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Abstract
Poly(dimethylsiloxane) (PDMS) has been widely used in lab-on-a-chip and micro- total analysis systems
(µ-TAS), thus wetting and electrowetting behaviors of PDMS are of great importance in these devices.
PDMS is a kind of soft polymer material, so the elastic deformation of PDMS membrane by a droplet
cannot be neglected due to the vertical component of the interfacial tension between the liquid and vapor,
and this vertical component of liquid–vapor surface tension is also balanced by the stress distribution within
the PDMS membrane. Such elastic deformation and stress distribution not only affect the exact measurement
of contact angle, but also have influence on the micro-fluidic behavior of the devices. Using ANSYS code,
we simulated numerically the elastic deformation and stress distribution of PDMS membrane on a rigid
substrate due to the liquid–vapor surface tension. It is found that the vertical elastic deformation of the
PDMS membrane is on the order of several tens of nanometers due to the application of a droplet with
a diameter of 2.31 mm, which is no longer negligible for lab-on-a-chip and µ-TAS. The vertical elastic
deformation increases with the thickness of the PDMS membrane, and there exists a saturated membrane
thickness, regarded as a semi-infinite membrane thickness, and the vertical elastic deformation reaches a
limiting value when the membrane thickness is equal to or thicker than such saturated thickness.
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1. Introduction

In his historic essay in 1805 [1], Thomas Young established the law of the con-
tact angle in capillarity. He is quoted from his essay [1, 2]: “But it is necessary to
premise one observation, which appears to be new, and which is equally consistent
with theory and experiment; that is, for each combination of a solid and a fluid,
there is an appropriate angle of contact between the surfaces of the fluid, exposed
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to the air, and to the solid”. This, together with the Young–Laplace equation (re-
lating the surface tension to the pressure and radius of curvature) have formed the
foundations of Capillarity science and practice [2]. Now, capillarity has become an
interdisciplinary science.

Thomas Young stated that when a drop of liquid makes contact with a planar,
isotropic solid surface it will approach the contact line following a dihedral angle, φ,
that depends on the solid and liquid surfaces according to his well-known equation
of contact angle

cosφ = γsv − γsl

γlv
, (1)

which is the equilibrium of the horizontal forces as shown in the so-called ‘Young’s
diagram’ in Fig. 1. Here γsv, γsl and γlv are the interfacial tensions between solid–
vapor, solid–liquid and liquid–vapor, respectively. Young asserted that the contact
angle φ depends only on the material properties [3]. The equivalent equation, equa-
tion (1), was stated in algebraic form by Dupre in 1869 [4], along with the definition
of work of adhesion [5], and sometimes equation (1) is also called the Young–Dupre
equation [2].

One immediately notices from the Young diagram (Fig. 1) that the forces do
NOT in general balance completely: a net force

γN = γlv sinφ, (2)

appears normal to the smooth solid surface. Young wrote nothing about this com-
ponent in equation (2) [3]. Hondros [2] pointed out three major shortcomings of
the contact angle law in the practical applications in his memorial article in honor
of Dr. Thomas Young on the occasion of the 200th anniversary of the presenta-
tion of his pivotal essay. In this article, Hondros wrote: “But probably the most
questionable feature of the application of the Law is that a vertical component of
surface tension, γlv sinφ is ignored. In most cases this may be justified, but there
are combinations of substances where it is suspected that the shape of the three-
phase boundary could be affected because of the highly stressed zone of contact.
This matter should be studied further”.

As a matter of fact, many scientists have studied or commented on this problem.
In 1875, Maxwell [6] commented: “The surface tensions normal to the surface are

Figure 1. The Young diagram — a liquid droplet resting on a solid surface.
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balanced by the resistance of the solid”. In 1961, Lester [7] studied theoretically the
contact angles of liquids at deformable solid surfaces. Madasu and Cairncross [8]
presented a finite element formulation for predicting an elastic deformation, close to
the static wetting line for a special case with conditions: contact angle φ = 90◦ and
γsv = γsl. In 2003, de Gennes et al. commented in their book [9]: “The projection
of the capillary forces onto the vertical axis is balanced out by a force of reaction
exerted by the solid”. Some researchers have studied the elastic deformation of thin
plates [10–12] due to the droplet. Shanahan and co-workers [13–19] studied the
spreading dynamics of a liquid drop on viscoelastic solids both theoretically and
experimentally, and they reported a direct evidence for the wetting ridge obtained
using scanning interferometric microscopy [15]; also they estimated of the height
of the ridge pulled by the vertical component of the droplet [16] as:

h ≈ γlv sinφ

G
, (3)

where G is the shear modulus of the soft solid. Extrand and Kumagai [20] per-
formed some wetting experiments using soft rubber, and they found that a ridge
was pulled up of the uncrosslinked butadiene rubber by the droplet and resulted in
contact angle hysteresis of 69◦.

The vertical component in the Young equation can be neglected for large struc-
tures unless the large structures experience surface deformation that influences wet-
tability. Nevertheless, it may have practical applications in microelectromechanical
systems (MEMS) and nanoelectromechanical systems (NEMS). Recently, some
authors have exploited the bending of microcantilevers due to nanobubbles in wa-
ter [21], capillary wrinkling of floating thin polymer films [22] and sessile-drop-
induced bending of atomic force microscope cantilevers [23].

PDMS has been widely used as a base material in lab-on-a-chip and micro-total
analysis systems (µ-TAS), so wetting and electrowetting behaviors of PDMS are of
great concern in these devices [24, 25]. As a soft material, the PDMS with a sessile
droplet may have relatively large elastic deformation due to the vertical component
of the interfacial tension between liquid and vapor. To more precisely manipulate
the liquid in lab-on-a-chip or µ-TAS, we have to estimate the amount of vertical
elastic deformation as well as the stress distribution of the PDMS membrane due
to the sessile droplet. Using commercial ANSYS code, we simulated the elastic de-
formation normal to the PDMS surface and the stress distribution within the PDMS
membrane due to the liquid–vapor surface tension. We hope that this study will as-
sist in a better design of the wetting and electrowetting behaviors of lab-on-a-chip
and µ-TAS by using soft polymer materials.

2. Problem Formulation

Consider the contact of a droplet on an isotropic deformable PDMS membrane
with a rigid substrate as shown in Fig. 2. Without loss of generality, the droplet
is supposed to be spherical and the contact area with PDMS is a circle with the
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Figure 2. (a) Sketch of a water droplet on PDMS membrane. (b) Wetting equilibrium.

radius a = 1.0 mm. PDMS is a hydrophobic material, and the water contact an-
gle is between φ = 108◦–128◦ [24, 25], and is taken as φ = 120◦ for simplicity in
the numerical calculation in the present paper. The diameter of the droplet is thus
d = 2a/ sin(2π/3) ∼= 2.31 mm. The surface tension of water is γlv = 72×10−3 N/m
at 25◦C [26]. The weight of the liquid droplet can be neglected since the diameter
of the droplet is less than the capillary length for water which is approximately
lCapillary = √

γlv/ρg ∼= 2.7 mm, here ρ and g are the mass density of water and
gravitational acceleration, respectively. It is supposed that there is no relative mo-
tion between the PDMS membrane and the rigid substrate.

For the first-order approximation, the elastic deformation of the PDMS induced
by the vertical component of the surface tension of the droplet is supposed to be
small enough, so PDMS material can be regarded as a linear elastic material for
small elastic deformation with sufficient accuracy. The Young’s modulus of PDMS
is 360–870 kPa [27].

As shown in Fig. 2, the wetted area is

A = πa2 = π

(
R sin

2π

3

)2

= 3π

4
R2, (4)

where R = d/2 is the radius of curvature of the droplet. The Young–Laplace pres-
sure is

P = 2
γlv

R
= 2

γlv

a
sinφ. (5)
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The Young–Laplace pressure in equation (5) acts on the wetted area [7, 23]
and is compensated by the vertical component of the surface tension in equa-
tion (2).

3. Simulation Procedure, Results and Analysis

A commercial ANSYS 10.0 package was used to solve this problem. Actually,
PDMS is a kind of Mooney–Rivlin rubber-like material with incompressible prop-
erty. But for the small deformation, the PDMS membrane can also be reasonably
regarded as a linear elastic material. Hence, Poisson’s ratio of 0.499 [27] was used
in the following calculation, which made the material approximately incompress-
ible. Figure 3 shows the central symmetric mesh for the finite element model using
ANSYS. For the finite element model, the radius of the PDMS membrane was
10 mm and the diameter of the water droplet was 2.31 mm as shown in Fig. 2a.
The PDMS membrane thickness varied from 0.5 mm to 10.0 mm. The thicknesses
of 0.5 mm and 10.0 mm consist of 1920 eight-node solid elements with 2709 nodes
and 12 000 eight-node solid elements with 15 351 nodes, respectively. Fine ele-
ments with a radius of 1.0 mm were added on the surface of the PDMS in order
to resolve the droplet acting on the PDMS, as shown in the lower right corner of
Fig. 3.

The boundary conditions are presented in Fig. 2b. The nodes on the axis of sym-
metry of the PDMS membrane cannot move in the radial direction. Likewise the
nodes on the bottom of the membrane cannot move in all directions because the
PDMS membrane is considered to perfectly adhere to the substrate. The Young–
Laplace pressure was considered to be a uniform pressure acting in the contact

Figure 3. Mesh of the finite element model used. The center region of the mesh is amplified in the
lower right corner.
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region with a radius of 1.0 mm and the pressure was averagely transformed to
concentrate forces on the nodes. The vertical component of liquid–vapor surface
tension was reduced to a uniform force acting on the contour of the circular contact
region. All the nodes on the contour were equidistant and the vertical component
was averagely distributed to these nodes. In this paper, the deformation of the water
droplet was not taken into account.

Figure 4a presents the vertical displacement of the line O–A–B (Fig. 2a) on the
PDMS membrane. In the region where the water droplet contacts the PDMS, the
value of vertical displacement increases with the thickness of the PDMS mem-
brane. When the thickness increases, the vertical displacement reaches a limit of
about 2.0 mm. It can be deduced that there exists a saturated membrane thick-
ness about 2.0 mm, which can be regarded as a semi-infinite membrane thickness.
As shown in Fig. 4b, the vertical displacement at point A decreases with the in-
crease of the Young’s modulus of the PDMS membrane. The PDMS membrane
with Young’s modulus of 360 kPa shows the maximum displacement, which con-
verges to a limiting value of about 0.321 µm. For the PDMS membranes with
Young’s moduli of 500 kPa and 740 kPa, the limiting values are about 0.231 µm
and 0.156 µm, respectively. In Ref. [16], the authors estimated the vertical dis-
placement of the ridge using equation (3) as: h ≈ γlv sinφ/G ≈ 0.253 µm for
E = 740 kPa, while in our calculation, the value is approximately 0.156 µm us-
ing the same material constants. Therefore, numerical simulation is indeed nec-
essary to obtain detailed information on the elastic deformation of the ridge. The
nephogram of displacement in the normal direction is given in Fig. 5. (Nephogram:
The value of a certain small region in a field (e.g. stress or displacement) is
marked by a corresponding color. When the values are not equal everywhere,
the field can be converted to a multi-color map, which is called nephogram.)
The red region identifies the region with the maximum vertical displacement.
The vertical component of the liquid–vapor surface tension produces tensile stress
in this region. And the blue region for the minimum displacement is where the
Young–Laplace pressure is applied and induces compressive stress. The ampli-
tude of the vertical displacement has been magnified for convenient observa-
tion.

The von Mises stress is taken as the equivalent stress σE, which is computed
as:

σE =
√

(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

2
, (6)

where σ1, σ2 and σ3 are the principal stresses. The equivalent stress distribution
along the line O–A–B (see Fig. 2b) is shown in detail in Fig. 6. In the con-
tact region, the equivalent stress distribution along the line O–A–B indicates that
the membrane thickness affects the stress. The maximum stress is present at the
point A (x = 1.0 mm) (Fig. 6a), where the vertical component of the liquid–
vapor surface tension is applied to the PDMS membrane. More details about the
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(a)

(b)

Figure 4. (a) Vertical displacement distribution along the line O–A–B (see Fig. 2b) with PDMS
membrane thickness varying from 0.5 mm to 10.0 mm ( 0.5 mm, 0.8 mm,

1.0 mm, 2.0 mm, 3.0 mm, 4.0 mm, 5.0 mm,
6.0 mm, 7.0 mm, 8.0 mm, 9.0 mm and 10.0 mm).

(b) Maximum vertical displacement at point A changes with Young’s modulus of the PDMS mem-
brane ( E = 360 kPa, E = 500 kPa and E = 740 kPa).

equivalent stress in the contact region are shown in Fig. 6b, which shows that
the equivalent stress in the contact region varies non-linearly with the x coordi-
nate. For the PDMS membrane with a thickness 0.5 mm, the equivalent stress in
the contact region reduces with the x coordinate and then increases. The decline
region of the stress is a convex curve. For the other PDMS membranes with dif-
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Figure 5. Nephogram of the vertical displacement distribution.

ferent thicknesses, the stresses also show a similar trend. But when the thickness
is larger than 2.0 mm, the curve of the stress distribution versus x coordinate is
concave. With the increase of the thickness of the PDMS membrane, the maxi-
mum stress at the point A decreases and converges to a limiting value of about
1106 Pa (Fig. 6c). As shown in Fig. 6d, the Young’s modulus of the PDMS mem-
brane has no influence on the equivalent stress. The nephogram of equivalent stress
in the PDMS membrane is shown in Fig. 7 with the vertical displacement mag-
nified. The values of the stresses are identified by the colored contour legend, as
shown in the lower part of Fig. 7. The red region is the region where the verti-
cal component of liquid–vapor surface tension is applied and shows the maximum
stress.

4. Conclusion

The elastic deformation of the PDMS membrane, which is produced by the nor-
mal component of liquid–vapor surface tension of the droplet resting on the PDMS
membrane, is calculated using FEM and analyzed. It is found that the vertical elastic
deformation of the PDMS membrane is on the order of several tens of nanome-
ters due to the application of a droplet with a diameter of 2.31 mm, which is no
longer negligible for lab-on-a-chip and µ-TAS. A saturated membrane thickness
of about 2.0 mm can be reasonably regarded as a semi-infinite membrane thick-
ness.

Detailed distributions of vertical elastic deformation and equivalent stress are
presented in this paper. The vertical elastic deformation decreases with increasing
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(a)

(b)

Figure 6. (a) Equivalent stress distribution along the line O–A–B (see Fig. 2b) with PDMS membrane
thickness varying from 0.5 mm to 10.0 mm ( 0.5 mm, 0.8 mm, 1.0 mm,

2.0 mm, 3.0 mm, 4.0 mm, 5.0 mm, 6.0 mm,
7.0 mm, 8.0 mm, 9.0 mm and 10.0 mm). (b) Magnified

view of the equivalent stress distribution in the contact region with thickness varying from 0.5 mm to
10.0 mm ( 0.5 mm, 0.8 mm, 1.0 mm, 2.0 mm, 3.0 mm,

4.0 mm, 5.0 mm, 6.0 mm, 7.0 mm, 8.0 mm,
9.0 mm and 10.0 mm). (c) Magnified view of the equivalent stress distribution

near point A (see Fig. 2b) with PDMS membrane thickness varying from 0.5 mm to 10.0 mm
( 0.5 mm, 0.8 mm, 1.0 mm, 2.0 mm, 3.0 mm,

4.0 mm, 5.0 mm, 6.0 mm, 7.0 mm, 8.0 mm,
9.0 mm and 10.0 mm). (d) Equivalent stress at point A (see Fig. 2b) with

Young’s modulus (360 kPa, 500 kPa and 740 kPa) of PDMS membrane ( E = 360 kPa,
E = 500 kPa and E = 740 kPa).
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(c)

(d)

Figure 6. (Continued.)

Young’s modulus. The Young’s modulus of the PDMS membrane has no influence
on the equivalent stress.
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Figure 7. Nephogram of the equivalent stress distribution.

References

1. T. Young, Philos. Trans. R. Soc. London 95, 65 (1805).
2. E. D. Hondros, J. Mater. Sci. 40, 2119 (2005).
3. R. Finn, Phys. Fluids 18, 047102 (2006).
4. A. Dupre, Theorie Mecanique de la Chaleur. Gauthier-Villars, Paris (1869).
5. A. W. Adamson, Physical Chemistry of Surfaces, 6th ed. Wiley, New York, NY (1997).
6. J. C. Maxwell, in: Encyclopedia Britannica, 9th ed. Samuel L. Hall, New York, NY (1875).
7. G. R. Lester, J. Colloid Sci. 16, 315 (1961).
8. S. Madasu and R. A. Cairncross, Int. J. Numer. Mech. Fluids 45, 301 (2004).
9. P.-G. de Gennes, F. Brochard-Wyart and D. Quere, Capillarity and Wetting Phenomena. Springer,

New York, NY (2004).
10. M. A. Fortes, J. Colloid Interface Sci. 100, 17 (1984).
11. J. Olives, J. Phys.-Condens. Matter 5, 2081 (1993).
12. R. Kern and P. Müller, Surface Sci. 264, 467 (1992).
13. A. Carré and M. E. R. Shanahan, Langmuir 11, 24 (1995).
14. A. Carré and M. E. R. Shanahan, Langmuir 11, 1396 (1995).
15. A. Carré, J. C. Gastel and M. E. R. Shanahan, Nature 379, 432 (1996).
16. M. E. R. Shanahan and A. Carré, Colloids Surfaces A 206, 115 (2002).
17. M. E. R. Shanahan, J. Phys. D: Appl. Phys. 21, 981 (1988).
18. M. E. R. Shanahan and A. Carré, J. Adhesion 57, 179 (1996).
19. M. E. R. Shanahan and A. Carré, in: Mittal Festschrift on Adhesion Science and Technology,

W. J. van Ooij and H. R. Anderson Jr (Eds), p. 239. VSP, Utrecht, The Netherlands (1998).
20. C. W. Extrand and Y. Kumagai, J. Colloid Interface Sci. 184, 191 (1996).
21. S. M. Jeon, R. Desikan, F. Tian and T. Thundat, Appl. Phys. Lett. 88, 103118 (2006).
22. J. Huang, M. Juszkiewicz, W. H. de Jeu, E. Cerda, T. Emrick, N. Menon and T. P. Russell, Science

317, 650 (2007).



698 Y.-S. Yu et al. / Journal of Adhesion Science and Technology 22 (2008) 687–698

23. T. Haschke, E. Bonaccurso, H. J. Butt, D. Lautenschlager, F. Schonfeld and W. Wiechert,
J. Micromech. Microeng. 16, 2273 (2006).

24. J. T. Feng and Y. P. Zhao, Biomed. Microdevices 10, 65 (2008).
25. W. Dai and Y. P. Zhao, Int. J. Nonlinear Sci. Numer. Simul. 8, 519 (2007).
26. http://hyperphysics.phy-astr.gsu.edu/hbase/surten.html
27. D. Armani and C. Liu, in: Proc. 12th Intl. Conf. on MEMS (MEMS’99), p. 222. Orlando, FL, USA

(1999).


