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Investigation of Interaction Force Between Surface
Immobilized Ligand and Objective Molecule
Using Shear Flow Chamber”

GAO Bo*?, JIN Gang?™
(UNational Microgravity Laboratory, Institute of Mechanics, The Chinese Academy of Sciences, Beijing 100080, China;
2Graduate School, The Chinese Academy of Sciences, Beijing 100039, China)

Abstract Based on flow chamber technique and using carrier microspheres as force magnifiers, an investigation
of the interaction force between surface immobilized ligand and objective molecule was carried out. Human
immunoglobulin G (IgG) and goat anti-human IgG (anti-IgG) were employed as model ligand and model objective
molecule respectively. The parameters of the flow field were designed based on Plane Poiseuille Flow and the
design was validated by a numerical simulation. Using bovine serum albumin (BSA) as negative control, it was
concluded that the adhesion force between the microspheres and the chip surface came from the specific
interaction between the ligand and the objective molecule. And this conclusion was confirmed by an anti-1gG
deactivation comparison. It was found that the adhesion force between the spheres and the chip surface was
affected by the ligand surface concentration. The wall shear rate at which 95% microspheres were removed from
the chip surface was set as the critical value, and the relationship between the critical shear rate and the ligand
surface concentration was obtained. A mechanical analysis model considering both the ligand surface
concentration and the difference of molecular bonds’ position was proposed, which finally gave the result that the
average interaction force between a single pair of ligand and objective molecule was about 342pN.
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