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We investigate the plastic deformation and constitutive behaviour of bulk metallic glasses (BMGs). A dimen-
sionless Deborah number Derp = t,/t; is proposed to characterize the rate effect in BMGs, where t, is the
structural relaxing characteristic time of BMGs under shear load, t; is the macroscopic imposed characteristic
time of applied stress or the characteristic time of macroscopic deformation. The results demonstrate that the
modified free volume model can characterize the strain rate effect in BMGs effectively.

PACS: 62.20.—x, 62.20.Dc, 61. 43. Er, 62.40. +i

Recently, due to the development of bulk metallic
glasses (BMGs), great efforts have been focused on the
preparation and mechanical deformation behaviour of
BMGs because of their potential applications in basic
research and engineering.! ~3! The plastic deformation
of bulk metallic glasses (BMGs) is fundamentally dif-
ferent from that in crystalline solids, because lack of
long-range order in the atomic structure. For example,
BMGs loaded under unconstrained conditions usually
fail catastrophically with little global plasticity and
ductility. This deformation behaviour has limited the
application of BMGs as engineering material so far.!4!
Therefore, understanding and characterizing the plas-
tic deformation mechanism of BMGs are very impor-
tant for applications of this class of materials to a
variety of engineering problems.

So far, various micromechanical theories have been
advanced to account for the mechanical behaviour of
metallic glasses. It has been shown!®) that the plastic
deformation in metallic glasses is strongly inhomoge-
neous at low temperatures (e.g. room temperature)
and high stress, and that the highly localized defor-
mation in shear bands is due to a local decrease in
viscosity. Spaepenl® argued that this decrease is due
to the formation of free volume and that the atten-
dant inhomogeneous flow is controlled by the com-
petition between the stress-driven creation and diffu-
sional annihilation of free volume. This hypothesis
was later verified experimentally by Argon.”) Subse-
quently, Steif et all8) extended Spaepen’s model by
considering an infinite body containing an initial band
of slightly weaker material, and deriving an expression
for the maximum stress at which catastrophic soften-
ing occurs due to the creation of free volume. Based

on a similar idea of Argon and Spaepen, Langer and
his co-workers proposed a shear-transformation-zone
(STZ) theory of deformation in metallic glass that in-
cludes a set of dynamical state variables beyond stress
and strain recently.[®'9 The transition between one
state and the other constitutes an elementary incre-
ment of shear strain and controls the mechanical prop-
erties in BMGs.[%19 However, the dynamical state
variables and the evolvement of free volume related
to the transition does not be clearly clarified either.
Otherwise, several authors have attempted to ex-
plain plasticity in metallic glasses by means of modi-
fying classical plastic deformation theories or disloca-
tion model.l'" =14 Based on the hypothesis of stress-
induced structural relaxation and the concepts of fic-
tive stress, Chen et al.'' proposed a fictive stress
model to characterize the nonlinear viscoelastic be-
haviour in BMGs. Similar to soil mechanical meth-
ods, Anand and Sul? assumed that the plastic dila-
tion is related to its deformation slip system on BMGs
and developed a finite-deformation, Coulomb-Mohr-
type constitutive theory for the elastic—viscoplastic
response of pressure-sensitive and plastically-dilatant
isotropic materials. These models reproduced parts of
the experimental results fairly well, while there is lit-
tle information related to the microstructure of metal
glasses. In addition, Gilman!'® and Lil'¥ attempted
to describe the plastic deformation of metallic glasses
in terms of dislocation models. However, the defini-
tion of dislocation in metallic glass was unacceptable.
In particular, interactions between ‘dislocations’ and
microstructure do not determine the mechanical prop-
erties of amorphous alloys in the manner common to
crystalline solids. An obvious example is that metallic
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glasses do not strain harden. With lack of the corre-
sponding material physical image, associated expla-
nations on the plasticity in metallic glasses based on
these models were unbelievable.

To date, many studies have demonstrated that free
volume and its evolution in metallic glass plays a very
important role in the mechanical behaviour of metal-
lic glass. In experiments researchers also observed the
evolution of free volume in deformed BMGs, and the
results could be effectively interpreted qualitatively
with free volume model.l5=8 Thus, the free volume
models established by Spaepen et al.l8 are accepted
by most researchers. However, there still exist some
difficulties in the description of elastic—plastic defor-
mation of metallic glasses in the free volume model
at room temperature, especially the effect of strain
rates. In this Letter, a dimensionless Deborah number
Derp = t,./t; is proposed to modify the free volume
model to characterize the strain rate effect.
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Fig. 1. Dependence of failure stress (normalized by the
failure stress under quasi-static loading) on the strain rate
for BMGs.

Experimentally, the effects of strain rate in BMGs
are dependent on the loading conditions and chem-
ical components of the material itself. BMGs un-
der different applied loading conditions usually show
different strain-rate-dependent behaviours. At high
temperatures (> 0.70T,, where T}, is the glass tran-
sition temperature), the strength or fracture stress of
BMGs usually exhibits significant strain rate effect.!*?!
In contrast to the plastic deformation at high temper-
ature, the strength or fracture stress of BMGs at low
temperature often shows little strain rate effect. This
is especially true at room temperature. As illustrated
in Fig. 1, Bruck et al.l'! reported that the compres-
sive strength of a Zr-based BMG is independent of the
strain rate. Mukai et al.'” demonstrated that tensile
fracture stress of a Pd4gNiggP2g BMG is essentially in-
dependent of strain rate. Liu et al.['®19 reported that
the shear strength of a Zry; 2Ti13.8Cuy2.5NijgBess s
BMG is independent of the strain rates in their ‘plate-

shear’ and shear punch tests. Hufnagel et al.[?%) and
Mukai et al.21] observed that the uniaxial compres-
sion failure stress slightly decreases with the increasing
strain rate. Apparently, the strain rate dependence of
deformation behaviours in BMGs varies with loading
procedures.

Theoretically, based on the free volume theory, Co-
hen and Turnbull,??/ Turnbull and Cohen,?*24 and
Spaepenl developed a general constitutive equation
to characterize plastic flow of metallic glasses. Accord-
ing to this model, the shear strain rate can be written
as

"y:£+2fexp(fg)exp(f%>sinh(%>,

(1)
where 7 is the applied shear stress, + is the shear strain
rate, £ = vy/v* is the concentration of the free vol-
ume, « is a geometrical factor of order unity, f is the
frequency of atomic vibration, AG™ is the activation
energy, ) is the atomic volume, kp is Boltzmann’s
constant, p is the shear modulus, and 6 is the abso-
lute temperature. Equation (1) shows that the con-
centration of the free volume ¢ plays a key role in
the deformation of metallic glasses. An as-prepared
metallic glass is thermodynamically unstable and has
a non-equilibrium amount of free volume. During the
deformation under the shear stress, the concentration
of the free volume is continuously created by an ap-
plied shear stress and annihilated by structure relax-
ation due to atom rearrangement. In the model of
Spaepen,!® the free volume is created by an applied
shear stress 7 and annihilated by a series of atomic
jumps, and the net rate of the change of concentra-
tion of free volume is

o =foo (- g)en (- 57)

(e o G) -1 -5

where np is the number of atomic jumps required to

annihilate a free volume equal to the atomic (hard
sphere) volume v*, and 8 = 2ltvy i = usd

’ 31—-vQ’ 2kp0
with v being Poisson’s ratio. By numerically solving
Egs. (1) and (2), the shear stress-strain and evolution
of the concentration of free volume can be obtained.
In the calculation, we take o = 0.15, f = 1 x 1013571,
AG™ = 1x107Y], Q = 26.1 x 1073%°m?, kp =
1.381x1072 J/K, u = 35.3 GPa, v* = 0.8, v = 0.36,
0 = 300K, np = 3 (Huang et al.?®)). The shear stress
and the concentration of free volume are assumed to
zero and 0.008 respectively in the initial configuration.
The calculated steady value of the dimensionless shear
stress-shear strain curves at different strain rates are
presented in Fig.2. It can be seen from the figure
that the dimensionless shear stress and failure strain




1054

LIU Long-Fei et al.

Vol. 25

(corresponding to the maximum stress) are strongly
sensitive to the shear strain rate, i.e. the dimension-
less shear stress and failure strain markedly increase
with increasing shear strain rate. However, the existed
experimental results!'6—19 demonstrated that the fail-
ure stress and failure strain of many BMGs are inde-
pendent of strain rates, and even some have negative
strain rate effect at room temperature. Furthermore,
a = 0.15 is inconsistent with the free volume model
and the calculated results for 0.5 < a < 1 are worse.[6]
Evidently, the existed free volume model could not
catch the effect of strain rate in metallic glasses at
room temperature. Much more information on the
plastic flow behaviours of BMGs should be involved
in the model.
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Fig. 2. Calculated shear stress strain curves based on the
original free volume model.

Firstly, as mentioned above, the free volume con-
centration £ plays a key role in the deformation of
metallic glasses. The coalescence of free volume in
BMGs is controlled by the competition between the
stress-driven creation process and the annihilation
process due to structural relaxation. Analogies with
dislocations in crystalline alloys, free volumes are the
defects in metallic glasses. Free volume and its evo-
lution represent the damage and damage evolution of
BMGs under applied loadings. Since metallic glasses
are in metastable equilibrium, they will shift to low en-
ergy configuration and annihilate free volumes when
they are relaxed. At the same time, free volumes
could be created under high loadings. Thus, me-
chanical properties of metallic glasses were controlled
by the competition between the annihilation and cre-
ation of free volumes. Among these processes, the
stress-driven creation is tightly related to the macro-
scopic deformation response to applied loading, and
the structural relaxation annihilation processes is due
to atomic jumps in metallic glasses. Both the annihila-
tion and creation of free volume are time dependent.
Thus a dimensionless Deborah number, namely the
ratio of the structural relaxation characteristic time

to the macroscopic deformation response characteris-
tic time can be introduced to characterize the com-
petition between the annihilation and creation of free
volumes in BMGs. The Deborah number was initially
introduced by Reiner!?®! to characterize what ‘fluid’
a material is. Recently, Bai et al.[2728! have demon-
strated that this dimensionless number is a key param-
eter for characterizing damage evolution and damage
localization of materials. In the present case, the di-
mensionless Deborah number can be defined as

DeID = tr/ti, (3)

where ¢, = 1/R is the structural relaxing character-
istic time of BMGs under shear load, t; = 1/4 is
the macroscopic imposed characteristic time of ap-

plied stress or the characteristic time of macroscopic
m

deformation; R = fexp ( — %) is the frequency
of atomic jumps to annihilate ?ree volume, and 7 is
the imposed shear strain rate by the applied loading.
According to Eq. (3), one can find that the larger the
Deborah number Deyp is, the slower the structural re-
laxation annihilation process of free volume is. Thus,
a relatively larger Deborah number Dep will lead to
a relatively higher remaining free volume concentra-
tion in BMGs and a weak capacity of load. The ex-
isted experimental observations!'®%! that the number
of shear bands initiated at high strain rate is larger
than that at low strain rate could be mainly attributed
to this reason. Obviously, the Deborah number Derp
could characterize these effects of loading rates: failure
stress is rate independent and shear bands are rate de-
pendent. However, the existed models do not include
any information about this kind of competition.

Secondly, to achieve a simple equation on the net
rate of the change of the free volume concentration in
metallic glasses, Spaepenl assumed that the volume
v of a spherical hole that an atom can be squeezed into
is equal to the hard-sphere volume v* of the atom. In
fact, under a large applied loading, the volume v of a
spherical hole could be much smaller than the atom
volume v*. Thus a larger number of fractions of po-
tential jump sites are introduced. This assumption
underestimates the creation of free volume and leads
to a fancied carrying capacity of metallic glasses that
the model characterizes. This is especially serious un-
der a highest applied loading.

Based on the above-mentioned considerations, we
modify Spaepen’s model to include the effect of ap-
plied loading and its rates. First, we replace v* with
v and assume that v is as functions of applied loading
and material. The function of v can be expressed as

v = U*f(’l', A)7

where A is a parameter of the applied loading rate and
given by fa = (Dep) = a — b x log(Deip); a and b
are determined by the properties of materials. Then,
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Egs. (1) and (2) can be rewritten as

”'y=£+2fexp<—o£})exp(—AGm>

& kpb
- sinh (2229>, (4)
%:vfexp(f%>exp( %)

()
where v = v/v*, f(r,4) = 1 — fA(DGID)%. For

ZI‘41_2Ti13_8CU12_5N110B622_5 BMG, its failure stress is
independent of strain rate. Based on the modified
model, the recalculated results are presented in Fig. 3,
where a = 0.85, b = 0.019, 77 = 0.031p, o = 0.75,
and & = 0.006. From Fig.3, one can find that the
recalculated stress strain curves are independent of
strain rates. The results demonstrate that the mod-
ified model can describe the strain rate effect of the
Zr-based BMGs very well. The values of « and &y are
more reasonable and matched the free volume model
better than the unmodified model. Because a and b
are related to the material itself and strain rate effects
are material-dependent, different values of a and b can
characterize varying strain rate effects in BMGs.
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Fig. 3. Calculated shear stress strain curves based on the
modified free volume model.

It is noted that other material parameters do not
be modified in the present model to characterize the
rate effect except for free volume. Thus a question nat-
urally arises: does the rate effect exert any influence
on these factors? Actually, the rate effect influences
these factors. For example, adiabatic heating induced
temperature rise and softened the crystalline materials
under high strain rate. But the reports/6—10,18,19,29,30]
demonstrate that free volume creation-softening plays
a dominant role in the mechanical properties of BMGs,
and adiabatic heating softening exerts a secondary in-
fluence at high strain rates. However, the temperature

rise Af was also estimated by A8 = K71v/(pc,) in
our early calculation on BMGs. To our surprise, the
temperature rise has little effect on the modification
of the significant strain rate effect of the constitutive
behaviours. The reason is that the temperature rise
accelerates the annihilation processes of free volume.
Therefore, the thermal-softening effect of the BMGs
was almost eliminated by the annihilation processes
of free volume. Secondly, although the temperature
rise and increased load could influence the activation
energy AG™ to some extent. The effect of the acti-
vation energy on the deformation is similar to that of
temperature effect and has little impact on the calcu-
lated results. Lastly, within the scope of reasonable
variation of the other parameters (2, kg and p) un-
der different strain rates, the calculated dimensionless
stress-strain curves still have significant strain rate ef-
fect based on Egs. (1) and (2). Thus, the free volume
concentration £ controls the mechanical properties of
BMGs under different strain rates and can be modified
to characterize the rate effect in BMGs effectively.

In summary, a Deborah number Derp = t,./t;
and a materials related function fs(Dep) = a —
b x log(Derp) are introduced into the free volume
model to characterize the time-dependent rate effect
in BMGs. The results demonstrate that the modi-
fied free volume model may be a potential method to
characterize the plasticity of BMGs at present.
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