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A B S T R A C T :  Using dislocation simulation approach, the basic equation for a finite 
crack perpendicular to and terminating at a bimaterial interface is formulated. A 
novel expansion method is proposed for solving the problem. The complete solution 
to the problem, including the explicit formulae for the T stresses ahead of the crack 
tip and the stress intensity factors are presented. The stress field characteristics are 
analysed in detail. It is found that normal stresses a~ and a~ ahead of the crack tip, 
are characterised by Q fields if the crack is within a stiff material and the parameters 
[pT[ and [qT] are very small, where Q is a generalised stress intensity factor for a crack 
normal to and terminating at the interface. If the crack is within a weak material, 
the normal stresses as and ay are dominated by the Q field plus T stress. 

K E Y  W O R D S :  interface, perpendicular crack, gerneralized stress intensity factor, 
T stress 

1 I N T R O D U C T I O N  

Many modern devices, tools and engineering s t ructures  are made of advanced mate-  

rials, such as fiber or particle reinforced composites, metal /ceramics  interfaces, laminated 

ceramics, adhesive joints etc. Interface failures are common features in the advanced mate-  

rials and thin films. The  design process of these components  requires a be t te r  understanding 
of the failure mechanisms of these components.  An important  task is t o  s tudy in detail the 

fracture characteristics of flaws along or perpendicular to the interface. 

A crack perpendicular to a bimaterial  .interface has a t t rac ted  the at tention of many  

investigators. Zak and Williams [1] used the eigenfunction expansion method to analyse the 

stress singularity ahead of a crack tip, which is perpendicular to and terminat ing at the 
interface. Cook and Erdogan [2] used the Mellin t ransform method to derive the governing 

equation of a finite crack perpendicular to the interface and obtained the stress intensity 

factors. Erdogan and Biricikoglu [3] solved the problem of two bounded half planes with a 

crack going through the interface. Bogy [4] investigated the stress singularity of an infinite 
crack terminated at the interface with an arbi t rary angle. Wang and Chen Is] used pho- 

toelasticity to determine the stress distribution and the stress intensity factors of a crack 
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perpendicular to the interface. Lin and Mar Is], Ahmad [r] and Meguid et al.[s] used finite 
element to analyse cracks perpendicular to bimaterial in finite elastic body. Chen[ 9] used 
the body force method to determine the stress intensity factors for a crack normal to and 
terminated at a bimaterial interface. Sts et al.[10,n] investigated a crack growing towards 

a bimaterial interface. Their results showed 
that  the crack can be deflected and to follow 

O'jd] .~. .-_ 

Fig.1 

a smooth curved path. 

ay 

f 
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A finite crack perpendicular to and 

terminating at a bimaterial interface 

2 F O R M U L A T I O N  O F  T H E  C R A C K  
P R O B L E M  

Figure 1 shows a finite crack perpendic- 
ular to and terminating at a bimaterial inter- 
face. A Cartesian coordinate system oxy  is 
attached to the interface. The x axis is along 
the interface and the y axis is normal to the 
interface and coincident with the crack elon- 
gation direction. Both materials axe isotropic 
and homogenous. The material I occupies 
the upper half plane $1 and the material II 
occupies the lower half plane $2. 

2.1 Complex Potential 
Stress and displacement in an elastic solid can be represented by two Muskhelishivili's 

ax + au = 4Re(~(z)) 

a u - irx u = ~ ( z )  + n ( 5 )  + (z - ~)O'(z)  

2#(u~ + i%) = ~r - w(5) - (z - 2) ~(z) 

potentials 

(1) 

The complex potentials for an edge dislocation at z = s in an infinite elastic solid can be 
expressed as 

- z-sB } 
B - s - ~  

&(z )  - z -  ~ + B ( z - - ~  (21 

# + iby) B -- ~ri(a § 1)(b~ 

where bx and by are the x- and y-components of the edge dislocation. 
The interaction problem of an edge dislocation with a bimaterial interface was studied 

by Dundurs [12] and Suo [13]. The complex potentials are (see Suo [131) 

f E)o(z)§ z E S, 

(1 + A2)&(z) : E & 
(3) 
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a+fl a - f l  
Ai - A2 = 

1-/3 l + f l  

where ce and/3 are two Dundurs parameters. 
The crack can be considered as a continuous distribution of dislocations. 

have 

~2 f0 a (b~ + ibu)dt 
�9 o(z) = 7ri(1 + ~2) z + it 

P2 ~o~ (b~ +~t~)dt  + O0(z) = ~ri(1 + ~2) z - -  

where a is the crack length, i is a pure imaginary. 

2#2 ~o ~ t(b~ - iby) 
7r(1 + g2) ~'---i t-~ dt 

} 

29 

Hence, we 

(4) 

Introduce a new complex variable z* and a new function I(z*) 

z* = iz I(z*) = 1 ~ a  bx + ibu d t 
z*  - t (5)  

The function I(z*) is a holomorphic function in the whole complex plane z* outside the cut 
(0, a). Using the following variable transformations 

z * =  t =  (6) 

the function l(z*) can be represented as 

I ( z  *) = _l f /  55 + i b y d (  (7) 

Assume that the dislocation density can be expanded as a series of the first Chebyshev 
polynomial plus a special term, which creates a desired stress singularity at crack tip B 

i - ~ o  
b~ + ibu _ l X ~ - ~ -  ~ 2 : 1  ~ o  ~mTm(~) + flo ( 1 - - ~ j  (8) 

where Tm(~) is the first Chebyshev polynomial 

Tm(~' )  = c o s  m e  ~ = c o s  0 

and Ao = [Amin], Amin is the smallest real eigenvalue of the present problem in the region 
- 1  < A < 0. The opening displacement on the crack surface can be expressed as 

fo f:[ 1 * ( 1 - ~ r  ~o] 8~ + i6 v = - (b~ + ibv)dt = - - -  d~ao = 1 ~ E amZ(~) + flo ~ - ~  
m=0 

sin mO 2rA0 
aoc~0(~r -- 0) + ao Z ( X m - -  + f l o ~ a 0  

rn--1 m 

where ao is half of the crack length. We have 

ao = a/2 ~ = cos0 = (t - ao)/ao 

The opening displacement at point A should be zero. It means that  when t = a, ~ = 1 
and 0 = 0, the opening displacement vanishes. It leads to 

2A0 
so + flo sin 7rA---~ = 0 (9) 
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Substituting Eq.(8) into Eq.(7) and using the following equation (see Gladwell [14]) 

1 /l_ Tm(x) 1 [ z -  V/~ - -  1] m 
,7 1 ~ - - ~ Z - - x )  d x -  

we obtain 

1998 

I(z*) = 1 ~ ~o ~ -  1 ~,o E -1] 
-rn=O~l 

__-- (z* - a0) 

a0 

2.2 S t r e s s  J u m p  Acros s  I n t e r f a c e  

The displacement u~ and u~ should be continuous across the interface. 
strain ~ should be continuous across the interface. It follows that  

For plane strain problem, from this equation, we obtain directly 

( . : ,~)x-  , ~ 1 ( 1 - ~ ' ~ ) ( o - ~ ) . +  o-~, ( _ 
~2 2j 

The above equation can be represented as 

(o-~)~ (1 + oO 2o~ 2 -- (1 - -a)  (a=)II + ~ - - Z - ' ~ ( / ~ - a )  (10) 

Of course this equation is also valid for plane stress problem. We should emphasise tha t  

the stress jumping equation (10) is important  for understanding the interface problem. At 
infinity we have 

( o ~ ) i  - (1 + a) 2 o ~  2 - - ) (O '~~  "l'- ~ - ' ~ (  ,~ -- Oz) (11) (1 

2.3 Superposit ion Scheme 
On the crack surfaces the traction free condition should be satisfied. 
According to the superposition scheme, we need two solutions. The first solution is 

that  for the bimaterial subject to uniform remote loading. We only consider the symmetric 
problem. The skew-symmetric problem can be treated in a similar way. The first solution 
for the symmetrical problem is 

oo O'x = ( O ' z ) I  Cry = a ~  r~y = 0 in material I 
(12) 

a~ = ( a ~ ) n  ay = a ~  r~y = 0 in material II 

The load parameter  a ~  only produces the uniform stress fields and has no effect on the 

stress a ,  in material II if the load parameter  ( a~ ) i i  remains constant. Hence without loss 
of generality, we only study the problem with a ~  -- 0. 

The second solution is that  for crack perpendicular to the interface with the uniform 
traction prescribed on the crack faces. Thus we have 

a= + i ~  = ~(z) + 2~(Z) - ~(~) - (z - 2) ~(z) = - a  

at z = 4 - 0 + i y  - a < y < 0  (13) 

Hence t h e  
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o o  where a = (a=)II" 
Using the function I(z*)  and Eq.(4), for symmetrical problem (by = 0) one obtains 

#2 (14) r (~ + 1 ) / ( i z )  

#2 . 2~t21) i z I ' ( - i z )  (15) ~?o(z) (tr + 1) I ( - l z )  (~2 A- 

Substitute Eqs.(3), (14) and (15) into Eq.(13), one obtains the following governing equation 

#2 {2I+(t) + 2t[(I '+(t)  - I ' - ( t ) ]  + I+( t )  - I - ( t )  + (3A2 - A 1 ) I ( - t ) -  
tr A- 1 

12A2t I , ( - t )  + 4 t 2 A 2 I " ( - t ) }  = - a  0 < t < a (16) 

2.4 S t ress  I n t e n s i t y  Fac to r  
The stress distribution ahead of the crack tip B can be expressed as follows 

a= + iT=y = (2 + 3A1 - A2)I( t )  + 2(A1 - A2)tI ' ( t )  (17) 

On the right side of the Eq.(17), the function I ( t )  can be expanded as 

er 1] 
sinzrA0 [ \~  + 1/ 

V r - -  ~ m = l  

If A0 > 0.5, the most strong stress singularity is produced by the special term, which is 
related to the parameter G0. The stresses near the crack tip B can be represented as 

Q I  
ai~ = (21rr)~o fij(O) (19) 

where QI is the generalised stress intensity factor. From Eqs.(17) and (18), one obtains 

Go (2~ao)~O2~O[(2 + 3~o - As) - 2~o(A~ - As)] (20) QI(B)  = lim(27rr)X~ = 
r-.o sin 7rA0 

The normal stress ahead of the crack tip B can be rewritten as 

QI . 
~= = (2~r)Xo A(0 )  + ~ 

For stress a=, we have 

o o  

lim 2x/2-~rra* = 2#--------~-2 (1 + A1) rv/-ff-~ E (-X)mam 
~-,0 (~2 + 1) m=X 

Of course such a singularity should be excluded. It follows that  

o r  

Z ( -X) '~a~ = 0 (21) 
~ ' n = l  
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This is the second constraint condition for our problem. Similarly we can find the standard 
stress intensity factor at crack tip A 

Kx(A) -- 2/~2 ~ (22) 
(!r + 1) ~ am 

m=l 

The governing equation (16) is a function equation, which contains a set of unknown 
coefficients am and ;30. The infinite series in Eq.(8) can be approximated with a sufficient 
degree of accuracy by the corresponding truncated series. The crack surface is discretized 
into M + 1 elements. The nodal points are given by the following expression 

tk----C-t-ao(l+cosOk) O k - - - -  kTf 
k = 1 , 2 , . . . , M  (23) 

(M + 1) 

According to the boundary collocation method, the governing Eq.(16) should be satisfied on 
these nodal points. Then the governing equation is transformed into a set of linear algebraic 
equations. From these equations and the two constraint conditions (9) and (21), one can 
get a set of unknown coefficients am(m = 0, 1, 2,-- . ,  M) and ;30. 

2.5 T Stress  
The stress fields ahead of the crack tip can be expressed as an asymptotic series 

QI 
~ij = (2~r)~o fij(o) + Ti~ (24) 

The parameters Tij define the T stress, which characterises the second term of the eigen- 
function expansion and plays an important role in the analysis of fracture process. From 
above equations and Eq.(17), we obtain 

o o  

, #2 E (-1)remain (25) (T~)I  = g2 .~_-----~(2 -~- 3A1 - A2) 
m----1 

where T* is the x- component of T stress contributed by the second solution of the symmetric 
problem. On the other hand we have 

a~ + ay -- 4Re{4~(z)} -- 4#2 Re{(1 + A1)I(t)} 
t r  

Similar analysis leads to 

o o  

* 4#21 (1 + At) E (-1)remain (T* + Ti)~ = ~2---7-- 
m=l  

From above equation and Eq.(25), it follows 

(T~*)I -- ~r:2#2+ 1 (2 + At + A2) E (-1)mma'~ 
m----1 

(26) 

Now we obtain 
(~r:), (2 + 3A~ - A2) 
(T;); = (2 + A, + A2) 

---- 1 + 2~ (27) 
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From the stress jump Eq.(10), it follows 

(T;), (1 + ~). ,. 2T; 
- (1-~(T;):: + ~f-z-~ (2Z - ~) 

where T~ = (T~)I = ( T ; ) I I .  Using Eqs.(27) and (28), one obtains 

(1 + ~)~ 1 -~  ] 
T ~ =  [ ( 1 - a ) ( l + 2 8 ) - 2 ( 2 8 - a ) ]  = 1 - 2 ~  

i T . )  ' = 1 + 2~ 
1 - 2/3 a 

The total  T~ stress around the crack tip B is described as 

(2s) 

(29) 

Ty = a ~  + ~ = qT(a z )H 

= ~ -:_::~ qT (a~ )II 1 

(30a) 

Parameter  qT characterises the effect of the remote stresses ( a ~ ) n  and a ~  on the T~ stress. 

The total  T~ stress around the crack tip B in material  I can be expressed as 

2 ( 2 ~ - a )  a ~  1 + 2 8  l+a+ . . . .  

(30b) 

The parameter  PT characterises the effect of the remote stresses ( a ~ ) n  and a ~  on the (Tx) I 
stress. 

3 C A L C U L A T I O N  R E S U L T S  

Calculations were carried out for different material  pairs. The convergence of the series 

in Eq.(8) was very quick. A typical example for material  pairs Aluminum-Epoxy in the case 

of plane strain is tested. M = 150, 180 and 210 gave same results of stress intensity factors 

at  the crack tips A and B with four digits of accuracy and the coefficients a,~ approaches 

to zero rapidly, as m increases. For example, a t  -- 0.248 7, at0 -= -0 .142 1 • 10 -3,  ~1o0 --- 

0.401 5 x 10 -6,  alS0 = -0 .234 2 x 10 - s .  All of results given in this paper  were calculated 
with M -- 180. 

3.1 S t r e s s  I n t e n s i t y  F a c t o r  

The  calculated stress intensity factors for different material  pairs in the case of plane 

stress are shown in Table 1 and Table 2. The present results agree very well with the results 
by Meguid et al.[ s] and Chen [9]. 

Table 1 Nondimens ional  stress intensity factor QI(B) = v/2QI(B) 
~(2~a0)~o 

P:/P2 vl v2 present result Meguid et al.[ 8] Chen/9] Lin & Mar [6] Cook & Erdogn TM 
0.00722 0.35 0.3 0,0192 0,018 0.0192 0.196 0.079 
0.0433 0.35 0.3 0.0955 0,094 0,095 0.095 0.074 
23 .080 .3  0.35 4.232 4.240 4,231 4.241 4,176 
138.46 0.3 0.35 5.002 5.004 5.001 4,978 4.922 
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K,(A) 
Table 2 Nondimensional  stress intensity factor fi[I(A) = a(27rao)l/2 

#1/#2 Ul u2 present result Chen [9] Lin & Mar[ 6] Cook & Erdogn [2] 

0.007 22 0.35 0.3 1.474 1.474 1.529 1.509 
0.043 3 0135 0.3 1.340 1.340 1.371 1.353 
23.08 0.3 0.35 0.879 0.879 0.855 0.879 
138.46 0.3 0.35 0.870 0.870 0.833 0.871 

3.2 Stress  D i s t r ibut ion  A h e a d  of  the  Crack Tip B 

The stress distribution ahead of the crack tip B is most interesting in this study. 

Figure 2 and Fig.3 show the stress distributions ahead of the crack tip B for the 

material pairs Epoxy-Boron in the case of plane stress. The material constants are #1/#2 -- 

0.007 22, Vl -- 0.35, v2 = 0.3. It is clear that  the normal stress ax is dominated by the Q 

field in the region of 0 < r/ao < 1, meanwhile the normal stress ay is characterised by the 

Q field in the region of 0 < r/ao < 0.05. 

Fig.2 Normal stress a~ distribution ahead 
of the crack tip B for material pairs 
Epoxy-Boron in the case of plane 
stress. Here x = 0, r is the distance 
from the crack tip B. ~ = as/a 

Fig.3 Normal stress a~ distribution ahead 
of the crack tip B for material pairs 
Epoxy-Boron in the case of plane 
stress. ~y = ay/a 

The tendency becomes different as the crack is within the weaker material as shown in 

Fig.4 and Fig.5 for the case of plane stress. Figure 4 shows the comparison between the Q 

field, Q field plus Tx stress and the normal stress ax for material pairs Boron-Epoxy. The 

material constants are/~1/#2 = 138.46, Ul = 0.3, v2 = 0.35. 

The Q field plus T~ stress gives very good prediction for the normal stress a~ in the 

region of 0 < r/ao < 1. But the Q field is remarkably deviated from the normal stress 

a=. It clearly shows that  the Tx stress has a tremendous contribution to the normal stress. 

The Q field plus the Ty stress also agrees very well with the normal stress ay in the region 

0 < r/ao < 0.4 as shown in Fig.5. The stress distributions along the interface are plotted 

on Fig.6 and Fig.7. The normal stress r has a very large jump across the interface. 
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Fig.4 Normal stress tr~ distribution ahead 
of the crack tip B for material pairs 
Boron-Epoxy in the case of plane stress 

Fig.5 Comparison of the normal stress try 
with the Q field and Q field plus Ty 
stress for material pairs Boron-Epoxy 
in the case of plane stress 

Fig.6 Normal stress distribution a~ along 
the interface for material pairs Boron- 
Epoxy in the case of plane stress 

Fig.? Normal stress ay and shear stress rxy 
distributions along the interface for ma- 
terial pairs Boron-Epoxy in the case of 
plane stress. ~y = au/tr, ~y = "r~y/a 

4 C O N C L U S I O N S  A N D  D I S C U S S I O N  

From this study, we can draw the following conclusions: 

(1) The normal stress ax ahead of the crack tip B, is characterised by the Q field in the 

region of 0 < r/ao < 1 and the normal  stress a~, which is parallel to the crack surface, 
is dominated by the Q field in the region of 0 < r/ao < c, if the crack is within a stiff 

material  and the parameters  ]PT[ and [qT[ are very small. The parameter  c is 0.05 for 

material  pairs Epoxy-Boron and 0.4 for material  pair 's  Epoxy-Aluminum. 

(2) The normal stress ax ahead of the crack tip B is characterised by the Q field plus T~ 

stress in the region of 0 < r/ao < 1 and the normal stress ay is dominated also by 
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the Q field plus Ty stress in the region of 0 < r/ao < 0.4, if the crack is within a 

weaker material and the parameter ]PTI or IqTI is very large. In this case, the Q fields 

deviate remarkably from the normal stresses ax and (Ty and the T stress components 

have tremendous contributions to the normal stresses. 

The stress ax has a jump across the interface due to the elastic constant mismatch.  The 

larger is the elastic constant mismatch, the larger the jump will be. For materials pairs 

Aluminum-Epoxy, the stress jump can be as large as about 25 times of the remote stress 

( O ' x ~ 1 7 6  . 

Above conclusions are based on the analysis for an infinite bimaterial, which is bonded 

by two half planes containing a finite crack perpendicular to the interface and subject to 

uniform remote load at infinite. For finite bimaterial and complex loading, the situation 

will be complicated. In order to gain a better understanding for fracture characteristics of 

a crack perpendicular to the interface further investigations are needed. 
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