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A theoretical model is presented to investigate the size-dependent elastic moduli of nanos-
tructures with the effects of the surface relaxation surface energy taken into consideration. At
nanoscale, due to the large ratios of the surface-to-volume, the surface effects, which include
surface relaxation surface energy, etc., can play important roles. Thus, the elastic moduli of
nanostructures become surface- and size-dependent. In the research, the three-dimensional con-
tinuum model of the nanofilm with the surface effects is investigated. The analytical expressions
of five nonzero elastic moduli of the nanofilm are derived, and then the dependence of the elastic
moduli is discussed on the surface effects and the characteristic dimensions of nanofilms.
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1. Introduction

Nanostructures in general can be defined as the
structures whose at least one of the overall dimen-
sions is in the nanometer range, which include
nanofilms, nanobelts, nanowires, nanoparticles, etc.
The mechanical properties of nanostructures, such as
elastic modulus, hardness, yield stress, etc., are gen-
erally different from those at the macroscopic scale.
They are often size- and surface-dependent. Thus,
it will produce wrong results if the difference is not
taken into consideration in the course of design and
application.

The elastic moduli are fundamental mechanical
properties of materials, which are defined in the
theory of continuum mechanics. The elastic mod-
uli are constant for a specified material at macro-
scopic scale, but it had been shown by a great deal
of experiments1–6 that they exhibit size effects at
nanoscale. The elastic moduli can either increase1–3

or decrease4–6 when the size of the nanostructures
is reduced. The explanation to the phenomena is
usually attributed to surface effects, including sur-
face relaxation, surface energy, etc., which play
predominant roles at nanoscale due to the large
surface-to-volume ratio of nanostructures. Some the-
oretical models7,8 were presented and molecular
simulation9–11 was done to study the size depen-
dence of elastic moduli taking the surface effects into
consideration, but a uniform and extensively accept-
able model is still desirable. Considering the effects of
the surface relaxation, the present authors12 also pre-
sented a three-dimensional lattice model to investi-
gate the elastic moduli of nanofilms, and showed that
the size effect is dependent on the surface relaxation.
Based on the work in Ref. 12, further researches will
be made in the paper to study the elastic moduli of
nanofilms with the effects of surface relaxation and
surface energy.
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2. The Elastic Moduli of Nanofilm
Taking Surface Relaxation and
Surface Energy into Consideration

A three-dimensional simple cubic lattice model of a
nanofilm is applied.12 The film is nanoscale in the
direction of thickness, which is equal to h, and infi-
nite in directions of length and width. There are
2N + 1(N = 1, 2, 3, . . . ,) layers of atoms along the
thickness, and the surface relaxation takes place on
the outmost atomic layers. The surface relaxation
coefficient k is introduced, and the surface atoms
expand when the relaxation coefficient k > 1, and
contract when k < 1. When it deforms, the total
energy of the nanofilm is composed of the bulk strain
energy and the surface energy of two free surfaces.

Utot = Ub + Us = V0f + 2Aγ. (1)

Since the lattices are uniform in the x–y plane, we
may choose a crystal lattice width in either direction.
As a result, the volume V0 = a2h and the area A =
a2, where a is the distance of the nearest neighbors,
and h is the thickness of the film: h = 2(N +k−1)a.

The density of strain energy of the nanofilm is
w = Utot/V0 = f + 2γ/h. So, the elastic moduli of
the nanofilms can be derived,

Cijkl =
∂2w

∂εij∂εkl
=

∂2f

∂εij∂εkl
+

2
h
· ∂2γ

∂εij∂εkl
, (2)

where the first term at the right-hand side equals the
elastic moduli of the bulk crystal, which had been
obtained is Ref. 12,

Bijkl =
∂2f

∂εij∂εkl
, (i, j, k, l = 1, 2, 3). (3)

and the second term is equal to the surface elas-
tic moduli, which can be derived by the Shuttle-
worth relation13 and the molecular dynamics (MD)
simulation.10

Sijkl =
∂2γ

∂εij∂εkl
, (i, j, k, l = 1, 2). (4)

The elastic moduli tensors possess the Voigt sym-
metries with respect to the exchange of indices:
Tijkl = Tjikl = Tijlk = Tklij (T = C, B, S). So,
the number of independent components in the elastic
moduli tensors Cijkl reduce to 21 from 81. Thus the
tensor Cijkl can be replaced by Cij , and the consti-
tutive relation of the nanofilm can be expressed as
σij = Cijεj (i, j = 1, 2, . . . , 6), where the subscript
i = 1, 2, . . . , 6 corresponds to x, y, z, xy, yz, and

xz, respectively. By Eqs. (2)–(4), five independent
nonzero elastic moduli of the nanofilm are derived
when the surface relaxation and the surface energy
are taken into consideration. And it is shown that
the nanofilm is transversely isotropic.

C11 = C22 =
1
h
· [(2N + 1)α1 + (4N − 1)α2

+
4α4

1 + k2
+ 2S1111

]
, (5a)

C12 = C21 =
1
h
· [(2N + 1)α2 + 2S1122] , (5b)

C13 = C31 = C23 = C32 =
1
h

×
[
(2N − 1)α2 +

4k2α4

1 + k2

]
, (5c)

C33 =
1
h
· [(2N − 1)(α1 + 2α2)

+2k2α3 +
8k4α4

1 + k2

]
, (5d)

C44 =
1
h
· [4(2N + 1)α2 + 2S1212] , (5e)

C55 = C66 = 4C13, (5f)

where α1 and α2 denote the spring constants of
the nearest neighbors and the next-nearest neigh-
bors between the unrelaxed atoms, respectively; α3

and α4 are those of the nearest neighbors and the
next-nearest neighbors between the relaxed atoms,
respectively.

The spring constants αi (i = 1, 2, 3, 4), can be
obtained by calculating the interatomic potential. It
is assumed that the Lennard–Jones potential, u(r) =
εb[(r0/r)12 − 2(r0/r)6], is applied, where r0 is the
atomic distance in equilibrium, and εb is the depth of
the potential well. Then we can truncate the Taylor
expansion at second order: u(r) = u(r0)+(1/2)α(r−
r0)2 + · · ·+, where α = u′′(r0) = (72εb)/r2

0 is equiva-
lent to the spring coefficient. So the spring constants
αi, (i = 1, 2, 3, 4) can also be defined by the param-
eter α as follows:

α1 = α, α2 = α/2,

α3 = α/k2, α4 = α/(1 + k2). (6)

On the other hand, if only the interaction
between the nearest neighbors is considered, the
Young’s modulus of the bulk crystal can approx-
imately be calculated by Eq. (14): E = α/r0.
Thus, the five independent nonzero elastic moduli of
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nanofilms can further be rewritten as the following
dimensionless forms:

C∗
11 =

C11

E
=

1
n
·
[
β1 +

a2S1111

36εb

]
, (7a)

C∗
12 =

C12

E
=

1
n
·
[
β2 +

a2S1122

36εb

]
, (7b)

C∗
13 =

C13

E
=

β3

n
, (7c)

C∗
33 =

C33

E
=

β4

n
, (7d)

C∗
44 =

C44

E
=

1
n
·
[
β5 +

a2S1212

36εb

]
, (7e)

where n is the dimensionless thickness of nanofilms,
n = h/a = 2(N + k − 1), and the dimensionless
parameters βi (i = 1, 2, 3, 4, 5) are the following
forms, respectively.

β1 = 4N +
1
2

+
4

(1 + k2)2
, (8a)

β2 = N +
1
2
, (8b)

β3 = N − 1 +
4k2

(1 + k2)2
, (8c)

β4 = 2(2N − 1) +
8k4

(1 + k2)2
, (8d)

β5 = 2(2N + 1). (8e)

3. Discussion

It can be found from Eqs. (7a)–(7e) that the dimen-
sionless elastic moduli C∗

11, C∗
12, C∗

13, C∗
33, and C∗

44

are dependent on the thickness of the nanofilms and
the surface relaxation coefficient k. Besides that, the
elastic moduli C∗

11, C∗
12, and C∗

44 are also dependent
on the surface elastic moduli Sijkl, which are the
functions of the surface energy γ. The surface elastic
moduli Sijkl can be obtained by MD simulation.10

In the research, it is assumed that the free surfaces
of the nanofilm are (111) crystal faces of Cu. So the
surface elastic moduli are10 S1111 = −0.123eV/Å2,
S1122 = −0.140 eV/Å2, and S1212 = 0.009 eV/Å2,
respectively. In addition, the values of interatomic
distance a and potential energy εb in the calculation
choose a = 0.2556nm and εb = 0.69 × 10−19 J.

Figures 1–5 show the variations of the dimension-
less elastic moduli with the atomic layer numbers
for different relaxation coefficients k. They decrease

Fig. 1. The variations of elastic modulus C∗
11 with the

atomic layer numbers.

Fig. 2. The variations of elastic modulus C∗
12 with the

atomic layer numbers.

Fig. 3. The variations of elastic modulus C∗
13 with the

atomic layer numbers.
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Fig. 4. The variations of elastic modulus C∗
33 with the

atomic layer numbers.

Fig. 5. The variations of elastic modulus C∗
44 with the

atomic layer numbers.

or increase with the reduced thickness of nanofilms
when the atomic layer numbers are less than 40, and
vary sharply when the atomic layer numbers are less
than 20. It can be shown from Figs. 3 and 4 that the
elastic moduli C∗

13 and C∗
33 increase with the reduced

atomic layer numbers when the relaxation coefficient
k is less than 1 (k < 1), and decrease when the relax-
ation coefficient k is greater than 1 (k > 1). In addi-
tion, when the relaxation coefficient k is equal to 1
(k = 1), C∗

13 and C∗
33 keep constant. However, for

elastic moduli C∗
11, C∗

12, and C∗
44, besides the surface

relaxation, they are also dependent on the surface
energy. It can been shown from Figs. 1, 2, and 5 that
they always increase, regardless of the values of k,
when the free surface is the (111) crystal face of Cu,
which is a result of the interaction between the sur-
face relaxation and the surface energy.

4. Conclusion

Due to the effects of the surface relaxation and sur-
face energy, the nanofilms are transversely isotropic,
and there are five independent nonzero elastic
moduli. The elastic moduli are size- and surface-
dependent. They decrease or increase with the
reduced thickness of nanofilms when the atomic layer
numbers are less than 40, and vary sharply when
the atomic layer numbers are less than 20. With the
decrease of the atomic layer number, elastic moduli
C∗

13 and C∗
33 become stiffer when k < 1, and softer

when k > 1. However, for elastic moduli C∗
11, C∗

12,
and C∗

44, besides the surface relaxation, they are also
dependent on the surface energy. When the free sur-
face is the (111) crystal face of Cu, they are always
stiffer due to the effects of surface energy.
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