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The effective elastic modulus and fracture toughness of the nanofilm were derived with the
surface relaxation and the surface energy taken into consideration by means of the interatomic
potential of an ideal crystal. The size effects of the effective elastic modulus and fracture tough-
ness were discussed when the thickness of the nanofilm was reduced. And the dependence of the
size effects on the surface relaxation and surface energy was also analyzed.

Keywords: Size-dependent; surface effects; elastic modulus; fracture toughness; nanofilm.

PACS Number(s): 62.20.Dc, 68.35.-p, 68.60.-p, 68.60.Bs

1. Introduction

The elastic modulus and fracture toughness at
nanoscale are fundamental mechanical properties for
nano-devices and nano-manufacturing. For example,
in the recent fabrication of a full-functional nanotube
radio by Zettl’s group,1 resonant frequency of a car-
bon nanotube (CNT) was utilized to fabricate the
tuner of the nanoradio, and the resonant frequency
of the CNT is proportional to the square-root of the
Young’s modulus of the CNT. Therefore, whether
the elastic modulus of CNT exhibits scale-dependent
will be of big concern for the design and fabrica-
tion of nanotube radio. The fracture properties of

ZnO nanowires and nanobelts were also concerned in
the field of the nanopiezotronics, such as nanogener-
ator, etc.2 The size-dependent Young’s modulus and
fracture toughness were considered two of the four
research opportunities of nanomechanics,3 and there
is a big driving force for the nanofracture mechanics
in the practical application in nanotechnology.4

As a matter of fact, the Young’s modulus of a
nanostructure has been proved to be size-dependent
by lots of experiment results5–13 and theoretical
researches.14–24 The studies showed that the Young’s
modulus was stiffened5–8 or softened9–13 with the
decrease of the size, and most of researchers believed

‡Corresponding author.

599



September 26, 2008 19:28 01190

600 J.-G. Guo, L.-J. Zhou & Y.-P. Zhao

that the size effects should be caused by the influ-
ence of the surface effects. Guo and Zhao22,23 built
a three-dimensional simple cubic crystal model of a
nanofilm with the surface relaxation and the sur-
face energy taken into consideration, and derived
the elastic moduli of the nanofilm, and then proved
the elastic moduli to be size- and surface-dependent.
They also studied the bending elastic properties of a
one-dimensional nanostructure, and derived the size-
dependent effective bending modulus and effective
flexural rigidity of a nanobeam.24

In engineering application, besides the Young’s
modulus and flexural rigidity, the bulk modulus is
also an important mechanical property. But until
now, there are few researches on the size-dependent
bulk modulus of a one-dimensional nanostructure.
The dependence of the bulk modulus of nanocrys-
talline nickel on the grain size was investigated by
means of molecular dynamics simulations.25 And the
calculated data showed an increasing compressibility
with decreasing grain size and can be modeled by a
rule of mixture.

In this paper, with the surface relaxation and
the surface energy taken into consideration, the size-
dependent bulk modulus of a nanofilm will be derived
by means of the interatomic potential of an ideal
crystal. And the Young’s modulus and shear mod-
ulus of it will also be discussed if the Poisson’s ratio
can be assumed to be a constant. In addition, accord-
ing to the classical Griffith’s theory of linear elastic
fracture mechanics, the fracture toughness of brittle
materials is the function of Young’s modulus and sur-
face energy. So we will also give a simple discussion
on the size-dependent fracture toughness of a brittle
nanofilm.

2. The Effective Bulk Modulus
of a Nanofilm

According to the theory of solid-state physics, the
interatomic potential of an ideal crystal can be
expressed as:

u(r) =
pq

p − q
εb
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where p and q dependent on the shapes of potential
curves, a0 is the interatomic distance in equilibrium,
and εb is the minimum value of the potential.

When the values of p and q are specified as p =
12 and q = 6, the potential function becomes the
classical Lennard-Jones (L-J) potential
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In equilibrium state, there exists
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If the atomic number of the ideal crystal with the
volume V is specified to be N0, then the internal
energy of the crystal can be written as

U(r) =
1
2
N0ncu(r), (5)

where nc is the atomic coordination number, and the
volume V can be calculated by

V = N0r
3. (6)

According to the theory of solid-state physics, the
bulk modulus of a crystal can be written as

K = V

(
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Substituting Eqs. (2)–(5) in Eq. (7), the bulk modu-
lus of the crystal can be derived as

K =
4ncεb

a3
0

. (8)

In Eq. (8), the value of the bulk modulus is depen-
dent on the interatomic distance in equilibrium a0

and the minimum value of the potential εb. For a
macroscopic ideal crystal, the values of εb and a0 are
fixed, so the bulk modulus is a constant. However,
for a nanostructural crystal, due to the influence of
the surface effects, the values of a0 and εb will not be
fixed for a certain material, and correspondingly the
bulk modulus is not a constant. At the nanoscale,
the surface effects have great influence on the phys-
ical properties of structures due to the large ratio
of surface to volume. The surface effects, such as
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surface relaxation, surface reconstruction and surface
energy, etc., can change the values of a0 and εb, and
make a0 and εb be size- and surface-dependent. Tak-
ing the influence of the surface relaxation and the
surface energy into consideration, we define the new
interatomic distance of a nanofilm in equilibrium and
the minimum value of the potential as a∗ and ε∗,
respectively. And the bulk modulus of the nanofilm
is assumed to have the form of Eq. (8). Then the
dimensionless bulk modulus of the nanofilm can be
written as

K̄ =
Kfilm

K
=

(a0

a∗
)3

·
(

ε∗

εb

)
. (9)

In the following, the size- and surface-dependent
expressions of a∗ and ε∗ will be derived, respectively.
Firstly, the relaxation coefficient k is introduced. On
the free surface of the nanofilm, several layers of
atoms will relax due to the imperfection of the coor-
dination numbers (CNs). As a result, the interatomic
distance in equilibrium will change. The relaxation
coefficient k is a parameter scaling the variation,
which is the ratio of the relaxed interatomic distance
and the unrelaxed interatomic distance, i.e., a = ka0.
Apparently, the relaxation may be in contraction
when ki < 1, and be in expansion when ki > 1. We
define an average value of the interatomic distances
as the value of the interatomic distances in equilib-
rium a∗ when the surface relaxation happens, i.e.,

a∗ =
(N + 2nk)a0

N + 2n
, (10)

where N is the number of the unrelaxed atomic lay-
ers, and n is the number of the relaxed atomic layers.
Furthermore, the dimensionless form of the distance
can be written as

δ =
a0

a∗ =
N + 2n

N + 2nk
. (11)

According to Eq. (5), the potential of the ideal crys-
tal in equilibrium state can be written as

U =
1
2
N0ncεb. (12)

While the potential of the nanofilm in equilibrium
state is

Uf =
1
2

[(nc − m)η + nc(1 − η)] N0ε
∗

=
1
2
N0(nc − mη)ε∗, (13)

where the parameter m denotes the decrease of
atomic coordination number on the free surface of
the nanofilm, and η denotes the ratio of surface
atom numbers and total atom numbers, which can
be expressed as

η =
2n

N + 2n
. (14)

If we split an ideal crystal into a nanofilm with two
free surfaces, then there is the following potential
relationship, U − Uf = γA. Thus, we can further
obtained

ε∗

εb
=

nc

nc − mη
·
(

1 − γA

U

)
, (15)

where the area can be calculated by A = N0ηa2
0.

Substituting Eqs. (11) and (15) in Eq. (9), we
can derive the dimensionless effective bulk modulus
of the nanofilm
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Furthermore, it can be written as

K̄ = β ·
(

1 − γa2
0

αεb

)
(17)

where

ξ =
nc − mη

nc
, β =

δ3

ξ
, α =

nc

2η
. (18)

3. Young’s Modulus, Shear Modulus,
and Fracture Toughness

In the section above, the dimensionless effective
bulk modulus of a nanofilm was derived. For
isotropic materials, there are the following relations
among Young’s modulus, shear modulus, and bulk
modulus:

E = 3K(1 − 2ν), G =
3K(1 − 2ν)

2(1 + ν)
, (19)

where E is Young’s modulus; G, the shear modu-
lus, and ν is the Poisson’s ratio. Poisson’s ratio is
usually assumed to vary slightly. So the effective
Young’s modulus and shear modulus of the nanofilm
can be derived, and the dimensionless forms of them
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are, respectively,

Ēeff =
Eeff

film

K
= 3(1 − 2ν)K̄,

Ḡeff =
Geff

fi ln

K
=

3(1 − 2ν)
2(1 + ν)

K̄. (20)

In addition, according to the Griffith’s theory of lin-
ear elastic fracture mechanics, the fracture toughness
of brittle materials is

KC =
√

πEγ, (21)

which is dependent on Young’s modulus E and sur-
face energy γ.

If the equation can be applied to nanostructures,
then the dimensionless effective fracture toughness of
the nanofilm can be derived when the surface energy
γ is assumed to be constant,

K̄C =
K∗

C

KC
=

(
Eeff

film

E

) 1
2

=
√

K̄ (22)

where KC is the macroscopic fracture toughness of
the materials, and K∗

C the effective fracture tough-
ness of the nanofilm, which is in proportion to
the square root of the dimensionless effective bulk
modulus.

4. Discussion and Conclusion

An example is given to discuss the size- and surface-
dependence of elastic moduli and fracture toughness.
The values of parameters for calculation are speci-
fied in Table 1. The surface relaxation usually exists
at the several layers of atoms, and the degree of
the relaxation decays greatly along the inner-normal
direction of the free surface, and no CN reduction is
expected for n > 3. So, for the sake of simplification
and without loss of generality, we assume that the
relaxation of the crystal only occurs on the outmost
atomic layer, i.e., n = 1.

Table 1. The values of parame-
ters in the example.

Symbol Value

a0 0.2556 × 10−10 m
nc 12
m 6

ε 0.69 × 10−19 J

γ 1.952 N ·m−1

ν 0.3
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Fig. 1. The variations of dimensionless bulk modulus
with the decrease of atomic layer number.

Figure 1 shows the variations of the dimension-
less effective bulk modulus of the nanofilm with the
decrease of atomic layer number. It can be seen from
Fig. 1 that the dimensionless effective bulk modu-
lus varies with the decreasing the thickness of the
nanofilm when the number of the atomic layer is less
than about 60. And the thinner the nanofilm is, the
sharper the curve becomes. In addition, the varia-
tions of the effective bulk modulus are also dependent
on the surface effects. For the nanofilm with the same
thickness, the smaller the surface relaxation is, the
greater the value of the effective bulk modulus is.
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Fig. 2. The variations of dimensionless bulk modulus,
Young’s modulus, and shear modulus with the decrease
of atomic layer number when the surface relaxation
coefficient k = 1.
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For the case of k = 1, the bulk modulus is still
enhanced due to the influence of the positive surface
energy.

The effective Young’s modulus, shear modulus,
and fracture toughness have the same variations with
the effective bulk modulus when the thickness of
the nanofilm is reduced. Figure 2 shows the varia-
tions of the effective Young’s modulus, shear modu-
lus, and bulk modulus when the relaxation coefficient
k equals to one, i.e., k = 1. The effective fracture
toughness of a nanofilm is in proportion to the square
root of the dimensionless effective bulk modulus.
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Phys. Lett. 85 (2004) 3555.

12. M. Kopycinska-Muller, R. H. Geiss, J. Muller and
D. C. Hurley, Nanotechnology 16 (2005) 703.

13. Q. H. Xiong, N. Duarte, S. Tadigadapa and P. C.
Eklund, Nano Lett. 6 (2006) 1904.

14. F. H. Streitz, R. C. Cammarata and K. Sieradzki,
Phys. Rev. B 49 (1994) 10699.

15. V. B. Shenoy, Phys. Rev. B 71 (2005) 094104.
16. L. G. Zhou and H. C. Huang, Appl. Phys. Lett. 84

(2004) 1940.
17. D. Wolf, Appl. Phys. Lett. 58 (1991) 2081.
18. Z. Y. Yang and Y. P. Zhao, Surf. Rev. Lett. 14 (2007)

661.
19. P. Villain, P. Beauchamp, K. F. Badwi, P. Goudeau

and P. O. Renault, Scripta Mater. 50 (2004) 1247.
20. M. X. Gu, C. Q. Sun, Z. Chen, T. C. A. Yeung,

S. Li, C. M. Tan and V. Nosik, Phys. Rev. B 75
(2007) 125403.

21. G. Ouyang, X. Tan and G. Yang, Phys. Rev. B 74
(2006) 195408.

22. J. G. Guo and Y. P. Zhao, J. Appl. Phys. 98 (2005)
074306.

23. J. G. Guo and Y. P. Zhao, Surf. Rev. Lett. 14 (2007)
667.

24. J. G. Guo and Y. P. Zhao, Nanotechnology 98 (2007)
074306.

25. S. J. Zhao, K. Albe and H. Hahn, Scripta Mater. 55
(2006) 473.




