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Marangoni—Bénard Instability with the Exchange of Evaporation at
Liquid—Vapour Interface *
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A new two-sided model rather than the one-sided model in previous works is put forward. The linear instability
analysis is performed on the Marangoni—Bénard convection in the two-layer system with an evaporation interface.
We define a new evaporation Biot number which is different from that in the one-sided model, and obtain the
curves of critical Marangoni number versus wavenumber. The influence of evaporation velocity and Biot number
on the system is discussed and a new phenomenon uninterpreted before is now explained from our numerical

results.

PACS: 47.20. Ma, 47.27. Te, 64. 70. Fx

Evaporative convection and instability give rise to
both scientific and technological interests. Practically,
many industrial applications such as thin-film evap-
orators, boiling equipments and heat pipes are con-
cerned about the evaporation process, i.e. the heat
and mass transfer through the gas—liquid interface.
From a physical viewpoint, one of the interesting ques-
tions is the mechanism of convection instability in thin
liquid layers induced by the coupling of the evapo-
ration phenomenon and the Marangoni effect at the
mass exchanged interface. The phenomenon of cel-
lular convection was discovered by Bénard in 1900
when a horizontal layer is heated below. As surface
tension gradients at a free surface act as tangential
stresses on the adjacent fluids, a dependence of sur-
face tension on temperature will provide a coupling
of temperature and velocity fluctuations at the free
surface.l23] The convection driven by surface tension
gradients is called the Marangoni—Bénard convection.
The Marangoni—-Bénard convection in a single layer
has been such a typical phenomenon since Bénard’s
experiments!!! that many scientists have studied this
phenomenon.[*5 In previous works, most studies on
Marangoni—Bénard instability were carried out for sin-
gle liquid phase systems, and the gas phase adjacent
to the liquid layer was considered to be passive. In
this case, the dynamics of the thermal and mechani-
cal perturbations in the gas was neglected. The heat
transfer across the interface can be described by New-
ton’s cooling law.®] In the dimensionless governing
equations of the system, the Biot number is intro-
duced into the boundary conditions of thermal equi-
librium, i.e. dT/dz 4+ BiT = 0. Here Bi = gh/)\,
where ¢ is the Newton cooling coefficient, h is the
depth of the liquid layer, X is the thermo-conductivity
coefficient. In this case, the system is considered as
a one-sided model. Pearson® obtained the critical
Marangoni number which is defined as o ATh/(uk).
In Pearson’s theory, convective cells cannot appear in

the liquid layer until the temperature difference of the
liquid layer exceeds the critical value. This theory is
correct when the liquid layer is heated from the bot-
tom. Nevertheless, more regular cellular flow patterns
were observed when a hydrocarbon liquid is cooled
from the bottom in Block’s experiment.?) This phe-
nomenon has confused many investigators and most
theoretical analysis on evaporating convection avail-
able till now has been presented with the assump-
tion that the liquid layer is heated from the bottom
or cooled from the top so as to be consistent with
Pearson’s result. Many investigators have focused on
the study of instabilities of evaporating liquid surface
by considering a one-sided model with an evaporation
surface similar to Pearson’s model.[®~9] Recently, Chai
and others(!%1!] have studied experimentally the ef-
fects of evaporating on Marangoni-Bénard convection
in thin liquid layers evaporating at room temperature
and proposed a modified Marangoni number to gauge
the convection stability status in evaporating liquid
layer.

Here we propose a theoretical model of the two-
layer Marangoni—Bénard system with an evaporating
interface assumed to be infinite in the horizontal di-
rection, as shown schematically in Fig.1. A similar
model has been presented at recent international con-
ferences by ourselves and other scientists.['2=14 Both
the top wall and the bottom wall are considered as
rigid perfectly conducting boundaries. The top wall is
assumed to be a porous medium to vapour, through
which the gas phase can pass at a certain velocity,
in order that the evaporation flux and vapour pres-
sure in the system can be controlled. In the basic
state, the liquid is evaporating at a certain steady
evaporating rate, and it is assumed that there is no
convection between the vapour layer and the evapo-
rating liquid layer. By using the depth of liquid layer
H, as the non-dimensional scale for length, the lay-
ers have non-dimensional depths h; = H;/H; and
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hs = 1, where the subscripts 1 and 2 refer to the
vapour and liquid layers, respectively. A tempera-
ture difference AT = T — T} is imposed perpendic-
ular to the evaporating interface. When AT > 0,
the bottom boundary is hotter than the top boundary
(T > Ty). The dimensionless ratio of the fluid proper-
ties are k* = k1 /Ko (thermal diffusivity), 8* = 51/
(volumetric expansion coefficient), x* = x1/x2 (ther-
mal conductivity), u* = p1/pe (dynamic viscosity),
p* = p1/p2 (density) and v* = vy /vs (kinematical
viscosity), respectively. The evaporating interface is
assumed to be flat. The interfacial tension at the in-
terface is considered to be a linear function of tem-
perature: o = og — o (T — Tp), where Tj is the ref-
erence temperature of interface. The governing equa-
tions for each fluid layer are the continuity equation,
the energy equation and the Navier-Stokes equations
with the Boussinesq approximation,'®>16 ie. only
the densities p; (i = 1,2) are dependent on the tem-
perature. At the evaporating interface, the mass flux
J is assumed to obey the Hertz Knudsen equation:!'7]

J=ay %(psm — po(T)), (1)

where « is the accommodation coefficient; M is the
molecular weight of vapour; ps(T') is the saturation
pressure at surface interface temperature T'; po(T) is
the vapour pressure just beyond the interface; and R
is the universal gas constant. To linearize the above
equation, the constitutive equation is obtained:[®!

| M
J:Oéva W(T*Ts)a (2)

where L is the latent heat, p, is the density of the
vapour.

Porous T: T Weet1
[ ]
Z
Vapor H
z Interface t
0 Liquid Hs
T>

d

Fig. 1. Schematic diagram of the definite-depth liquid—
vapour layer system.

We introduce spatial normal perturbations propor-
tional to exp[At + i(kzax + kyy)] into the linearized
full governing equations (see Ref. [18]). Using vy /Ha,
H2/vy, Hy and AT as the scaling factors for veloc-
ity, time, length and temperature, respectively. The
dimensionless linear governing equations of the two-
layer system are formulated in the form of the am-
plitudes of perturbation quantities W;, the velocity
component in the vertical direction z and ©;, the tem-
perature in each layer:

v*(D? — k*)*Wy — Wyen D(D? — K*)W,

— B*Grk?0, = A(D? — K*)Wy, (3)
K*(D? — k*)Oy — Wyenn PrD Oy — Pr agfze“ 11
= APT@]_, (4)

(D? — k*)®W, — Grk? 6, = A\(D? — k*)Ws,
(
(D* - k)0, — Pr% (
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DW, = DW,, Wy — Wy = Ma - E - Bi,, - Os,
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where D is the dimensionless differential operator
d/dz, Ma is the Marangoni number defined as
orATHs/(puaka), where AT = ATy + ATy, ATy and
AT, are the temperature differences in the vapour and
liquid layers, respectively; Pr is the Prandtl number
of fluid defined as vo/k2 , A is the time growth rate,
k is the dimensionless wavenumber, and dTyes;/dz
is the temperature gradient of fluid-i at the steady
state. Wi .1 is the dimensionless evaporation velocity
of vapour leaving the interface in the basic state. The
evaporating Biot number induced by liquid evapora-
tion is defined as

Bigy, = api L Hy\/M /27 RT3 | x, (10)

and the dimensionless numbers E is defined as

E=(1— p")(roxa)/(p*orLHs). (1)

The linear equations (3)—(6) together with its bound-
ary conditions (7)—(9) are discretized by using the
spectral numerical method (Tau-Chebychev)['8! and
then are resolved as the eigenvalue problem. The com-
plex growth rates A were computed in complex double
precision.

The alcohol liquid with its own vapour is selected
in the present study and the depth of the liquid layer
is taken to be 1mm. The ratios of physical proper-
ties (see Ref.[19]) and dimensionless numbers of the
liquid—vapour system are v* = 34.7, p* = 2.3 x 1074,
x* = 85x 1072, k* = 6.1 x 102, Pr = 14.9, and
Gr = 0 (here considered in microgravity condition or
for a very thin liquid-layer), respectively. The neu-
tral stability curves of the system with dimensionless
evaporation velocity Wi..;; = 0.5 are plotted in Fig. 2
for different evaporation Biot numbers. In our two-
sided model, the evaporating Biot number presents
the capability of heat exchange induced by evaporat-
ing at the liquid—vapour interface. In Fig. 2, the criti-
cal Marangoni number corresponding to the minimum
of each curve increases with the evaporating Biot num-
ber; this means that the liquid layer becomes more sta-
ble with the increase of Big,. When the Bi,., number

p*(D? + k)W, — (D? + E* )W, = k2
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reduces below a certain value, the critical Marangoni
number Ma,. of the system is less than zero. This
means that in the two-sided model, the liquid—vapour
layer system become instable even while it is cooled
from below. This is a new mechanisms of evaporat-
ing on the stabilities of the layer that we found in
our two-sided model. In the case of Bi., = 0, the
evaporating heat passing through the interface is zero
and no perturbation of evaporation velocity, the re-
sults of instability analysis is the classic Marangoni—
Bénard convection in a two-layer system described in
Refs. [16,20]. When Bi., — oo, the perturbation of
the temperature at the interface is zero, and the sys-
tem is absolutely stable.
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Fig. 2. Marangoni number versus dimensionless

wavenumber for different evaporation Biot numbers in the
definite-depth system (Gr = 0, Wyer1 = 0.5).
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Fig.3. Marangoni number of the liquid layer versus
dimensionless wavenumber for different evaporation Biot
numbers in the definite-depth system (Gr = 0, W,y =
0.5).

Figure 3 gives a different Marangoni number corre-
sponding to the liquid layer, Mas versus wavenumber,

where Mas is defined as o ATy Ho/(uakz). The rea-
son why Mas is introduced is that in the definition
of Ma, the temperature difference of the liquid layer
AT5 is not able to be obtained directly. The relation
between the temperature difference of two layers and
that of the liquid layer in the definite-depth liquid—
vapour system (see Ref. [12]) is

AT, = (JLH: + 1 AT)He [ (xo H1 + x1Ha).  (12)

From Eq. (12), even the liquid-vapour system is cooled
from below (AT < 0 and Ma < 0 in Fig. 2), the tem-
perature difference in the liquid layer can also be pos-
itive (ATy > 0 and May > 0 in Fig. 3) for the positive
value of JLHy. The corresponding critical Marangoni
numbers of the liquid layer, Masc for different Bi,,
are positive. This is the second mechanism of evap-
orations on the Marangoni instability in the definite-
depth liquid—vapour system.

In summary, classical theories have only success-
fully explained the convection in a liquid layer heated
from bottom without evaporation. However, these
theories are unable to explain the convection in an
evaporating thin layer, especially with the liquid layer
cooled from bottom. In our two-sided definite depth
model, instability occurs even when the evaporating
liquid layer is cooled from bottom. This new phe-
nomenon we found in the two-sided model of liquid—
vapour system is impossible to exist in the classical
one-sided model. In our further studies, influence
of the interface deflection and vapour-recoil effect on
the instability of the system and the evaporating Biot
number will be discussed.
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