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Abstract In this paper, the problem of a crack perpendicu-
lar to and terminating at an interface in bimaterial structure
with finite boundaries is investigated. The dislocation simu-
lation method and boundary collocation approach are used
to derive and solve the basic equations. Two kinds of load-
ing form are considered when the crack lies in a softer or
a stiffer material, one is an ideal loading and the other one
fits to the practical experiment loading. Complete solutions
of the stress field including the T stress are obtained as well
as the stress intensity factors. Influences of T stress on the
stress field ahead of the crack tip are studied. Finite boundary
effects on the stress intensity factors are emphasized. Com-
parisons with the problem presented by Chen et al. (Int. J.
Solids and Structure, 2003, 40, 2731–2755) are discussed
also.

Keywords Bimaterial structure · Finite boundary · Crack ·
Stress intensity factor · T stress

1 Introduction

The influence of cracks is very important in advanced materi-
als, such as fiber or particle reinforced composites, metal and
ceramics interfaces, laminated ceramics, packaging materi-
als and so on. Interface failures are common features in those
materials and thin films. The design process of those com-
ponents requires a better understanding of the failure mech-
anisms. One of the important tasks is to study in detail the
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fracture characteristics of cracks along or perpendicular to
the interface.

Many researchers have investigated the interaction
between an interface and a crack with various methods. Zak
and Williams [1] used the eigenfunction expansion method
to analyze the stress singularity at the tip of a crack, perpen-
dicular to and terminating at the interface. Cook and Erdogan
[2] used the Mellin transform method to derive the governing
equation of finite cracks perpendicular to an interface and ob-
tained the stress intensity factors. Erdogan and Biricikoglu
[3] solved the problem of two bounded half planes with a
crack going through the interface. Bogy [4] investigated the
stress singularity of an infinite crack terminated at the inter-
face with an arbitrary angle. Wang and Chen [5] used photo-
elasticity to determine the stress distribution and the stress
intensity of a crack perpendicular to the interface. Wang
and Stahle [6,7] used the dislocation simulation approach
to investigate a crack perpendicular to and terminating at the
bimaterial interface. Lin and Mar [8] presented a finite ele-
ment analysis of the stress intensity factors for cracks perpen-
dicular to the bimaterial interface. Meguid et al. [9] proposed
a novel finite element to analyze edge cracks in a finite elas-
tic homogeneous body and a finite crack perpendicular to
the interface in an infinite bimaterial solid. Chen [10] used
the body force to determine the stress intensity factors for a
crack normal to and terminating at the bimaterial interface.
Suo [11] analyzed the interaction problem of an edge disloca-
tion with a bimaterial interface. Stahle et al. [12] investigated
a crack growing towards to a bimaterial interface, where they
carried out an experiment work and a finite element simula-
tion. Recently, Leblond et al. [13] studied a crack kinking
from an initially closed crack and Chen [14] investigated the
T stress in plane elasticity crack problems.

The above studies are almost all about crack and inter-
face problems in an infinite body. Few analytical solutions
about interaction of a crack and an interface in a finite solid
are available. In engineering applications, one has to deal
with bodies with finite scales, especially the interaction of a
crack and an interface in a bimaterial solid or a packaging.
In 2003, Chen et al. [15] have studied the problem of a crack
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perpendicular to the bimaterial interface in a finite solid but
the crack tip does not reach the interface and the distance
between them is b, in which the stress distributions ahead
of the crack tip were shown and the stress intensity factors
were given also. It was found that the finite boundaries had
significant influences on the stress distributions and the stress
intensity factors.

Is the present problem a special case of that investigated
in [15], i.e. b = 0? Are the stress distribution characteristics
the same as those found in [15] or will the stress intensity fac-
tors in the present problem be derived as a special example
of that in [15]? What about the influences of the finite bound-
ary on the stress distributions and the stress intensity factors
of this problem if it is not a special case of that? All these
questions need answers. This is the reason for investigating
the present problem.

The dislocation simulation method and the boundary
collocation approach are used in this paper. The dislocation
density is expressed as a series of the first Chebyshev poly-
nominal with a set of unknown coefficients plus a special
term. Two additional holomorphic functions are introduced
in order to satisfy the outside boundary conditions. Com-
bined with the boundary collocation method, the governing
equations are solved numerically. The complete solution of
the stress field and the stress intensity factors are obtained.
Finite boundary effects are considered mainly. Finally, com-
parisons with the problem investigated in [15] are discussed.

2 Basic Equations

2.1 Complex potentials

In this section, basic equations are given for a finite crack
perpendicular to the interface in an elastic body with finite
boundaries. Stresses and displacements can be expressed by
two Muskhelishivili’s potentials:





σx + σy = 4Re {�(z)}
σy − iτxy = �(z) + �(z̄) + (z − z̄)�′(z)
2µ(ux + iuy) = κφ(z) − ω(z̄) − (z − z̄)�(z)

(1)

where �(z) = φ′(z), �(z) = ω′(z).
The complex potentials for an edge dislocation at z = s

in an infinite elastic solid can be expressed as follows:

�0(z) = B

z − s
(2)

�0(z) = B

z − s̄
+ B̄

s − s̄

(z − s̄)2
(3)

where B = µ

πi(κ+1)
(bx + iby) and bx and by are the x and

y components of the Burgers vector of the dislocation, κ =
3 − 4ν for the plane strain case and κ = 3−ν

1+ν
for the plane

stress case, ν and µ are Poisson’s ratio and shear modulus,
respectively.

Considering the interaction of an edge dislocation with
a bimaterial interface, the traction and displacement conti-
nuity conditions at the interface, one can get the complex
potentials for the problem of a bimaterial structure with

finite boundaries, which are similar to those for the infinite
boundary problem [11]

�(z) =
{
(1 + 
1)�0(z) + (1 + 
1)F (z) + λ1G(z) z ∈ S1

�0(z) + 
2�0(z) + λ2G(z) + F(z) z ∈ S2
(4)

�(z) =
{
�0(z) + 
1�0(z) + 
1F(z) + λ1G(z) z ∈ S1

(1 + 
2)�0(z) + λ2G(z) z ∈ S2
(5)

where S1 denotes the region above the interface and S2 is the
region below the interface.

λ1 = 1

1 − β
λ2 = 1

1 + β
(6)


1 = α + β

1 − β

2 = α − β

1 + β
(7)

and α and β are two Dundurs’ parameters

α = �(κ2 + 1) − (κ1 + 1)

�(κ2 + 1) + (κ1 + 1)
β = �(κ2 − 1) − (κ1 − 1)

�(κ2 + 1) + (κ1 + 1)

(8)

� = µ1/µ2 (9)

The two holomorphic functions F , G are introduced to
describe the finite boundary effects and can be expressed
as follows,

F(z) =
∞∑

n=1

nbnz
n−1 G(z) =

∞∑

n=1

ncnz
n−1 (10)

With an assumption that the crack is a continuous distribution
of dislocations and lies in the lower region, we have

�0(z) = µ2

πi(1 + κ2)

∫ a

0

(bx + iby)

z + it
dt (11)

�0(z) = µ2

πi(1 + κ2)

∫ a

0

(bx + iby)

z − it
dt

+ 2µ2

π(1 + κ2)

∫ a

0

t (bx − iby)

(z − it)2
dt (12)

where a is the whole crack length.
According to [6,7], we introduce a new complex variable

z∗ and a new function I (z∗)

z∗ = iz I (z∗) = 1

π

∫ a

0

bx + iby

z∗ − t
dt (13)

Using the following variable transformations:

z∗ = a

2
(1 + ς) t = a

2
(1 + ξ) (14)

The function I (z∗) can be represented as

I (z∗) = 1

π

∫ 1

−1

bx + iby

ς − ξ
dξ (15)

With the assumption that the dislocation density can be
expanded as a series of the first Chebyshev polynomial plus
a special term, which creates a desired stress singularity at
the crack tip B as shown in Fig. 1, we can write

bx + iby = 1
√

1 − ξ 2

∞∑

m=0

αmTm(ξ) + β0

(
1 − ξ

1 + ξ

)λ0

(16)



58 S. H. Chen et al.

Fig. 1 Scheme of a finite crack perpendicular to and terminating at a bimaterial interface in a structure with finite boundaries

where Tm(ξ) is the first Chebyshev polynomial and αm (m =
0, · · · · · · , ∞), β0 are unknown coefficients.

Tm(ξ) = cos mθ ξ = cos θ (17)

and λ0 is the dominating singularity, which has relation with
the two Dundurs’ parameters α, β and can be obtained from
the following equation,

2(1 − λ0)
2(α − β)(1 − β) − α − β2 − (1 − β2)

× cos[(1 − λ0)π ] = 0 (18)

The opening displacements on the crack surface can be
obtained as

δx + iδy =
∫ t

0
(bx + iby)dt

=
∫ ξ

−1

[
1

√
1 − ξ 2

∞∑

m=0

αmTm(ξ) + β0

(
1 − ξ

1 + ξ

)λ0
]

×dξa0

= a0α0(π − θ) − a0

∞∑

m=1

αm

sin mθ

m

+
∫ ξ

−1
a0β0

(
1 − ξ

1 + ξ

)λ0

dξ (19)

where a0 is a half of the crack length. We have

a0 = a/2 ξ = cos θ = (t − a0)/a0 (20)

At the crack tip A as shown in Fig. 1, the opening displace-
ment should be zero and we have t = a, θ = 0, ξ = 1. Then
the following equation can be obtained

α0 + β0
2λ0

sin πλ0
= 0 (21)

The above equation (21) establishes the relation between α0
and β0.

Using the following equation, which can be found in [16],

1

π

∫ 1

−1

Tm(x)√
1 − x2(z − x)

dx = 1√
z2 − 1

[
z −

√
z2 − 1

]m

(22)

we obtain

I (z∗) = 1
√

ς2 − 1

∞∑

m=0

αm

[
ς −

√
ς2 − 1

]m

− β0

sin πλ0

[(
ς − 1

ς + 1

)λ0

− 1

]

(23)

ς = z∗

a0
− 1 (24)

2.2 Stress jump across the interface

We know that the displacements should be continuous across
the interface and the strain εx should be continuous across
the interface also. It follows that

(εx)1 = (εx)2 on the interface (25)

For the plane strain problem, the above equation can be writ-
ten as

(σx)1 = (1 + α)

(1 − α)
(σx)2 + 2σy

1 − α
(2β − α)

on the interface (26)

We assume that the external loading satisfies equation (26),
so

(σ 0
x )1 = (1 + α)

(1 − α)
(σ 0

x )2 + 2σ 0
y

1 − α
(2β − α) (27)

where (σ 0
x )1 and (σ 0

x )2 are the external loading acted on the
outside vertical boundaries of materials 1 and 2 in the direc-
tion of x axis, respectively. σ 0

y is the external loading acted



Finite boundary effects in problem of a crack perpendicular to and terminating at a bimaterial interface 59

on the upper and lower boundaries in the direction of y axis.
It should be noted that if this assumption is not adopted,
the energy method can be used to analyze this problem but
the numerical calculation can be very complex. Using this
assumption, the whole field can be looked as a homogeneous
field without a crack plus a perturbation field and the bound-
ary collocation method will have high precision for this kind
of field.

In the present paper, two kinds of loading form are con-
sidered and we call them case I and case II.

2.3 Governing equations for case I

The problem of case I is shown in Fig.1, in which (σ 0
x )1 is

loaded on the right and left boundaries of the upper region
S1 and (σ 0

x )2 is loaded on the right and left boundaries of
the lower region S2. In this case, σ 0

y = 0, then the relation
between (σ 0

x )1 and (σ 0
x )2 becomes

(σ 0
x )1 = (1 + α)

(1 − α)
(σ 0

x )2 (28)

The crack lies in the lower region S2 and the crack length
is 2a0. The crack tip point B is terminating at the interface.
The width of the structure is 2w and the height of the upper
region is h1 and that of the lower region is h2. Both the upper
and lower materials are elastic.

Superposition scheme is used. The first solution is for the
bimaterial without crack subject to a uniform external load-
ing on the vertical outside boundaries, which can be written
as,

σx = (σ 0
x )1 σy = σ 0

y = 0 τxy = 0

in material 1 (29)

σx = (σ 0
x )2 σy = σ 0

y = 0 τxy = 0

in material 2 (30)

The second solution is for a crack perpendicular to and termi-
nating at the interface with a uniform traction prescribed on
the crack faces and traction free on the outside boundaries.
So we have the following equation for the crack face,

σx + iτxy = �(z) + 2�(z) − �(z̄) − (z − z̄)�′(z)
= −σ z = ±0 + iy, −a < y < 0 (31)

where

σ = (σ 0
x )2 (32)

Due to the symmetry, by = 0, we obtain

�0(z) = µ2

(κ2 + 1)
I (iz) (33)

�0(z) = µ2

(κ2 + 1)
I (−iz) − 2µ2

(κ2 + 1)
izI ′(−iz) (34)

Substituting equations (4, 5, 10, 33, 34) into (31), we obtain
the following traction equation on the crack face,

µ2

κ2 + 1

{

2I+(t) + 2t
[
I

′+(t) − I
′−(t)

]
+ I+(t) − I−(t)

+(3
2−
1)I (−t)−12
2tI
′(−t)+4t2
2I

′′(−t)

}

+
∞∑

n=1

n(bn + λ2cn)z
n−1 + 2

∞∑

n=1

n(b̄n + λ2c̄n)z̄
n−1

−λ1

∞∑

n=1

ncnz̄
n−1 − 
1

∞∑

n=1

nbnz̄
n−1

+2
∞∑

n=1

n(n − 1)(b̄n + λ2c̄n)z̄
n−1 =−σ (35)

where 0 < t < a.
The governing equation for the present problem contains

a set of unknown coefficients αm (m = 0, · · · ,∞), β0, bn

and cn (n = 1, · · · ,∞). It is difficult to solve the governing
equations analytically. Boundary collocation method will be
used and resultant forces on outside boundaries are used as
the boundary conditions. Point O is assumed to be fixed at
all times as shown in Fig. 1, a point C∗ is permitted to move
along the outside edge. Boundary conditions can be written
as follows:

C∗ ∈ OCF : X + iY = 0 (36)

C∗ ∈ ODE : X + iY = 0 (37)

The resultant forces from O to C∗ can be expressed as

X(z) + iY (z) = −i
[
φ(z) + ω(z̄) + (z − z̄)�(z)

]C∗

(38)

During the solving process, the crack surface will be divided
into M elements and the nodal points are given by the fol-
lowing expression:

tk = a0 + a0 cos θk θk = kπ

(M + 1)
k = 1, 2, . . . , M

(39)

The i-th outer edge of the rectangular plate is divided regu-
larly into Ni (i = 1, 2, 3, 4) segments.

2.4 Governing equations for case II

The problem of case II with different loading form from case
I fits to the practical experiment loading and a homogeneous
stress (σ 0

x )1 = (σ 0
x )2 = σ is loaded on the left and right

edges, on the upper and lower edges is a homogeneous stress
loading σ 0

y , where equation (27) is still satisfied. The crack
face is traction free. The governing equation on the crack face
for case II is
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µ2

κ2 + 1

{
2I+(t) + 2t

[
I

′+(t) − I
′−(t)

]
+ I+(t) − I−(t)

+(3
2 − 
1)I (−t) − 12
2tI
′(−t) + 4t2
2I

′′(−t)
}

+
∞∑

n=1

n(bn + λ2cn)z
n−1 + 2

∞∑

n=1

n(b̄n + λ2c̄n)z̄
n−1

−λ1

∞∑

n=1

ncnz̄
n−1 − 
1

∞∑

n=1

nbnz̄
n−1

+2
∞∑

n=1

n(n − 1)(b̄n + λ2c̄n)z̄
n−1 = 0 (40)

where 0 < t < a.
For case II, point O is assumed to be fixed at all times, a

point C∗ is permitted to move along the outside edge, which
is similar to case I. Boundary conditions are written in terms
of the resultant forces from O to C∗ as follows:
C∗ ∈ OC : X + iY = σy

C∗ ∈ CF : X + iY = −σh2 + iσ 0
y (w − x)

C∗ ∈ OD : X + iY = σy

C∗ ∈ DE : X + iY = σh1 + iσ 0
y (w − x)

(41)

Boundary collocation method will also be used to solve the
governing equation (40) for case II.

2.5 Stress Intensity factor

The stress components ahead of the crack tip B can be
expressed as follows

σx = µ2

κ2 + 1

[
(2 + 3
1 − 
2)I (t) + 2(
1 − 
2)tI

′(t)
]

+
∞∑

n=1

n[(1 + 
1)bn + λ1cn]zn−1

+2
∞∑

n=1

n[(1 + 
1)b̄n + λ1c̄n)z̄
n−1

−λ2

∞∑

n=1

ncnz̄
n−1

+2
∞∑

n=1

n(n − 1)[(1 + 
1)b̄n + λ1c̄n]z̄n−1 (42)

and

σy = µ2

κ2 + 1

[
(2 + 
2 + 
1)I (t) − 2(
1 − 
2)tI

′(t)
]

+
∞∑

n=1

3(1 + 
1)nbnz
n−1 +

∞∑

n=1

3λ1ncnz
n−1

−2
∞∑

n=1

n[(1 + 
1)b̄n + λ1c̄n)z̄
n−1 + λ2

∞∑

n=1

ncnz̄
n−1

−2
∞∑

n=1

n(n − 1)[(1 + 
1)b̄n + λ1c̄n]z̄n−1 (43)

On the right side of Equations (42) and (43), the function I (t)
can be expanded as

I (t) = 1
√

ξ 2 − 1

∞∑

m=0,1

αm

[
ξ −

√
ξ 2 − 1

]m

− β0

sin πλ0

[(
ξ − 1

ξ + 1

)λ0

− 1

]

(44)

If λ0 > 0.5, the strongest stress singularity is produced by
the special term, which is related to the parameter β0. The
stresses near the crack tip B can be represented as

σij = QI

(2πr)λ0
fij (θ) (45)

where QI is the generalized stress intensity factor for this
interface problem. One can obtain

QI = lim
r→0

(2πr)λ0σx

= − β0µ2

(k2 + 1) sin πλ0
(2πa0)

λ0 2λ0 [(2 + 3
1 − 
2)

−2(
1 − 
2)λ0] (46)

The dominating singular field (Q field) can be obtained from
Equations (42) and (43) as

σQ
x = − β0µ2

(k2 + 1) sin πλ0
(2πa0)

λ0 2λ0

×[(2 + 3
1 − 
2) − 2(
1 − 
2)λ0](2πr)−λ0 (47)

and

σQ
y = − β0µ2

(k2 + 1) sin πλ0
(2πa0)

λ0 2λ0

×[(2 + 
1 + 
2) + 2(
1 − 
2)λ0](2πr)−λ0 (48)

The normal stress ahead of the crack tip B can be rewritten
as

σx = QI

(2πr)λ0
fx(θ) + σ ∗

x (49)

For stress σ ∗
x , we have

lim
r→0

√
2πrσ ∗

x = − 2µ2

(k2 + 1)
(1 + 
1)

√
πa0

×
∞∑

m=0

(−1)mαm (50)

Obviously, singularity of 1/2 should be excluded. It follows
that

∞∑

m=0

(−1)mαm = 0 (51)
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Fig. 2 Normalized stress distributions ahead of the crack tip B versus r/a0 for a finite epoxy-boron bimaterial structure with case I loading form

2.6 T stress

The T stress is the second term of the Williams series. Linear
elastic fracture mechanics is usually based on the assumption
that the stress field near the crack tip is K field. However,
much work has shown that the stress intensity factor alone
might not suffice to characterize the crack tip fields. Tx is the
x-component of the T stresses. For case I, Txand Ty stresses
can be obtained as follows,

Tx = µ2

κ2 + 1
(2 + 3
1 − 
2)

[ ∞∑

m=0

(−1)mmαm + β0

sin πλ0

]

+3(1 + 
1)b1 + (3λ1 − λ2)c1 + 1 + α

1 − α
σ (52)

Ty = µ2

κ2 + 1
(2 + 
1 + 
2)

[ ∞∑

m=0

(−1)mmαm + β0

sin πλ0

]

+(1 + 
1)b1 + (λ1 + λ2)c1 (53)

For case II, Tx and Ty stresses are

Tx = µ2

κ2 + 1
(2 + 3
1 − 
2)

[ ∞∑

m=0

(−1)mmαm + β0

sin πλ0

]

+3(1 + 
1)b1 + (3λ1 − λ2)c1 (54)

Ty = µ2

κ2 + 1
(2 + 
1 + 
2)

[ ∞∑

m=0

(−1)mmαm + β0

sin πλ0

]

+(1 + 
1)b1 + (λ1 + λ2)c1 (55)

3 Numerical Calculation Results

Boundary collocation method is used in this section. In order
to verify our numerical program, the problem with an infi-
nite boundary, i.e., bn = cn = 0, is calculated first, with the
loading form the same as that in case I. A typical example for
epoxy-boron bimaterial in the case of plane strain was tested.
The coefficient αm approaches to zero rapidly as m increases.
All the calculation results for an infinite bimaterial problem
are consistent with those given by [7].

3.1 The results for case I

Figure 2 shows the stress distributions ahead of the crack
tip B versus the normalized distance, r/a0, for epoxy-boron
bimaterial structure. The Poisson’s ratio of epoxy is ν1 =
0.35 and that of boron is ν2 = 0.3. Shear modulus ratio of
the two materials is µ1/µ2 = 0.00722, which means that the
crack lies in the stiff material. The normalized parameters
are w/a0 = 5.0, h1/a0 = h2/a0 = 5.0. From Fig. 2, we see
that the Q field can characterize the normal stress field in x
direction very well in the region of 0 < r/a0 < 1.0 and the
Q field can describe adequately the normal stress field in y
direction in the region of 0 < r/a0 < 0.05. Combining the
results of the infinite boundary problem, one can find that the
Q field is consistent with the normal stress field in x direction
in the region of 0 < r/a0 < 1.0 and the Q field can describe
the normal stress field in y direction in a smaller region of
0 < r/a0 < 0.05 either for an infinite boundary or for a finite
boundary problem.

When the crack lies in a soft material (crack is always
assumed in the lower material), we give the corresponding
normalized stress distributions versus the normalized dis-
tance r/a0, for a sample with the same boundary scale, i.e.
w/a0 = 5.0, h1/a0 = h2/a0 = 5.0 as those used in Fig.
2, but one should note now that the upper material is stiffer
than the lower material. Fig. 3 shows the normalized stress
distributions for boron-epoxy and the shear modulus ratio is
µ1/µ2 = 138.46. From Fig. 3 one can see that the Q field is
remarkably deviated from the normal stress σx and the Q field
plus Tx stress field gives a good prediction for normal stress
σx in the region of 0 < r/a0 < 1.0. It clearly shows that Tx

stress has a tremendous contribution to the normal stress σx .
The Q field plus the Ty stress also gives a good prediction for
stress σy in the region of 0 < r/a0 < 0.4. The phenomena
found in the infinite structure can also be found in the finite
boundary sample, only the values of stresses near the crack
tip are different in the two problems.

Table 1 shows the normalized stress intensity factors√
2QI/σ(2πa0)

λ0 versus different shear modulus ratios, for
several samples with different boundary lengths. The crack
lies in material 2 and material 2 is assumed to be softer than
material 1 in this case. The other parameters are ν1 = 0.3,
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Fig. 3 Normalized stress distributions ahead of the crack tip B versus r/a0 for a finite boron-epoxy bimaterial structure with case I loading form

Table 1
√

2QI/σ(2πa0)
λ0 for case I and crack lies in a soft material

2 (υ1 = 0.3, υ2 = 0.35)

µ1/µ2 1000.0 500.0 250.0 100.0 50.0 10.0 5.0 1.0

w/a0 = 5 2.713 2.711 2.707 2.691 2.652 2.285 1.940 1.050
h1/a0 = 5
h2/a0 = 5
w/a0 = 10 2.833 2.829 2.822 2.796 2.745 2.324 1.945 0.963
h1/a0 = 10
h2/a0 = 10
w/a0 = 15 2.914 2.910 2.899 2.866 2.806 2.350 1.960 0.940
h1/a0 = 15
h2/a0 = 15
Infinite solid 3.154 3.145 3.127 3.072 2.985 2.444 2.008 0.907

Table 2
√

2QI/σ(2πa0)
λ0 for case I and crack lies in a stiff material

2 (υ1 = 0.35, υ2 = 0.3)

µ1/µ2 0.001 0.002 0.004 0.01 0.02 0.1 0.2 1.0

w/a0 = 5 0.0062 0.012 0.024 0.055 0.103 0.370 0.573 1.27
h1/a0 = 5
h2/a0 = 5
w/a0 = 10 0.0035 0.0070 0.013 0.032 0.061 0.248 0.421 1.17
h1/a0 = 10
h2/a0 = 10
w/a0 = 15 0.0032 0.0062 0.012 0.029 0.055 0.225 0.388 1.145
h1/a0 = 15
h2/a0 = 15
Infinite solid 0.0028 0.0056 0.011 0.026 0.049 0.199 0.348 1.10

ν2 = 0.35, σ = (σ 0
x )2. From Table 1, one can see that, for

the same shear modulus ratio and µ1/µ2 �= 1, the normalized
stress intensity factor at crack tip B will decrease when the
size of the sample decreases. The normalized stress intensity
factor is the largest in the infinite-boundary problem. With
the same sample size, the stress intensity factor at B will in-
crease when the shear modulus ratio µ1/µ2 increases. But
one should note, in this case, if we use (σ 0

x )1 to normalize
the stress intensity, all the phenomena will be inversed.

Table 2 shows the normalized stress intensity factor√
2QI/σ(2πa0)

λ0 versus different shear modulus ratios for
four samples with different boundary lengths and, here, the
crack lies in material 2 and material 2 is assumed to be
stiffer than material 1 in this case. The other parameters are
ν1 = 0.35, ν2 = 0.3, σ = (σ 0

x )2. From table 2, one can

also see that, for the same material pairs, the stress intensity
factor will increase when the size of the sample decreases.
The stress intensity factor is the smallest for the infinite prob-
lems. When the sample size is fixed, the stress intensity fac-
tor will increase as the shear modulus ratio µ1/µ2 increases.
Also, if we use (σ 0

x )1 to normalize the stress intensity, all the
phenomena will be inversed.

3.2 The results for case II

In this sub-Sect., only the loading form is different from that
in sub-Sect., 3.1, that is, (σ 0

x )1 = (σ 0
x )2 = σ and σ 0

y does not
vanish. The relation between σ and σ 0

y satisfies Eq. (27).
Figure 4 shows the stress distributions ahead of the crack

tip B versus the normalized distance, r/a0, for epoxy-boron,
which means that the crack lies in a stiff material. The nor-
malized parameters are w/a0 = 5.0, h1/a0 = h2/a0 = 5.0.
From Fig. 4, one can see that the Q field can not describe
adequately the normal stress field in x direction any more,
and both Q field and Tx stress should be considered in order
to be consistent with the normal stress field σx and the region
is 0 < r/a0 < 1.0. The Q field also can not describe the nor-
mal stress field in y direction and the Q field plus Ty stress
will be consistent well with the normal stress field σy in the
region of 0 < r/a0 < 0.05.

When the crack lies in a soft material, we plot the rela-
tion curves of the corresponding normalized stress distribu-
tions versus the normalized distance r/a0, for w/a0 = 5.0,
h1/a0 = h2/a0 = 5.0. Fig. 5 shows the normalized stress
distributions for boron-epoxy. In Fig. 5, one can see that the
Q field is remarkably deviated from the normal stress σx and
the Q field plus Tx stress field gives a good prediction for
normal stress σx in the region of 0 < r/a0 < 0.2. The Q
field gives a good prediction for stress σy in the region of
0 < r/a0 < 0.4.

Table 3 shows the normalized stress intensity factors√
2QI/σ(2πa0)

λ0 versus different shear modulus ratios for
different sample scales. The crack lies in a soft material 2
and ν1 = 0.3, ν2 = 0.35. One can see from table 3 that,
for the same shear modulus ratio and µ1/µ2 �= 1, the nor-
malized stress intensity factor will decrease when the size of
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Fig. 4 Normalized stress distributions ahead of the crack tip B versus r/a0 for a finite epoxy-boron bimaterial structure with case II loading form

Fig. 5 Normalized stress distributions ahead of the crack tip B versus r/a0 for a finite boron-epoxy bimaterial structure with case II loading form

Table 3
√

2QI/σ(2πa0)
λ0 for case II and crack lies in a soft material

2 (υ1 = 0.3, υ2 = 0.35)

µ1/µ2 1000.0 500.0 250.0 100.0 50.0 10.0 5.0 1.0

w/a0 = 5 2.713 2.711 2.700 2.690 2.650 2.280 1.940 1.050
h1/a0 = 5
h2/a0 = 5
w/a0 = 10 2.832 2.830 2.822 2.796 2.745 2.323 1.945 0.963
h1/a0 = 10
h2/a0 = 10
w/a0 = 15 2.914 2.909 2.900 2.866 2.806 2.353 1.958 0.940
h1/a0 = 15
h2/a0 = 15

the sample decreases. For samples with the same scales, the
stress intensity factor will increase when the shear modulus
ratio of the stiff material to the soft material increases.

Table 4 shows the normalized stress intensity factor√
2QI/σ(2πa0)

λ0 versus different shear modulus ratios for
different sample scales. The crack lies in a stiff material 2 and
ν1 = 0.35, ν2 = 0.3. One can also see that, for the same shear
modulus ratio, the stress intensity factor will increase when
the size of a sample decreases. The stress intensity factor will
increase when the shear modulus ratio of the soft material to
the stiff material increases for the same sample scale.

Comparing table 1 and table3, table 2 and table 4, one
can see that the normalized stress intensity has no relation
with the two kinds of loading forms.

Table 4
√

2QI/σ(2πa0)
λ0 for case II and crack lies in a stiff material

2 (υ1 = 0.35, υ2 = 0.3)

µ1/µ2 0.001 0.002 0.004 0.01 0.02 0.1 0.2 1.0

w/a0 = 5 0.0062 0.0122 0.0236 0.0553 0.103 0.370 0.573 1.273
h1/a0 = 5
h2/a0 = 5
w/a0 = 10 0.0035 0.0069 0.0136 0.0324 0.0615 0.248 0.421 1.170
h1/a0 = 10
h2/a0 = 10
w/a0 = 15 0.0032 0.0062 0.0121 0.0289 0.055 0.225 0.388 1.145
h1/a0 = 15
h2/a0 = 15

From table 3 and 4, one will see, for the same sample size
and µ1/µ2 = 1, the Poisson’s ratio has influence on the stress
intensity factor. This conclusion can also be made when we
compare table 1 and table 2 for the case of µ1/µ2 = 1.

4 Comparisons with the problem in [15]

In [15], the problem of a crack perpendicular to a bimaterial
interface in a finite solid was investigated. In that problem,
the crack tip does not reach the bimaterial interface, i.e., all
the crack lies in one region, the singularity at the crack tip is
always −1

/
2 and we call the elastic field as K field. While

in the present paper, the crack perpendicular to and terminat-
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ing at the bimaterial interface, the singularity at the crack tip
is −λ0, which is related with the two Dundur’s parameters α
and β. For different material pairs, the singularity varies, so
we call the elastic filed as Q field.

The problem in the present paper looks like a special case
of that in [15], however it is not true. If we take b = 0 in [15],
the deduced results will be wrong, from where one can find
the difference between the two kinds of problems. This con-
clusion is consistent with that in [9], in which the authors used
finite element method and found that the results for b = 0
are not consistent with the results for b → 0.

Since the crack lies in one region and does not reach
the bimaterial interface in [15], the interesting domain of the
stress distributions near the crack tip is the same as where
the crack lies. While in the present paper, the crack tip lies at
the bimaterial interface, the corresponding stresses that are
significant for our research are the stresses in the other region
comparing to the crack position.

In a whole, we can not regard the present problem as
a special case of that in [15]. The present problem is often
met in engineering field, which is solved analytically in the
present paper.

5 Conclusions

In the present paper, the problem of a finite crack perpen-
dicular to and terminating at the finite bimaterial interface is
investigated analytically using the dislocation simulation and
boundary collocation approaches. Two kinds of loading form
are considered, one is an ideal loading and the other adapts
to the practical experiment loading.

Different loading forms and the shear modulus ratio will
influence the effective regions, in which the asymptotic Q
field or the asymptotic Q field plus the T field could repre-
sent the stress field near the crack tip. Details are as follows.

In an ideal loading case (case I), when the crack lies in a
stiff material, the normal stress σx ahead of the crack tip B, is
characterized by the Q field in the region of 0 < r/a0 < 1.0
and the normal stress σy , which is parallel to the crack surface,
is dominated by the Q field in the region of 0 < r/a0 < 0.05.

In the ideal loading case (case I), when the crack lies in a
soft material, the normal stress σx and σy are dominated by
the Q field plus the T stress in the region of 0 < r/a0 < 1.0
and 0 < r/a0 < 0.4.

For case II, when the crack lies in a stiff material, the Q
fields deviate remarkably from the normal stress σx and σy ,
which are dominated by the Q field plus the T stress in the
region of 0 < r/a0 < 1.0 and 0 < r/a0 < 0.05, respectively.

For case II, when the crack lies in a soft material, the
normal stress σx is dominated by the Q field plus the T stress
in the region of 0 < r/a0 < 0.2 and the normal stress σy can
be described by the Q field in the region of 0 < r/a0 < 0.4.

In both case I and case II, when the crack lies in a stiff
material, with a fixed shear modulus ratio but µ1/µ2 �=
1, the normalized stress intensity factor

√
2QI/σ(2πa0)

λ0 at
the crack tip lying on the interface (point B) will decrease as
the size of the sample decreases. When the crack lies in a soft
material, with a fixed shear modulus ratio, the stress intensity
factor will increase as the size of the sample decreases.

In both case I and case II, when the crack lies in a soft
material, with a fixed sample scale, the normalized stress
intensity factor

√
2QI/σ(2πa0)

λ0 at crack tip (point B) will
increase as the ratio of the shear modulus of the stiff material
to that of the soft material increases. When the crack lies in a
stiff material, with a fixed sample scale, the normalized stress
intensity factor will increase as the ratio of the shear modulus
of the soft material to the stiff material increases.

The two loading forms in the present paper do not influ-
ence the normalized stress intensity factor

√
2QI/σ(2πa0)

λ0 ,
but Poisson’s ratio does.
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