CHIN.PHYS.LETT.

Vol. 16, No. 11 (1999) 822

Instability from Steady and Axisymmetric to Steady and Asymmetric Floating
Half Zone Convection in a Fat Liquid Bridge of Larger Prandtl Number *
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The linear instability analysis of the present paper shows that the thermocapillary convection in a half floating
zone of larger Prandtl number has a steady instability mode w; = 0 and m = 1 for a fat liquid bridge V = 1.2
with small geometrical aspect ratio A = 0.6. This conclusion is different from the usual idea of hydrothermal
instability, and implies that the instability of the system may excite a steady and axial asymmetric state before
the onset of oscillation in the case of large Prandtl number.

PACS: 47.20.Dr, 47.27. Te, 47. 15. Fe

The volume of liquid bridge is a sensitive criti-
cal geometrical parameter in the floating half zone
convection,! and the marginal curves for the onset
of oscillation are usually divided into two branches
separated typically by a gap region as shown in
Fig. 1. The results were obtained by the ground-based
experiments?~% and the microgravity experiments
performed by using the drop shaft facility.>® Simi-
lar conclusions were given by the numerical simula-
tion of two-dimensional model” and three-dimensional
model,® and by the linear instability analysis.? The
influence of liquid bridge volume on the onset of oscil-
lation is quite different in the cases of smaller Prandtl
number fluid!® in comparison with the cases of large
Prandtl numbers fluid.® The onset of instability in
the thermocapillary convection from the steady and
axi-symmetric convection has been discussed by the
linear instability analysis,?11'12 the energy method
analysis,'3 and by the unsteady and three-dimensional
numerical simulation.®1* Many studies support the
mechanism of hydrothermal instability.'®

A liquid bridge of floating half zone between two
co-axial copper rods of the same diameter 2r; as
shown in Fig. 2 is discussed in the present paper. The
liquid bridge has a height I. There are two typical
geometrical parameters: the geometrical aspect ra-
tio A = 1/(2r¢) and volume ratio V = V}/V,, where
Vi and Vj are respectively the volumes of the liquid
bridge and a cylinder with height I and rg in radius.
The lower rod keeps a constant temperature T, and
the temperature at the upper rod is Ty + AT, where
non-negative temperature difference AT may be a
constant or change with time. The iso-thermal case
relates to AT = 0, and the thermocapillary convection
is driven by the gradient of surface tension. The sur-
face tension o is defined as 0 = o9+ (do/d T)(T—T*),
where T* is a constant reference temperature, and
do/dT is usually negative. The instability may be
excited during the increasing of the applied tempera-
ture difference.

The thermocapillary convection in the liquid
bridge is controlled by the relationships of mass,
momentum and energy conservation. By using the
Boussinesq approximation, these relationships in the
microgravity environment may be written mathemat-

ically as follows.
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Fig.1. Typical marginal curves for onset of oscillatory
thermocapillary convection of larger Prandtl number fluid.
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Fig. 2. Configuration of the liquid bridge in a floating
half zone.
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where p, p, and T are respectively the density, pres-
sure, and temperature of the liquid, v = (u,v,w) is
the velocity vector, A is the Laplace operator, v and &
are respectively the kinematics viscosity and thermal
diffusion coefficients. Equations (1)—(3) may be writ-
ten in a cylindrical coordinate system as adopted in
Fig.2. The equations should be solved under the as-
sociated boundary conditions, see, for example, Chen
and Hu.®
Non-dimensional parameters of the Reynold num-
ber, Marangoni number, and Prandtl number are re-
spectively
* *
Rezv_l, Mazv_l’ Przzy (4)
v K K
where the typical velocity v* is defined by the ther-
mocapillary effect as v* = |do/dT|AT/pv, where
do/dT is a constant and AT is the constant tem-
perature difference. Three parameters in Eq. (4) are
related by M, = R.P.. There are two geometrical pa-
rameters A and V, and the volume ratio V is defined
as

1 [,
v T /0 R*(2)dz,

where r = R(z) is the equation of free surface. The
case of a cylindrical liquid bridge relates to V = 1.

The linear instability analysis is applied for a liquid
bridge of large Prandtl number.>1° At first, a steady
and axisymmetric state is obtained numerically for a
fixed applied temperature difference AT. Then, the
linear perturbation theory is used to analyze the in-
stability mode, and the perturbation quantities (u’,
v/, w', p/, T') are expanded as a sum of the spectral
terms, for example

u'(r,0,2,t) = Z exp(wt + imB)uy(r, 2) + c.c.,

c.c. denotes the complex conjugate terms, and w =
wr + iw;, which is dimensionless by v*/(2rg). The in-
stability states were obtained for the case of P, = 100
and A = 0.6 in Table 1.

Table 1. Instability states for the case P, = 100 and A = 0.6.

Ratio  Critical Azimuthal Frequency Related state
volume M. mode
12 m wj
0.6 9595 1 2.49 Oscillatory
0.8 —_— — — Not obtained
1.0 26949 1 4.30 Oscillatory
1.2 20860 1 0 Steady

The case V = 0.6 relates to a slender liquid bridge,
and the instability excites directly the onset of oscil-
lation (w; = 2.49 # 0). The case V = 0.8 relates to
the gap region as shown in Fig.1. The case V = 1.2
shows that the steady and axisymmetric thermocap-
illary convection transits to a steady (w; = 0) and
asymmetric (m = 1) convection in a fat liquid bridge
of larger Prandtl number. The conclusion is simi-
lar to the ones in the case of small Prandtl number
fluid,10-12:16 where the instability mechanism is not
the hydrothermal.l?

A new feature of the liquid bridge volume is given
here, in addition to the ones described in Fig.1. Un-
til now, all the studies both in theoretical and ex-
perimental approaches suggest that, the steady and
axisymmetric thermocapillary convection in a liquid
bridge of large Prandtl number will transit directly
to the onset of oscillatory thermocapillary convection
when the applied temperature difference is larger than
a critical value. Many studies believe that the onset
of oscillation is due to the so-called hydrothermal in-
stability, which requires that the perturbation state
be shown as a travelling wave. The results of present
paper give an example, which shows that, the onset of
the instability relates to the transition to a steady and
axial asymmetric state but not an oscillatory state in a
fat liquid bridge of large Prandtl number. Therefore,
the instability mechanism cannot be the hydrother-
mal model in this case. Furthermore, the direct nu-
merical simulation of three dimensional and unsteady
model shows that there may be two bifurcation transi-
tions: firstly from steady and axisymmetric convection
to the steady and asymmetrical convection, and then
to the oscillatory convection in a fat liquid bridge of
larger Prandtl number with small aspect ratio. The
results are similar to the ones discussed in the case
of small Prandtl number,!” and will be discussed in
details elsewhere. These results of present paper may
shed light to the mechanism studies on the onset of
oscillatory thermocapillary convection in the case of a
liquid bridge of large Prandtl number.
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