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The natural frequencies of a cantilever probe can be tuned with an attached concentrated mass to
coincide with the higher harmonics generated in a tapping-mode atomic force microscopy by the
nonlinear tip-sample interaction force. We provide a comprehensive map to guide the choice of the
mass and the position of the attached particle in order to significantly enhance the higher harmonic
signals containing information on the material properties. The first three eigenmodes can be
simultaneously excited with only one carefully positioned particle of specific mass to enhance
multiple harmonics. Accessing the interaction force qualitatively based on the high-sensitive
harmonic signals combines the real-time material characterization with the imaging capability.
© 2008 American Institute of Physics. �DOI: 10.1063/1.2909535�

The tapping-mode atomic force microscopy1,2 is one of
the most widely used high-resolution proximal probe tech-
niques. In fact, the intermittent contact between the tip and
the sample surface effectively eliminates the influence of the
lateral adhesion and friction and, thus, allows the topography
imaging of rather soft or fragile samples. The tip periodically
tapping on the sample surface gives rise to a periodic pulse-
like tip-sample force, which generates high-frequency vibra-
tion components that are harmonics of the excitation
frequency.3 The appearance of the higher harmonic signals
serves as a sensitive index indicating the onset of such a
nonlinear anharmonic interaction force.4 Thus, in an attempt
to access the tip-sample interaction which can be quantita-
tively related to the material properties, the higher-order har-
monic components in the vibration spectrum of the tapping
cantilevers have attracted particular attention in the recent
years.5–10 A more detailed imaging with a better contrast
which reveals the variation in material properties was ob-
tained with the higher-harmonic resonance signal than that
with the fundamental one,11–13 while theoretical investiga-
tions and numerical simulations revealed that the high-order
harmonic components contain the information on elastic
properties of the sample surface.7,9,13 The high force sensi-
tivity of higher harmonics or modes has been quantitatively
examined by Lozano and Garcia.14 Unfortunately, the detec-
tion of higher harmonics with a reasonable signal-to-noise
ratio is not always possible.3,12

While the cantilever is excited at or near its fundamental
natural frequency to ensure a high-sensitive signal output of
vibration amplitudes mainly corresponding to the fundamen-
tal eigenmode during the topography imaging, signal contri-
butions from the higher harmonics of vibration amplitude are
usually suppressed by the rapid decay of the frequency re-
sponse curve of a continuum cantilever.15 In fact, the fre-
quency response curve only exhibits high peaks near the
natural frequencies corresponding to each of the vibration
eigenmodes, as shown in Fig. 1. Thus, a higher harmonic
signal with a frequency at an integer multiple of the funda-

mental frequency seldom exactly coincides with these natu-
ral frequencies of the uniform cantilever, which may result in
a rather small signal output that even falls below the effec-
tive noise level introduced by the detection electronics. Ef-
forts have been made to enhance the higher harmonics, either
by simultaneous exciting the cantilever at the first two natu-
ral frequencies,16 by driving the cantilever at a submultiple
of the fundamental resonance frequency,17 or by exciting the
torsional modes in a torsional harmonic cantilever.18 Instead
of its excitation, the cantilever itself as a force sensor can
also be optimized. A specialized harmonic cantilever with a
special geometry shape precisely designed based on the finite
element analysis has been invented by Sahin et al.15 to match
the third natural frequency to the 16th harmonic, and the
simultaneous excitation of the third eigenmode effectively
increases the contrast in mapping elasticity variation across a
surface. However, the lack of a comprehensive understand-
ing of the influences of a rather complicated geometry shape
which changes both the mass distribution and stiffness of the
cantilever still prevents such harmonic cantilever from being
precisely designed in a simple and flexible manner to meet
the demand of practical applications.

In this letter, we propose a straightforward way to tune
the typical cantilever having an uniform mass distribution
along the length direction with an attached concentrated
mass. In this way, the resonance peaks of the vibration spec-
trum of a original uniform cantilever can be tuned to exactly
coincide with certain specific higher harmonics which we
choose. The second and third eigemodes can be simulta-
neously excited together with the fundamental with only one
carefully positioned particle of specific mass. The concen-
trated mass changes the vibration spectrum characteristics of
the original uniform cantilever to enhance higher harmonic
signals caused by the tip-sample interaction. The enhanced
harmonic signals provide high-sensitive information to ac-
cess the tip-sample interaction force which may be quantita-
tively related to material properties.

Attach a concentrated mass m to the uniform cantilever
at the location x=x0, as shown in the inset of Fig. 1. Since
the vibration amplitude ��100 nm� is much less than the
thickness of the cantilever ��1 �m�, one-dimensional
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Euler–Bernouli equation for small deflection is used to in-
vestigate natural flexural vibrations of the concentrated-mass
cantilever as

EI
�4w�x,t�

�x4 + ��A + m��x − x0��
�2w�x,t�

�t2 = 0, �1�

where w�x , t� is the time-dependent flexural displacement, E
is the Young’s modulus, I the moment of inertia, � the mass
density of the material, A the cross-sectional area, and ��x� is
the Dirac’s delta function. By writing w�x , t�=Y�x�T�t�, we
are led to a boundary value problem of the nondimensional
form

d4Y���
d�4 − �4�1 + ���� − �0��Y��� = 0, �2�

with the following boundary conditions

Y�0� = 0, Y��0� = 0, Y��1� = 0, Y��1� = 0, �3�

where �4=�2�AL4 /EI, �=m /�AL, �=x /L, �0=xo /L, L is the
length of the cantilever, and � is the vibration angular fre-
quency. From the boundary conditions at the free end of the
cantilever, the frequency equation can be obtained as

F��,�,�0� = a11a22 − a12a21 = 0, �4�

where

a11 = �1��1� + ��4�2��1 − �0��1��0� ,

a12 = �2��1� + ��4�2��1 − �0��2��0� ,

a21 = �1��1� + ��4�2��1 − �0��1��0� ,

a22 = �2��1� + ��4�2��1 − �0��2��0� ,

�1��� = �cosh �� − cos ���/2�2,

�2��� = �sinh �� − sin ���/2�3,

and the prime denotes differential with respect to �.
Provided the consecutive roots of Eq. �4� are denoted by

�i�i=1,2 ,3 , ¯ � for given � and �0, the natural frequencies
of the consecutive eigenmodes are given by �i

=�i
2�EI /�AL4. Normalizing all natural frequencies with re-

spect to the fundamental one ��1� gives �i /�1= ��i /�1�2

= f�� ,�0�. Consequently, two nondimensional parameters,
�� ,�0�, which represent the mass of the attached concen-
trated particle and its location, entirely determine the ratio
�i /�1. By tuning �� ,�0�, we can move resonance peaks of
the higher-order eigenmodes in vibration spectrum back and
forth with respect to that of the fundamental one. Therefore,
carefully selected values of �� ,�0� match the natural fre-
quency of a certain higher-order eigenmode to a chosen
higher harmonic exactly. Such optimized values for �� ,�0�,
which enable the frequency response curve of tapping canti-
levers to exhibit peaks at integer multiples of the fundamen-
tal natural frequency in order to coincide with higher har-
monics, are given in Fig. 2, which shows the results for the
second eigenmode and that for the third one respectively.
The integer n on each line in Fig. 2 labels each of the pa-
rameter curves that matches the natural frequency of a cer-
tain eigenmode to the nth harmonic ��i /�1=n , i=2,3�.
When � varies from 0 to 5, the 4th–21st harmonics can be
matched by the second eigenmode, while the 10th–68th can

FIG. 1. �Color online� Frequency response curve of a harmonic cantilever
with an attached concentrated mass �solid line� is compared with that of an
uniform cantilever �dotted line�. �The frequency � and the vibration magni-
tude H are normalized by the fundamental natural frequency �1 and the
amplitude H0 at low frequency ��→0�, respectively. �=0.424, �0=0.351,
the quality factor Q=500.� Arrows indicate the 5th and 15th harmonics of
the fundamental frequency which are significantly enhanced by the second
and third eigenmodes of the harmonic cantilever, respectively.

FIG. 2. Values of the concentrated mass ��� and its position ��0� which
ensure that �a� �2 /�1 or �b� �3 /�1 are exactly integers. The integers are
labeled on the corresponding curves.
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be matched by the third one. Thus, parameter curves in Fig.
2 provide a easy-to-use guide for the design of a harmonic
cantilever. In fact, a carefully designed harmonic cantilever
based on the guide can enhance a freely chosen higher-order
harmonic of interest effectively.

A multiple harmonic cantilever, which allows the simul-
taneous excitation of the first three eigenmodes, can be
achieved. When Fig. 2�b� is superimposed on top of Fig.
2�a�, each of the intersection points between the curves in
Fig. 2�a� and those in Fig. 2�b� define a multiple harmonic
cantilever in the �� ,�0� parameter space. A typical frequency
response curve for such a multiple harmonic cantilever is
shown in Fig. 1. The second and third natural frequencies of
such a cantilever coincide with two higher harmonics exactly
�e.g., 5th and 15th harmonics in Fig. 1�. Thus, the first three
eigenmodes can be simultaneously excited with only one
carefully positioned particle of specific mass, which results
in greatly enhanced higher harmonic signals when the tip
periodically taps on the sample surface at the fundamental
natural frequency. As shown in Fig. 1, the 5th harmonic
which may otherwise be heavily suppressed by the valley of
the frequency response curve for an uniform cantilever is
now significantly enhanced by the second resonance peak of
the multiple harmonic cantilever. All intersection points are
obtained for the case that the attached mass is not quite large
��	0.5� with the corresponding values of �� ,�0� listed in
Table I. Such multiple harmonic cantilever can be quite use-
ful in probing the tip-sample interaction. In addition to the
increased image contrast based on the harmonic signals, two
most important parameters of the pulse force of the tip-
sample interaction, the time duration and the strength, can be
directly estimated from the two experimentally determined
high-order harmonic components of the vibration amplitudes
Aj and Ak enhanced by the second and the third eigenmodes
��2= j�1, �3=k�1, both j and k are integers�. When the
pulselike interaction force is approximately described by a
empirical function �e.g., cut cosine19�, the harmonic enhance-
ment characteristic of the multiple harmonic cantilever re-
sults in a greatly simplified analytical expression. Quickly
accessing the duration and the strength of the tip-sample in-
teraction provides a potential basis for the real-time quanti-
tative characterization of material properties without affect-
ing the simultaneous raster scanning of topography imaging
and, thus, opens the possibility of developing a force spec-
troscopy not only to distinguish, but also to identify material
composite.

In summary, we propose to tune the vibration spectrum
characteristics of the cantilever probe of tapping-mode
atomic force microscopy with an attached concentrated mass
to enhance the higher harmonic vibration signals which con-
tain the information on material properties of the sample
surface. The analytical solution obtained based on the theory
of Euler-Bernouli beams provides a comprehensive map to
guide the choice of the two governing parameters, the mass
of the attached particle and its position, to ensure achieving a
harmonic cantilever in a flexible manner. The time duration
and the strength of the pulselike tip-sample interaction force
can be quickly accessed based on the significantly enhanced
high-sensitive harmonic signals, which allows the combina-
tion of qualitatively extracting material properties with the
simultaneous nanometer-resolution surface imaging capabil-
ity.
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TABLE I. Values of ��, �0� �for the case �	0.5� which ensure that both n2=�2 /�1 and n3=�3 /�1 are integers.

n2 n3 � �0 n2 n3 � �0 n2 n3 � �0

5 15 0.424 0.351 6 19 0.466 0.591 8 23 0.287 0.853
5 16 0.396 0.386 7 18 0.341 0.679 8 24 0.310 0.906
5 17 0.397 0.418 7 18 0.170 0.733 9 24 0.495 0.813
5 18 0.428 0.448 7 19 0.119 0.799 9 25 0.484 0.831
6 15 0.237 0.203 7 20 0.114 0.862 9 26 0.481 0.851
6 16 0.101 0.281 8 20 0.341 0.768 9 27 0.493 0.881
6 17 0.059 0.379 8 21 0.304 0.797
6 18 0.194 0.586 8 22 0.289 0.823
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