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Abstrac t  When designing deep ocean structures, it is necessary to estimate the effects of internal 
waves on the platform and auxiliary parts such as tension leg, riser and mooring lines. Up to now, only 
a few studies are concerned with the internal wave velocity fields. By using the most representative 
two-layer model, we have analyzed the behavior of velocity field induced by interracial wave in the 
present paper. We find that there may exist velocity shear of fluid particles in the upper and lower 
layers so that any structures in the ocean are subjected to shear force nearby the interface. In the 
meantime, the magnitude of velocity for long internal wave appears spatially uniform in the respective 
layer although they still decay exponentially. Finally, the temporal variation for Stokes and solitary 
waves are shown to be of periodical and pulse type. 
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I N T R O D U C T I O N  

The ocean is not always homogenous. In all water stratifications, the two-layer model represents 
the most intense density change. The wavelengths and wave heights of internal waves are rather 
larger than the dimensions of surface waves and ocean structures, which accounts for why Morison 
formula is popularly used when computing internal wave force. For free surface waves, the velocity 
field properties of all kinds of surface waves have been sufficiently studied. There are still few articles 
concerned with internal wave flow fields. For the two-layer model, except for wave amplitude H. 
wavelengths L, there are two depth dimensions, namely, dl and d: (dl and water thickness ratio 
r = dl/d2) for upper and lower layers. Fluid velocities are mainly related with H, L, r and water 
density difference ratio a=(p2 - pl)/p2. 

P RO B L E M  FO R M U L A T I  O N 

We consider traveling periodic waves in a two-layer fluid on a horizontal impermeable bed, which can 
be regarded as steady flow if the coordinate system moves at the same speed as the wave. The water 
is assumed incompressible and bounded by two rigid walls on the upper and lower boundaries. There 
is experimental evidence reported by Kao et al.[1] to support the rigid-lid approximation. Then, the 
origin is set on the plane of water surface, the horizontal coordinate isx and the vertical coordinate is 
z (Figure 1). 
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Figure 1: The coordinate of two-layer fluid interfacial waves, in the figure, the origin of the coordinate  is located on the 
water surface, and the  densit ies  of the two layers are pl and p2 respectively and the  depth are dl and d2 
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We use stream function formulation such that  velocity components (Ul,Vl) and (u2,v2) are given by 
Ul --- O~)l/OZ, Wl- - -O~/ ) I /OX,  and u2 = O~2/Oz, w2=-O~22/Ox if the motion is irrotational, ~/)1 and ~2 
satisfy Laplace equation throughout the two fluids[2]. Thus 

02~b1 _~_ 02~1 
ox2 ~ = 0  (1) 

o ~  + o~r = 0 (2) Ox 2 

The upper boundary condition is 

~/)1 (X, 0) = 0 (3) 

The bot tom boundary conditions to be satisfied is 

r  - d2) = 0 (4) 

On the free interface y = ~](x), the kinematics boundary condition is 

~92 [ x , - d l  -+- r](x)] = - Q  (5) 

in which Q equates to a positive constant, denoting the total volume rate of flow underneath the 
stationary wave per unit length normal to the (x, z) plane; and the condition requiring pressure on 
the free surface to be constant, combined with Bernoulli's equation, that  is 

[(Ox"@2) 2 -"1- (Oz'l/)2) 2] /2  Jr- g [ - d l  -Jr- 'T](X)] -- _~ -- (1 - or) { [(Ox'@i) 2 + (0zl/)1) 2] /2-~- 

g [ -d l  n L r / (x ) ] -  R} = 0 (6) 

Cheng and Li have solved the equations by perturbation expansion in terms of c, they got the dispersion 
relation of two-layer fluid steady internal waves can be expressed as 

(,.,d/"~'-k : C O -1- s + C2C2 -t- s 'n L s (7) 

The steam function can be gotten as 

kr = ell11 sinh kz cos kx + c2fl2z sinh 2kz cos 2kx + c a (flal sinh kz cos kx + 

flaa sinh 3kz cos 3kx + c 4 (f142 sinh 2kz cos kx cos 2kx + f144 sinh 4kz cos 4kx) + 

c 5 (f151 sinh kz cos kx + f153 sinh 3kz cos 3kx + f155 sinh 5kz cos 5kx) (8) 

and 

k92/~ = cf211 sinh k(z + h) cos kx + c2f222 sinh 2k(z + h) cos 2kx+ 

s (f231 sinh k(z -Jr- h) cos kx--~- f233 sinh 3k(z @ h) cos 3kx) --t- s 4 (f242 sinh 2k(z + h) cos 2kx + 

f244 sinh 4k(z -n t- h)cos 4kx) + c 5 (f251 sinh k(z + h)cos kx + 

f25a sinh 3k(z + h)cos 3kx + f255 sinh 5k(z + h)cos 5kx (9) 

The parameters in Eq. (1~9) can refer to reference [2]. For the internal solitary waves, the governing 
equations and fluid velocity formulas can be found in reference [3]. 

I N F L U E N C I N G  F A C T O R S  

The particle velocities can be solved from Eq. (8,9). Coefficients in the eqautions are functions of 
kdld2 and a, which can be solved by Mathematica. Choosing phase speed c as the referential speed 
with kH=0.04, r=0.2,  the velocities U(Ul and u2) can be solved as functions of z (see Figure 2), 
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Figure 2: When kx = 0, the maximal fluid velocity profiles of linear periodic wave when kd2equals to 1.0, 1.2, 1.5 etc. 
respectively 

From Figure 2(a), we may find amplitudes of Ul and u2 are of opposite signs, which renders a vertical 
structure across the interface subject to shearing forces. For given water depth ratio r, i.e. In Figure 
2, r=0.2,  the upper layer is shallow water, which makes Ul almost uniform with the increase of z; only 
when kdl (or kd2) gets large enough, Ul will decay a little near the pycnocline. The lower layer is deeper 
water, u2 decreases rapidly with the increase of water depth, when kd2=8.0, at the depth of 0.5d2, u2 
already tends to 0. Fluid vertical component w may play important  role for short Stokes waves. When 
L is very large, the flow filed exhibits relatively uniform in the extent of 27r+27r/3<kx<27r+47r/3.If we 
move z=0 to the water interface, and note the vertical coordinate as Zl, fluid velocity of linear theory 
can be expressed as 

U l  --- - -C  �9 C �9 COS ( k x  - ~d t )  c o s h  k ( z  I - ? ? ~ d 2 ) c s c  h ( ?T tkd2)  (10) 

u2 = c- c.  cos (kx - wt) cosh k (Zl -~- d2 )  c s c  h (kd2) (11) 

if it is deep water, 

I t  1 : - - C  " C "  e - k z l  c o s  ( k x  - (Mr) (12) 

u 2  = c . c .  e k z l  cos (kx -0:t)  (13) 

Therefore, if water depth is much larger than L, Ul and u2 will decrease exponentially from the 
interface upward and downward. Generally, water depth is much smaller than internal wavelength, 
which is the reason U l and u2 being almost uniform in the z direction. 
For the internal solitary waves, when r > V/Pl/p2, the wave is upward convex, namely polarity being 

positive, while r < V/Pl/p2, wave is downward concave with polarity being negative. If we let H=9Om, 
dl--70m, d2-290m, the solitary wave width is W - 2  000m. The computed phase speed can be got as 
c=l.917m/s. If the time wave passing one width distance is noted as T -- W/c-lO43.1s.  The fluid 
velocity profiles at different time are given as the following Figure 3. 
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Figure 3: The maximal fluid velocity profiles of internal 
solitary wave when tequals to different values 
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Figure 4: The maximal fluid velocity profiles of second or- 
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We may find on the two sides of the pycnocline, the orientations of Ul and u2 are always opposite to each 
other and almost keep consistent in its layer for any given phase angle. Fluid vertical component w is 
much smaller the u for the long internal waves, e.g., u1/w1=l.l18coth(O.OO9x/[l.O-4.0(O.25+O.OO5z)]) 
when d1=50, d2=200, L=6000 and a=0.003. It's easy to know that lWll lull except when x=0.0. 
In Fig. 3, dl/d2 < 1.0, so that the wave polarity is negative. We may notice that for any given phase 
angle, ul is always larger than u2, and the orientation of phase speed c is the same with particle 
horizontal component. During the whole time of passing one wave width, Ul holds its orientation, and 
U 1 > U 2 keeps. When wave polarity changes, the orientation of U 1 will be inverse to c, and U 1 < U 2 will 
hold. In the real ocean environment, the negative solitary waves are in the majority and the water 
depth ratio is usually smaller than 1.0. 
Water density difference ratio a in ocean circumstance is usually less than 1.0%. According to linear 
periodic interfacial wave dispersion relation, when cr increases, the wave phase speed c will increase 
too. For given water and wave conditions, the particle velocities (u) will increase too. In Figure 3, let 
kd2 = 7r, r=0.2, and L=5 000m, we will notice that with the increase of a, fluid velocity components 
Ul, u2increase evidently even when a vary from 0.001 to 0.003. As a result of phase speed change, the 
wave period T will decrease accordingly by showing a larger wave frequency. 
Besides water depth ratio r, water densities, there are more factors such as harmonic of higher order 
waves, wavelength L, wave height H, the selected wave theory and phase angle 0 are important to 
affect the structure of wave velocity fields. According to the dispersion relation, for given water and 
wave condition, the larger L and H, the stronger the velocity field will be. For the effects of water 
depth ratio m and wave polarity, it may be not right that the higher order theory will induce stronger 
velocity field than lower order theory. 

C O N C L U S I O N S  

For any given phase angle, the velocities in the two layers are always of opposite signs, that render the 
structure across the pycnocline subject to a shear force. Although, Ul and u2 decrease exponentially 
from the interface upward and downward, they seems to be uniform in relatively shallow layers. 
Furthermore, the polarity of interfacial waves change with depth ratior (depending on wheather it is 
larger or smaller than critical value re). Finally, Stokes and solitary waves display periodic or pulse 
type behavior. 
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