a representative atom of each layer in thickness. The
results for the cases 𝑁 = 3, 6, 20 and the correspond-
ing curve fitting are shown in Fig. 1. Noticeably, the
lattice constant 2𝑑20 = 0.97158 × 22/3𝑟0 is in good
agreement with the previously obtained bulk spac-
ing 𝑎0 = 0.971 × 22/3𝑟0.[18] More importantly, it can
be seen from Fig. 1 that the spacing near the surface
is slightly greater than that in the bulk (about 2%)
but decreases rapidly inward, for instance, 𝑑5 is only
0.011% greater than 𝑑6 for the case 𝑁 = 20. Thus,
the non-uniform region is a very thin layer near the
surface, named as the surface layer later.

Fig. 1. Spacing of two neighboring layers normalized by
𝑑20, for 𝑁 = 3, 6, 20 of nanofilm with Lennard–Jones
potential.

Specifically, we examine the elastic modulus of an
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𝑓𝑐𝑐 nanofilm. Under uni-axial stress state, the elastic
modulus 𝐸 in the ⟨100⟩ direction is calculated ana-
lytically, as shown in Fig. 2. In order to justify the
analysis, the elastic moduli 𝐸 in the ⟨100⟩ direction
for different thicknesses, 𝑁 = 6, 15, 30, are also nu-
merically calculated using molecular statics (MS), see
Fig. 2. Obviously, the analytical results of 𝐸 agree
well with the numerical ones. One significant issue in
the understanding of the mechanism underlying the
size effect is to split the effect of the less coordina-
tion number, as reported in Refs. [15,16], from that of
the looser surface lattice on elastic modulus. For this
sake, a virtual uniform nanofilm with 𝑑𝑁 (𝑁 = 20)
is examined and its modulus in the ⟨100⟩ direction
𝐸0 is calculated accordingly, also see Fig. 2. In this
case, the decrease of the normalized modulus 𝐸0/𝐸∞
with decreasing thickness results from the less coor-
dination number of the surface only, where 𝐸∞ is
the corresponding bulk value as 𝑁 approaches to infi-
nite, as reported in a simple cubic lattice.[15] However,
from Fig. 2 one should note that the modulus of the
film with a looser surface 𝐸/𝐸∞ decreases much more
rapidly than 𝐸0/𝐸∞. Therefore, we can conclude that
although both less coordination number and looser
surface layer contribute to the reduction of the elastic
modulus of the film, the looseness of the surface layer
reduces the modulus more pronouncedly. In addition,
this tendency agrees well with the previous numeri-
cal results.[8] Thus, in the following, we focus on the
lattice spacing in the surface layer only.

Fig. 2. Comparison of the variations of normalized elas-
tic modulus in the ⟨100⟩ direction as a function of 𝑁 with
uniform (open circle), looser (closed circle) surface layers
and MS results (triangle).

Now, one may ask why the surface layer with L-
J potential becomes looser and whether the surface
layer is always looser. To answer these questions, let
us separate an infinite bulk medium into two semi-
infinite bodies to create a new planar surface. As a
result, the atomic lattice near the surface will be differ-
entiated from the original uniform bulk lattice, either
expanding outward owing to repulsive force or shrink-
ing inwards owing to the attractive force, resulting
from all inside atoms of the semi-infinite body. To il-
lustrate the surface state clearly, let us examine a long
one-dimensional chain of 𝑁 + 1 atoms with spacing 𝑎.

After adopting a pair potential 𝑢(𝑟𝑖𝑗) and taking the
superposition of energy for the atomic system, where
𝑟𝑖𝑗 is the distance between atoms 𝑖 and 𝑗, the total
potential energy of the atomic chain is

𝑢tot =
1

2

𝑁+1∑︁
𝑖=1

𝑁+1∑︁
𝑗 ̸=𝑖

𝑢(𝑟𝑖𝑗) ≈
1

2
(𝑁 + 1)2

𝑁/2∑︁
𝑛=1

𝑢(𝑛𝑎). (2)

The latter approximation works, provided that the
chain is long enough (𝑁 ≫ 1) or the chain is a large
circle. The equilibrium lattice constant 𝑎0 can be de-
termined by means of the minimization of the total
potential energy with respect to 𝑎:

𝑑𝑢tot

𝑑𝑎
≈ (𝑁 + 1)

𝑁/2∑︁
𝑛=1

𝑛
𝜕𝑢(𝑥)

𝜕𝑥

⃒⃒⃒
𝑥=𝑛𝑎0

= (𝑁 + 1)

𝑁/2∑︁
𝑛=1

𝑛𝑢′(𝑛𝑎0) = 0, (3)

where 𝑢′(𝑥) denotes the derivative of function 𝑢 with
respect to its argument 𝑥. Equation (3) can be rewrit-
ten such that the nearest force −𝑢′(𝑎0) (positive in-
dicating repulsive force as usual) at equilibrium state
can be expressed by a certain sum of the long range
interactions (𝑛 ≥ 2) as

−𝑢′(𝑎0) =

𝑁/2∑︁
𝑛=2

𝑛𝑢′(𝑛𝑎0). (4)

On the other hand, for the one-dimensional case, the
one-side force acting on a representative atom 𝑖 from
all unilateral atoms can be written as

𝑓𝑖 = −
𝑖+𝑁/2∑︁
𝑗=𝑖+1

𝜕𝑢(𝑟𝑖𝑗)

𝜕𝑟𝑖
= −

𝑖+𝑁/2∑︁
𝑗=𝑖+1

𝜕𝑢(𝑟𝑖 − 𝑟𝑗)

𝜕𝑟𝑖
𝑒𝑟, (5)

where 𝑒𝑟 is the unit vector of the position vector 𝑟.
Note that positive 𝑓𝑖 denotes the repulsive force acting
on atom 𝑖, and vise verse. Since 𝑟𝑖𝑗 = 𝑟𝑖 − 𝑟𝑗 can be
rewritten as 𝑛𝑎 in a one-dimensional chain, the one-
side force 𝑓𝑖 acting on the representative atom 𝑖 in the
bulk with uniform lattice spacing 𝑎0 can be written as

𝑓𝑖 = −
𝑁/2∑︁
𝑛=1

𝑢′(𝑛𝑎0)𝑒𝑟

= − 𝑢′(𝑎0)𝑒𝑟 −
𝑁/2∑︁
𝑛=2

𝑢′(𝑛𝑎0)𝑒𝑟. (6)

After substituting the equilibrium condition (4) into
the one-side force expression (6), one can obtain an
alternative expression of the one-side force as

𝑓𝑖 =

𝑁/2∑︁
𝑛=2

(𝑛− 1)𝑢′(𝑛𝑎0)𝑒𝑟. (7)

This means that the one-side force from the semi-
infinite chain acting on a representative atom in bulk
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can be determined exclusively by a certain sum of the
long range atomic/molecular interactions of a pair po-
tential from 𝑛 ≥ 2 and this can serve as a helpful
guide to judge what size effects may appear. More
specifically, provided that all derivatives 𝑢′(𝑛𝑎0) > 0
for (𝑛 ≥ 2), i.e. all 𝑛 ≥ 2 atoms are in the range
of attraction-dominated pair interaction, the one-side
force must be positive, namely a repulsive force, and
then push the surface lattice looser. At first sight,
this result seems to be slightly abnormal. As a mat-
ter of fact, the repulsive one-side force results from
the surplus of the repulsive force due to the nearest
interaction (𝑛 = 1), −𝑢′(𝑎0) = Σ𝑛=2,...,𝑁/2𝑛𝑢

′(𝑛𝑎0),
to the long interactions from all other atoms (𝑛 ≥ 2),
namely Σ𝑛=2,...,𝑁/2𝑢

′(𝑛𝑎0).
To examine how the guide works, we examine the

Lennard–Jones potential with long range attractive
interaction. According to Eq. (7) its one-side force
is 𝑓𝑖 = 0.02417(4𝜀0/𝑟0), i.e. repulsive. For an in-
finite uniform 𝑓𝑐𝑐 lattice being separated into two
semi-infinite bodies by a (001) plane, the one-side
force can also be calculated with Eq. (7) and it is
0.6841(4𝜀0/𝑟0), also repulsive but much greater. Con-
sequently, the lattice near the free surface for an 𝑓𝑐𝑐
lattice with Lennard–Jones potential must be looser
than the bulk.

Fig. 3. Two kinds of potential energy profiles. The pre-
dominant long range interaction is (a) attractive and (b)
repulsive.

More generally speaking, all Mie-type potentials

𝑢(𝑟) = 𝜀0

[︂
𝑘

𝑙 − 𝑘

(︁𝑟0
𝑟

)︁𝑙

− 𝑙

𝑙 − 𝑘

(︁𝑟0
𝑟

)︁𝑘
]︂
, (8)

where 𝜀0 is the energy when distance 𝑟 = 𝑟0, 𝑙 and 𝑘
are the power indices of repulsive and attractive inter-
actions respectively, and 𝑙 > 𝑘, show similar predomi-
nant long range attractive pair interaction 𝑢′(𝑛𝑎) > 0
for 𝑛 ≥ 2, as shown in Fig. 3(a), and must also lead to
a repulsive one-side force in bulk, according to Eq. (7).

Thus, when would attractive one-side force and
tighter surface lattice appear in materials? This would
need some predominant long range repulsive interac-
tion and imply an increasing potential with decreas-
ing distance at long range. Obviously, this would be
against the existence of a minimum energy, necessary
for a stable equilibrium state. To balance the two ten-
dencies, such potentials showing attractive one-side
force in bulk should present a certain minimum rele-
vant to the equilibrium state 𝑎 = 𝑎0 as well as a maxi-

mum to guarantee the existence of some predominant
repulsive long range interactions 𝑢′(𝑛𝑎) < 0, as shown
in Fig. 3(b). However, what potentials in reality could
present such a feature? Because of the importance of
this matter in surface effect, we apply the above guide
to other potentials.

Buckingham potential with Coulomb interaction is
such a potential with long range repulsive interactions

𝑢(𝑟𝑖𝑗) =
𝑞𝑖𝑞𝑗
𝑟𝑖𝑗

+ 𝐴 exp
(︁−𝑟𝑖𝑗

𝜌

)︁
− 𝐶

𝑟6𝑖𝑗
, (9)

where 𝑟𝑖𝑗 is the distance between two ions, 𝑞𝑖 is
the charge of ion 𝑖, and 𝐴, 𝜌 and 𝐶 are potential
parameters.[6] The first term in Eq. (9) represents the
long range Coulomb interaction.

Fig. 4. (a) Terms in the summations of Eq. (7) for 𝑓O
and 𝑓Zn. (b) Elastic modulus of ZnO chain as a function
of the total number of atoms in the chain.

Now, we examine a one-dimensional ZnO chain
with this potential to check if our guide still works.
According to Eq. (7), the two one-side forces 𝑓O and
𝑓Zn acting on O-atom and Zn-atom are calculated.
Because of the predominate negative terms result-
ing from the long range Coulomb repulsive interac-
tion (closed circles in Fig. 4(a)) in the summations,
𝑓O = −2.730 eV/Å and 𝑓Zn = −2.697 eV/Å respec-
tively, namely attractive as the guide anticipates, and
the atom near the free surface would shrink inwards,
not as claimed by Leach[19] and Trimble et al.[20] al-
ways tend to expand outwards for pair potentials. To
justify this issue, the spacing of a semi-infinite one-
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dimensional ZnO chain is calculated accordingly. The
outermost spacing does become less than that in bulk
and the general tendency of the spacing variation near
the surface is also shrinking, although some oscilla-
tions appear near the surface. As a result, the surface
layer could be stiffer, and the corresponding elastic
modulus would increase with the decreasing sample
size, e.g. the length of the chain, provided that the
effect of less coordination number of surface on elas-
tic modulus is minor. We calculate the modulus of
the one-dimensional ZnO chain, defined as the ratio
of the force to the strain, to check if the above guide
works. The results of the linear fitting of the force-
strain curves for infinite one-dimensional, 7-atom and
5-atom ZnO chains are shown in Fig. 4(b). These re-
sults do justify the inverse size dependence of ZnO,
similar to the previous molecular dynamics (MD) as
well as molecular statistical thermodynamics (MST)
simulations of ZnO nanorods.[6,7,21] Thus, the multi-
fold cross check clearly validates the inverse size de-
pendence of elastic modulus in ZnO with Bucking-
ham potential including long range Coulomb interac-
tion. As an practical example, for the case of an in-
finite rocksalt ZnO lattice, the one-side forces 𝑓O and
𝑓Zn are calculated to be equal to −1.249 eV/Å and
−1.160 eV/Å respectively, once again attractive forces
as shown in the one dimensional ZnO chain.

Furthermore, many-body potentials such as the
Finnis–Sinclair potential in Cu[22] are examined and
its one-side force 𝑓𝑖 is also calculated as before. The
force 𝑓𝑖 is −0.4409 (eV/Å) in a one-dimensional Cu
chain, and −1.095 (eV/Å) in an infinite 𝑓𝑐𝑐 lattice.
Hence, the surface layer would be tighter than the
bulk (also see Ref. [20]), and result in the increasing
modulus with deceasing size.[8] The insight of the at-
tractive force leading to the tighter surface layer in the
case is found to result from the long range repulsive
pair interaction, as well as the cohesive many-body
interaction caused by the electron redistribution.

In conclusion, the difference in long-range inter-
actions (attractive or repulsive) in a wide range of
atomic/molecular pair potentials result in two kinds of
surface layer (looser or tighter surface layer) and lead

to two kinds of size dependence of elastic modulus (de-
creasing or increasing modulus with decreasing size) in
nano materials, as shown by Eq. (7). For many-body
Finnis–Sinclair potentials, there is not such a concise
expression of the guide, but still the long range repul-
sive interaction along with the electron redistribution
effect leads to the tighter surface layer.
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