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Statistics of Dissipation and Enstrophy Induced by Localized Vortices
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The ratios of enstrophy and dissipation moments induced by localized vorticity are inferred to be
finite. It follows that the scaling exponents for locally averaged dissipation and enstrophy are equal.
However, enstrophy and dissipation exponents measured over finite ranges of scales may be different.
The cylindrical vortex profile that yields maximal moment ratios is determined. The moment ratios for
cylindrical vortices are used to interpret differences in scale dependence of enstrophy and dissipation
previously found in numerical simulations. [S0031-9007(98)07782-5]
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Recent papers on turbulence structure have rais
the possibility of different scaling exponents for loca
averages of enstrophy density and dissipation density,
for longitudinal and transverse structure functions [1–8
Siggia [9], Kerr [10], and Meneveauet al. [11] have noted
that enstrophy is more intermittent than dissipation. Mo
recently, Chenet al. [6] used direct numerical simulation
(DNS) data to calculate empirical scalings of enstroph
and dissipation. They found that the exponents for loca
averaged enstrophy were significantly smaller than tho
for locally averaged dissipation. We argue in the prese
paper that the differences in exponents for enstrophy a
dissipation seen over finite ranges of scales cannot surv
in the limit of infinite Reynolds number, where the rang
of scales in the inertial range becomes infinite.

Since large-scale statistics are nearly Gaussian, an
vious implication of different scaling exponents is tha
in the limit of infinite Reynolds number, there mus
exist some vortex structure that supports infinite ratio
of enstrophy-density to dissipation-density moments,
of transverse velocity-gradient moments to longitudina
gradient moments. We argue that infinite moment r
tios are impossible, in general. The maximal ratio
of enstrophy-density to dissipation-density moments a
found explicitly for a cylindrical vortex and for a plane
vortex layer. The implications of the analysis for the in
terpretation of DNS and experimental data are discusse

We deal primarily with enstrophy and dissipation
because they are tensor invariants [12]. The argume
are extended to moments of longitudinal and transver
velocity derivatives and differences.

The argument against infinite ratios starts with th
observation that a region of fluid with uniform vorticity
(Rankin vortex core) is in rigid rotation and suffers
zero strain and dissipation. Strain due to differenti
rotation outside the region makes the all-space enstrop
dissipation moment ratios finite, as examined in deta
below.
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A finite region within which vorticity is confined neces
sarily exhibits strain and dissipation. Continuity of vortic
ity requires that the mean vorticity over the region vanis
An elementary identity, given below, states that th
changes of vorticity over the region are measured by
changes of strain within the region. From this we infe
that the enstrophy-dissipation moment ratios calcula
over the volume are finite. Induced dissipation outside t
vorticity-containing volume decreases these finite rati
if the averaging volume is extended into the irrotation
fluid.

Let ui,j ; ≠uiy≠xj and ui,jm ; ≠2uiy≠xj≠xm. The
vorticity and symmetric strain tensors of a solenoid
velocity fielduisx, td are

vij ­
1
2 sui,j 2 uj,id, sij ­

1
2 sui,j 1 uj,id . (1)

The usual vorticity pseudovectorv ­ === 3 u is vi ­
eijmvjm, whereeijm is the alternating symbol.

The dissipation density (normalized by kinematic vi
cosityn) and enstrophy density are given by

esxd ­ 2sijsxdsijsxd, Vsxd ­ 2vijsxdvijsxd . (2)

The identity

vij,m ; smi,j 2 smj,i (3)

is an immediate consequence ofui,jm ­ ui,mj . This
identity is the mathematical expression of the physical fa
that spatial variation of vorticity is accompanied by strai

It follows from (3) that the changes in magnitud
of vorticity confined within a region are bounded b
a linear functional of the changes in strain within th
region. For example, the gradient ofv3 ­ 2v12 along
the x1 axis is v3,1 ­ 2ss11,2 2 s12,1d. The moments of
V ande over the vorticity-confining volume are given byR

fVsxdgndx and
R

fesxdgndx. In order for the ratio of
these moments to be infinite for somen, eitheresxd must
vanish throughout the volume or elsevsxd must have
some region of concentration when its value and, hen
© 1998 The American Physical Society
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the nearby values of its gradient are infinite compared
those ofe. These possibilities appear to be excluded b
(3).

This result extends to cylindrical vortices, which ar
localized only in the plane normal to the axis. The finit
maximal ratios ofV moments toe moments can be
obtained explicitly for cylindrical vortices.

A cylindrical vortex is characterized by the azimutha
velocity yusrd, wherer is the distance from the vortex
axis. The enstrophy density and dissipation dens
(normalized byn) are

Vsrd ­

√
dyu

dr
1

yu

r

!2

, esrd ­

µ
dyu

dr
2

yu

r

∂2

.

(4)

The enstrophy and dissipation per unit length of vortex a
2p

R`

0 V srdr dr and 2p
R`

0 esrdr dr, respectively. Lo-
cally averaged densities may be defined by

Vsr , ,d ­
1

p,2

Z
D

Vsjx 2 rjd dx ,

esr , ,d ­
1

p,2

Z
D

esjx 2 rjd dx ,
(5)

where
R

D is integration, in the plane perpendicular to th
vortex axis, over a disk of radius, centered onr.

The moments,

Vns,d ­ 2p
Z `

0
fVsr , ,dgnr dr ,

ens,d ­ 2p
Z `

0
fesr , ,dgnr dr ,

(6)

describe the distribution of enstrophy and dissipatio
densities in the single vortex structure. By (4),V1s0d ­
e1s0d if yus0d ­ yus`d ­ 0.

Consider first the Rankin vortex of radiusrc for
which yu ~ r sr , rcd and yu ~ 1yr sr . rcd. Here
the vorticity is confined to a rigidly rotating core and
all of the dissipation lies outside the core. The ratio
Rn ­ Vns0dyens0d calculated from (4) areRn ­ 2n 2 1.

For the Burgers vortex of radiusrc,

yusrd ­
G

2p

1 2 exps2r2yr2
c d

r
, (7)

where G is the total circulation. By (4),Vsrd ~

exps22r2yr2
c d, and the vorticity and dissipation now over

lap. Equation (4) yieldsR2 ø 10.65, R3 ø 104.07, and
R4 ø 1040.02. To a rough approximation,Rn , 10n21.

Figure 1 compares the area-weighted radial densiti
proportional to rVsrd and resrd, for the Rankin and
Burgers vortices. In the Rankin vortex, which uniquel
expels all dissipation to the exterior of all enstrophy, th
degrees of localization of enstrophy and dissipation a
much more nearly equal than in the Burgers vortex, whi
has a region where enstrophy and dissipation overl
The overlap enables more diffuse dissipation.
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FIG. 1. Enstrophy and dissipation profiles for Rankin an
Burgers vortices. The solid lines are~ rVsrd and the dashed
lines are~ resrd. The areas under all four curves are equal.

The cylindrical vorticity distribution that maximizes
R2 can be found by solving the associated variation
problem, with

R`

0 vsrdr dr andV1s0d held constant. The
result confirms what can be guessed by inspection of (
The maximizing distribution is the limitr1yr0 ! ` of

yusrd ~ r sr , r0d, yusrd ~ ra sr0 , r , r1d ,

yusrd ~ 1yr sr . r1d ,
(8)

with a ­ 1y2. In this case,Rn ­ sn 2 1d9n for n .

1. The essential facts here are first, ifyu ~ ra , then
Vsrdyesrd grows asa ! 1; second,a ­ 1y2 is the
largesta for which

Rr1

r0
fVsrdg2r dr diverges asr0 ! 0,

thereby making the relative contribution toe2 from the
yu ~ 1yr region negligible in the limit. The maximalRn

for n . 2 also are finite; they are maximized ata values
that increase withn.

The vortex profile that maximizesR2 therefore is one in
which vsrd is highly diffuse and the dominant contribu
tion to fVsrdg2 and fesrdg2 have the samer dependence.
This refutes the intuition that the maximizing distributio
is one in which a compact vortex core is surrounded
diffuse dissipation.

The ratio Vns,dyens,d for an axisymmetric vortex
equalsRn at , ­ 0, by definition, and approaches unity
as,yrc ! `. The latter property follows fromV1s0d ­
e1s0d. Figure 2 showsVns,dyens,d, where n ­ 2 and
n ­ 4, for the Burgers vortex (7). The slow decay o
the tails of these curves is significant for the interpretatio
of DNS of turbulence.

The Navier-Stokes (NS) equation has not been invok
in the preceding analysis. Highly diffuse cylindrica
vortices are not expected to survive under the vort
stretching and intensification of NS dynamics; the valu
4637
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FIG. 2. Moment ratiosVns,dyens,d for n ­ 2 andn ­ 4.

Rn , 10n21 for the Burgers vortex plausibly are the orde
of the maximalRn attainable under NS.

If the cylindrical vortex is replaced by a plane vorte
layer, it is trivial that allRn ­ 1. This suggests that the
cylindrical vortex may be the form that maximizes theRn.
Our axisymmetric variational analysis described abo
can straightforwardly be extended to an arbitrary vortici
distribution in the plane perpendicular to the uniform
direction of the vorticity vector. If all the vorticity is
confined within a core radiusrc, then the velocity field
and dissipation field atr ¿ rc depend only on the total
circulation and are independent of details of the vortici
distribution within the core.

The Lundgren-Pullin-Saffman vortex [13] is a tightly
wound spiral of unidirectional vorticity. We believe
that, for purposes of estimating behavior of moments
enstrophy and dissipation, this structure may be replac
by a strictly axisymmetric profile consisting of concentri
shells of vorticity.

By the Biot-Savart law, a compact vortex structure,
which the direction of the vorticity vector is nonuniform
will induce far velocity and far dissipation fields that fal
off more rapidly than those of an axisymmetric vortex
Examples are a vortex ring and a vortex dipole consisti
of a pair of cylindrical vortices. More rapid falloff of the
far dissipation field tends to increase the values of hi
order dissipation-density moments normalized by me
dissipation.

Consider the momentskfVgn
,l, kfegn

, l, wherek l denotes
ensemble average over a statistically isotropic veloc
field and f g, denotes space average over a region
characteristic linear dimension,. Joint power-law scaling
with enstrophy exponentszn and dissipation exponentsjn

exists if there is a range of, in which

kfVgn
,l ~ s,yLdzn , kfegn

, l ~ s,yLdjn . (9)
4638
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Here L is a macroscale that marks the bottom of t
scaling range. The space averagingf g, smears spots of
intense excitation. Thereforezn and jn are expected to
be negative.

Distributions of idealized vortices have been used
a number of authors to model turbulence statistics. T
hope is that the vortex distribution can characterize b
the essential physics of the small-scale structures
the observed vorticity statistics, thereby leading to
acceptable description of overall turbulence properti
Idealized vortices that have been studied include the H
vortex [14], simple vortex filaments [15], the Burger
vortex [13,15], and spiral vortices [13]. In [15], a
ensemble of Burgers vortices is constructed that yie
approximate power-law scaling of structure functio
within an inertial range of over a decade.

In actual turbulence and turbulence simulations, t
observed vortex structures have a variety of forms. A
proximations to compact cylindrical vortices do appear
mediate much of the enstrophy intermittency measured
small scales. Moffattet al. [16] found that filamentary
vortex cores in a DNS contained 63.3% of the total e
strophy and only 1.3% of the total dissipation. The stro
quasiaxisymmetric vortices have distributions of strengt
core diameters, and core profiles. The distribution of co
profiles may be scale dependent. There is also a ba
ground of less coherent vorticity and dissipation.

If strong vortices whoseRn values are similar to those
of a Burgers vortex play an important role, then it
clear from Fig. 2 that substantial differences in the,
dependence of the flow-wide averageskfVgn

, l and kfegn
,l

are possible. How large the differences actually a
and how closely they may mimic differences in scalin
exponents for enstrophy and dissipation over a finite ran
of ,, depends on the specifics of the flow statistics.

It must be stressed that the finiteness of theRn implies
equal scaling exponents for enstrophy and dissipation
infinite Reynolds number, but does not require equal
of approximate scaling exponents measured over fin
ranges of scales. This is because the maximal meas
moment ratios are what our results confront, and t
differences in these ratios induced by differing finit
range exponent differences may be small.

The high-resolution DNS reported by Chenet al.
[6] illustrates this point. The Taylor microscal
Reynolds number is 216. LetkVnl ­ kfVgn

,­0l and
kenl ­ kfegn

,­0l represent the single-point moments o
enstrophy and dissipation obtained by averaging over
entire flow. The DNS yieldskV4lykV2l2 ­ 179 and
ke4lyke2l2 ­ 34.5. It is easily verified from (7) that
this overall ratio of enstrophy moments is realized by
array of parallel Burgers vortices if the average numb
density of vortex cores in the plane normal to the axis
,s0.06yrcd2.

Moreover, it follows from the definition of theRn,
and their values given after (7), that, for an array
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Burgers vortices, ke4lyke2l2 , sR2
2yR4d kV4lykV2l2 ,

0.11kV4lykV2l2. The measured ratio of flatnesse
34.5y179 , 0.19 is closer to unity than that of the
array of Burgers vortices, but similar in magnitude
This observation extends to the measured valu
kV6lykV3l2 ­ 7537 andke6l ke3l2 ­ 1705. For Burgers
vorticesR2

3yR6 , 0.099 while 1705y7537 , 0.226. The
measured moment ratios are roughly consistent with
rather sparse spacing of Burgers vortices.

This DNS yields an inertial range extending over
factor of 4 in , within which the kfVgn

, l and kfegn
,l

exhibit nearly straight-line dependence on, on a log-
log plot. The associated enstrophy exponents are lar
in absolute value than the dissipation exponents, and
differences increase withn. The point that is crucial
to the present discussion is that the ratioskfVgn

,lykfegn
,l

associated with the differences in exponent remain
order unity because the extent of the inertial range
modest. Thus forn ­ 8y3, the ratio at the small-, end
of the inertial range is 1.44. These ratios are rigorous
bounded by the single-point ratioskVnlykenl. They are
also of the order of the large,yrc tails of theVns,dyens,d
ratios for the Burgers vortex if,yrc in Fig. 2 is taken
as the half-distance between adjacent vortex axes in
idealized parallel-array model invoked above.

Finite-range exponents for transverse and longitudin
structure functions also have different measured valu
[6]. If the structures that dominate higher moments
dissipation-range scales are localized in space, then
arguments for equality of asymptotic enstrophy and d
sipation exponents extend also to transverse and long
dinal structure functions. Space differences go over in
gradients at the top of the inertial range, and the relatio
ui,jm ­ ui,mj relate the gradients of transverse and lo
gitudinal velocity derivatives within a localized structure
There is a loophole, however. A plane shear layer, whi
is not a localized structure, has zero longitudinal velo
ity derivatives. An ensemble of plane shear layers c
be constructed to yield infinite asymptotic moment rati
for transverse and longitudinal derivatives, together w
different scaling exponents. Such a construction is ve
implausible dynamically and observationally.

L’vov et al. [12] have pointed out that longitudinal and
transverse structure functions must have the same asy
totic scaling exponents if the associated tensor invaria
have asymptotically pure scaling: the longitudinal an
transverse moments are linear functions of the same
variants. Our arguments suggest that the asymptotic s
ing exponents of all of the invariants of a given order mu
be equal.

It should be noted that inertial-range structure fun
tions involve a different part of the velocity spectrum
than fluctuations of dissipation on inertial-range scale
The former is supported by inertial-range wave num
s
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bers while the latter represents modulation, on inertia
range spatial scales, of excitation at dissipation-range wa
numbers [17].

We have reached two principal conclusions. First, dif
fering asymptotic scaling exponents for locally average
enstrophy and dissipation are impossible. Second, mod
built on cylindrical vortices can yield substantial differ-
ences in scale dependence of locally averaged enstrop
and dissipation moments because the numerical ratios
single-point enstrophy-density to dissipation-density mo
ments are large. These differences are large enough
account for the apparent differences in scaling exponen
for enstrophy and dissipation observed over finite inertia
ranges in DNS.
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