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Statistics of Dissipation and Enstrophy Induced by Localized Vortices
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The ratios of enstrophy and dissipation moments induced by localized vorticity are inferred to be
finite. It follows that the scaling exponents for locally averaged dissipation and enstrophy are equal.
However, enstrophy and dissipation exponents measured over finite ranges of scales may be different.
The cylindrical vortex profile that yields maximal moment ratios is determined. The moment ratios for
cylindrical vortices are used to interpret differences in scale dependence of enstrophy and dissipation
previously found in numerical simulations. [S0031-9007(98)07782-5]

PACS numbers: 47.27.Gs, 03.40.Kf, 05.70.Ln, 47.32.Cc

Recent papers on turbulence structure have raised A finite region within which vorticity is confined neces-
the possibility of different scaling exponents for local sarily exhibits strain and dissipation. Continuity of vortic-
averages of enstrophy density and dissipation density, dty requires that the mean vorticity over the region vanish.
for longitudinal and transverse structure functions [1-8].An elementary identity, given below, states that the
Siggia [9], Kerr [10], and Meneveeat al. [11] have noted changes of vorticity over the region are measured by the
that enstrophy is more intermittent than dissipation. Morechanges of strain within the region. From this we infer
recently, Cheret al. [6] used direct numerical simulation that the enstrophy-dissipation moment ratios calculated
(DNS) data to calculate empirical scalings of enstrophyover the volume are finite. Induced dissipation outside the
and dissipation. They found that the exponents for locallyorticity-containing volume decreases these finite ratios
averaged enstrophy were significantly smaller than thos# the averaging volume is extended into the irrotational
for locally averaged dissipation. We argue in the presentiuid.
paper that the differences in exponents for enstrophy and Let u;; = du;/dx; and u; j, = 8°u;/dx;dx,. The
dissipation seen over finite ranges of scales cannot surviweorticity and symmetric strain tensors of a solenoidal
in the limit of infinite Reynolds number, where the rangevelocity field u;(x, ¢) are
of scales in the inertial range becomes infinite. Wi = s — ui) N

Since large-scale statistics are nearly Gaussian, an ob- 7/ 2"/ I Yoo 2 I
vious implication of different scaling exponents is that, The usual vorticity pseudovectab =V X u is w; =
in the limit of infinite Reynolds number, there must €;;,, ., Wheree;;,, is the alternating symbol.
exist some vortex structure that supports infinite ratios The dissipation density (normalized by kinematic vis-
of enstrophy-density to dissipation-density moments, ocosity ») and enstrophy density are given by
of transverse velocity-gradient moments to longitudinal-
gradient moments. We argue that infinite moment ra- € = 25i;(®)si;(x), Q%) = 20;()w;(x). (2)
tios are impossible, in general. The maximal ratiosThe identity
of enstrophy-density to dissipation-density moments are W =g 3)
found explicitly for a cylindrical vortex and for a plane 1 -l et
vortex layer. The implications of the analysis for the in-is an immediate consequence of;, = u;,;. This
terpretation of DNS and experimental data are discussedidentity is the mathematical expression of the physical fact

We deal primarily with enstrophy and dissipation that spatial variation of vorticity is accompanied by strain.
because they are tensor invariants [12]. The arguments It follows from (3) that the changes in magnitude
are extended to moments of longitudinal and transversef vorticity confined within a region are bounded by
velocity derivatives and differences. a linear functional of the changes in strain within the

The argument against infinite ratios starts with theregion. For example, the gradient ef; = 2w, along
observation that a region of fluid with uniform vorticity the x; axis is w3; = 2(s112 — s12.1). The moments of
(Rankin vortex core) is in rigid rotation and suffers () ande over the vorticity-confining volume are given by
zero strain and dissipation. Strain due to differential [[Q(x)]"dx and [[e(x)]"dx. In order for the ratio of
rotation outside the region makes the all-space enstrophyhese moments to be infinite for someeithere(x) must
dissipation moment ratios finite, as examined in detaiivanish throughout the volume or else(x) must have
below. some region of concentration when its value and, hence,
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the nearby values of its gradient are infinite compared to 2
those ofe. These possibilities appear to be excluded by
(3).

This result extends to cylindrical vortices, which are
localized only in the plane normal to the axis. The finite 15
maximal ratios of() moments toe moments can be
obtained explicitly for cylindrical vortices.

A cylindrical vortex is characterized by the azimuthal
velocity vg(r), wherer is the distance from the vortex

axis. The enstrophy density and dissipation density
(normalized byv) are
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The enstrophy and dissipation per unit length of vortex are 0 R = R
27 [ Q (r)rdr and27 [, e(r)rdr, respectively. Lo- 0 2 4 6 8
cally averaged densities may be defined by rir,
000 = 5 [ 00— rhax. oo o e e aaames

lines arex re(r). The areas under all four curves are equal.
1
e(r,€)=—2f e(lx — rl)dx, o o -

mt* Jp The cylindrical vorticity distribution that maximizes
where [, is integration, in the plane perpendicular to theR2 can be_fouxnd by solving the associated variational

vortex axis, over a disk of radiuscentered orr. problem, with [y @ (r)r dr andQ(0) held constant. The
The moments, result confirms what can be guessed by inspection of (4):

The maximizing distribution is the limit, /ry — o of

vg(r) < r (r <), wa(r)xr® (ro<r<rn),

(5)

0, =27 /:C [Q(r,O)]'rdr,

* 6 8
€, () = 277'[ le(r,O)]"rdr, ©) volr) = 1/r (r>n),

0 with @ = 1/2. In this case,R, = (n — 1)9" for n >
describe the distribution of enstrophy and dissipationl- The essential facts here are first,xif o r*, then
densities in the single vortex structure. By (8),(0) =  2(r)/e(r) grows asa — 1; second,a = 1/2 is the
€1(0) if v4(0) = vy(») = 0. largesta for which fr[‘J[Q(r)Pr dr diverges asy — 0,

Consider first the Rankin vortex of radius. for thereby making the relative contribution to from the
which vg < r (r < r.) and vy = 1/r (r > r.). Here Vo < 1/r region negli_gible in the limit. .The maximad,,
the vorticity is confined to a rigidly rotating core and for » > 2 also are finite; they are maximized atvalues
all of the dissipation lies outside the core. The ratiosthat increase witta.

R, = Q,(0)/€,(0) calculated from (4) ar&, = 2n — 1. The vortex profile that maximizes, therefore is one in
For the Burgers vortex of radius, which w(r) is highly diffuse and the dominant contribu-
T 1 - exp—r2/r2) tion to [Q(r)]> and[e(r)]* have the same dependence.
vo(r) = oy < (7)  This refutes the intuition that the maximizing distribution
T r

is one in which a compact vortex core is surrounded by
where I' is the total circulation. By (4),Q(r) « diffuse dissipation.

exp(—2r2/r?), and the vorticity and dissipation now over-  The ratio Q,(¢)/e,(€) for an axisymmetric vortex
lap. Equation (4) yieldR, = 10.65, R; = 104.07, and equalsR, at £ = 0, by definition, and approaches unity
R4 =~ 1040.02. To a rough approximatiorR, ~ 10"~!. as{/r. — . The latter property follows fronf);(0) =
Figure 1 compares the area-weighted radial densities;(0). Figure 2 shows(,(f)/e,(f), wheren = 2 and
proportional torQ(r) and re(r), for the Rankin and n = 4, for the Burgers vortex (7). The slow decay of
Burgers vortices. In the Rankin vortex, which uniquely the tails of these curves is significant for the interpretation
expels all dissipation to the exterior of all enstrophy, theof DNS of turbulence.
degrees of localization of enstrophy and dissipation are The Navier-Stokes (NS) equation has not been invoked
much more nearly equal than in the Burgers vortex, whichn the preceding analysis. Highly diffuse cylindrical
has a region where enstrophy and dissipation overlaportices are not expected to survive under the vortex
The overlap enables more diffuse dissipation. stretching and intensification of NS dynamics; the values
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L L I L B Here L is a macroscale that marks the bottom of the
scaling range. The space averagjng smears spots of
intense excitation. Thereforg, and ¢, are expected to
be negative.

Distributions of idealized vortices have been used by
a number of authors to model turbulence statistics. The
hope is that the vortex distribution can characterize both
the essential physics of the small-scale structures and
the observed vorticity statistics, thereby leading to an
acceptable description of overall turbulence properties.
Idealized vortices that have been studied include the Hill
vortex [14], simple vortex filaments [15], the Burgers
vortex [13,15], and spiral vortices [13]. In [15], an
ensemble of Burgers vortices is constructed that yields
approximate power-law scaling of structure functions
within an inertial range of over a decade.

In actual turbulence and turbulence simulations, the
observed vortex structures have a variety of forms. Ap-
FIG. 2. Moment ratiod},(€)/€,(€) for n = 2 andn = 4. proximations to compact cylindrical vortices do appear to
mediate much of the enstrophy intermittency measured at
small scales. Moffatet al.[16] found that filamentary
vortex cores in a DNS contained 63.3% of the total en-
strophy and only 1.3% of the total dissipation. The strong
quasiaxisymmetric vortices have distributions of strengths,
core diameters, and core profiles. The distribution of core
é)rofiles may be scale dependent. There is also a back-
ground of less coherent vorticity and dissipation.

If strong vortices whos&,, values are similar to those
of a Burgers vortex play an important role, then it is
clear from Fig. 2 that substantial differences in the
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R, ~ 10"~ for the Burgers vortex plausibly are the order
of the maximalR,, attainable under NS.

If the cylindrical vortex is replaced by a plane vortex
layer, it is trivial that allR, = 1. This suggests that the
cylindrical vortex may be the form that maximizes Rg
Our axisymmetric variational analysis described abov
can straightforwardly be extended to an arbitrary vorticity
distribution in the plane perpendicular to the uniform
direction of the vorticity vector. If all the vorticity is

confined within a core radius,, then the velocity field : h n
and dissipation field at > r. depend only on the total dependence of the flow-wide averadg® ;) and([el)
are possible. How large the differences actually are,

circulation and are independent of details of the vorticity P . .
L o and how closely they may mimic differences in scaling
distribution within the core.

The Lundgren-Pullin-Saffman vortex [13] is a tightly exponents for enstrophy a_n_d dissipation over_aﬂmte range
. L T g ? of £, depends on the specifics of the flow statistics.
wound spiral of unidirectional vorticity. We believe

N : It must be stressed that the finiteness of Rgemplies
that, for purposes of estimating behavior of moments of ual scaling exoonents for enstroohy and dissipation at
enstrophy and dissipation, this structure may be replace%lq. g exp pny P

by a strictly axisymmetric profile consisting of concentric'mcm'te Re_ynolds ”“T”be“ but does not require equa_lll'_[y
7 of approximate scaling exponents measured over finite
shells of vorticity.

By the Biot-Savart law, a compact vortex structure, iranges of scales. This is because the maximal measured

- e - ' . moment ratios are what our results confront, and the
which the direction of the vorticity vector is nonuniform, differences in these ratios induced by differing finite-
will induce far velocity and far dissipation fields that fall range exponent differences may be small
off more rapidly than those of an axisymmetric vortex. The high-resolution DNS reported b3./ Chest al
Examples are a vortex ring and a vortex dipole consistin%] illustrates this point. The Taylor microscéle
of a pair of cylindrical vortices. More rapid falloff of the Revnolds number is 216. LetQ") = ([Q]'_,) and
far dissipation field tends to increase the values of hig y i (=0

order dissipation-density moments normalized by mea €") = <£6]€=°> represent the _smgle-pomt moments O;
dissipation. ens.tropﬂ y and glssmatlon.olbtalnezz‘d by ?\Z/eiaglng ov(ejzr the
Consider the moment$Q [;), ((€]¢), where() denotes entire flow. The DNS yield(Q")/(0%)° = 179 an

=N . ) (e /(e?)? = 34.5. It is easily verified from (7) that
ensemble average over a statistically isotropic velocity), . ; . .
field and [], denotes space average over a region o his overall ratio of enstrophy moments is realized by an

S . ; : . array of parallel Burgers vortices if the average number
characteristic linear dimensigh Joint power-law scaling density of vortex cores in the plane normal to the axis is
with enstrophy exponent, and dissipation exponenés y P

o . . h ~(0.06/r.)>.
exists if there is a range dfin which Moreover, it follows from the definition of the&k,,
Q) < (£/L)*, (el}y = (€/L)%". (9) and their values given after (7), that, for an array of
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Burgers vortices, (€*)/(e%)? ~ (R3/Rs)(Q%)/(Q*)? ~  bers while the latter represents modulation, on inertial-

0.11{Q%/(Q%)?. The measured ratio of flatnessesrange spatial scales, of excitation at dissipation-range wave

34.5/179 ~ 0.19 is closer to unity than that of the numbers [17].

array of Burgers vortices, but similar in magnitude. We have reached two principal conclusions. First, dif-

This observation extends to the measured valuefering asymptotic scaling exponents for locally averaged

(Q8)/(Q3)? = 7537 and(e®) (e*)> = 1705. For Burgers enstrophy and dissipation are impossible. Second, models

vorticesR3/R¢ ~ 0.099 while 1705/7537 ~ 0.226. The  built on cylindrical vortices can yield substantial differ-

measured moment ratios are roughly consistent with ances in scale dependence of locally averaged enstrophy

rather sparse spacing of Burgers vortices. and dissipation moments because the numerical ratios of
This DNS vyields an inertial range extending over asingle-point enstrophy-density to dissipation-density mo-

factor of 4 in ¢ within which the (Q];) and ((e];) ments are large. These differences are large enough to

exhibit nearly straight-line dependence énon a log- account for the apparent differences in scaling exponents

log plot. The associated enstrophy exponents are largdor enstrophy and dissipation observed over finite inertial

in absolute value than the dissipation exponents, and thenges in DNS.

differences increase witlk. The point that is crucial We thank M. Nelkin, K.R. Sreenivasan, E. Titi, and

to the present discussion is that the ratip@1;)/{(e];)  J.Z. Wu for useful discussions.

associated with the differences in exponent remain of

order unity because the extent of the inertial range is

modest. Thus fon = 8/3, the ratio at the smal end

of the inertial range is 1.44. These ratios are rigorously  *Electronic address: ghe@t13.lanl.gov
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