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Abstract

The linear di!usion}reaction theory with "nite interface kinetics is employed to describe the dissolution and the
growth processes. The results show that it is imperative to consider the e!ect of the moving interfaces on the
concentration distribution at the growth interface for some cases. For small aspect ratio and small gravity magnitude, the
dissolution and the growth interfaces must be treated as the moving boundaries within an angle range of 03(c(503 in
this work. For large aspect ratio or large gravity magnitude, the e!ect of the moving interfaces on the concentration
distribution at the growth interface can be neglected except for c(!503. ( 1999 Published by Elsevier Science B.V.
All rights reserved.
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1. Introduction

The structure and properties of the crystal prod-
ucts grown from solution are signi"cantly in-
#uenced by the concentration distribution adjacent
to the crystal interface. Xu et al. [1}3] have studied
the crystal growth from solution using a two
dimensional cuboidal model, and revealed the
characteristics of solution crystal growth under
microgravity. They simpli"ed the crystal dissolu-
tion and growth processes as the pure di!usion
processes. In fact, the solution in contact with the

growth crystal interface is non-uniformly super-
saturated [4], and the buoyancy-driven convection
in#uences the non-uniformity supersaturation.
Wang and Hu [5,6] modi"ed their model by em-
ploying the linear di!usion}reaction theory with
"nite interface kinetics, and discussed the e!ect of
the microgravity-driven convection on the solution
concentration distribution at the growth interface.
Since the kinetic coe$cient for the dissolution pro-
cess was unavailable, Sun et al. [7] had to employ
the same value as used in the growth process. Con-
sidering generally that a substance dissolves at
a faster rate than it crystallizes, Wang and Hu [5,6]
retained the pure di!usion dissolution process un-
der the same conditions of temperature and con-
centration. Careful attention must be shown to the
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Fig. 1. The schematic diagram of generic model.

e!ect of the concentration boundary at the dissolu-
tion interface on the concentration distribution at
the growth interface. Hu and You [8] numerically
studied the #oat zone crystal growth, and pointed
out that the change of the concentration boundary
conditions at the melt interface may result in the
change of the concentration distribution at the
crystal interface. Therefore, in order to investigate
the e!ect of the concentration boundary conditions
at the dissolution interface on the concentration
distribution near the growth interface, the di!u-
sion-reaction theory with "nite interface kinetics
must be employed to describe the dissolution pro-
cess. Strictly speaking, the crystal dissolution and
crystallization gives rise to a moving boundary
problem. In previous papers [5}7,9], both the
growth rate and the dissolution rate are much
lower than the typical convection velocity, the ac-
tual moving boundaries were simpli"ed as "xed
interfaces. Based on the mass balance relationship
between growth and dissolution, Wang and Hu
[10] recently further improved the previous model.

In the present paper, the di!usion}reaction the-
ory with "nite kinetics was employed to describe
both dissolution and growth processes, and the
growth and dissolution interfaces were regarded as
the moving interfaces. In the following section the
model and the numerical scheme are described. In
Section 3 we present and discuss the results. A sum-
mary is given in Section 4.

2. Mathematical model and numerical scheme

Similar to the simpli"cation in previous papers
[5,6,10], this study adopts a generic model, in
which the sodium chlorate (NaClO

3
) crystal grows

in a two dimensional rectangular enclosure "lled
with sodium chlorate aqueous solution after su$-
cient time in the steady microgravity background g,
as shown in Fig. 1, and c is the gravity orientation
angle to the !>* axis. Two vertical walls of the
cavity are made of the NaClO

3
seed crystal and the

NaClO
3

sources, respectively. The dissolution in-
terface is maintained at a higher temperature
¹*

S
compared to ¹*

C
at the dissolution interface.

The top and bottom walls are impermeable and
adiabatic. The dimension in Z* direction is large

enough, so the two dimensional model is used. For
the quasi-steady state crystal growth, the assump-
tion of equal the growth velocity and the dissolu-
tion velocity is implicit. The aspect ratio of the
cavity is de"ned as j"b/a of height b and width a.
The Boussinesq approximation is applied. In the
relative coordinate system, which is "xed at the
dissolution interface, the two dimensional steady-
state governing equations for conservation of mass,
momentum, energy, and concentration in non-di-
mensional form are given as follows:
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where the starred quantities denote dimensional
values, C*

S
and C*

C
are the equilibrium solubility at

¹*
S

and ¹*
C
, respectively, <

0
"i/a is a typical velo-

city, i the thermal di!usivity l the kinematic viscos-
ity and D the solution di!usion coe$cient.

Ra
5
, Ra

#
, Pr and Le are, respectively, the thermal

Rayleigh number, solute Rayleigh number, Prandtl
number and Lewis number, which are de"ned as
follows:
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where g is the terrestrial gravity acceleration, g
0

the ratio of local gravity to earth's gravity,
a"1/o*(Lo*/LC*) is the solutal expansion coe$c-
ient and b"!1/o*(Lo*/L¹*) the thermal expan-
sion coe$cient.

With the linear di!usion}reaction theory, the
non-dimensional boundary conditions associated
with this model are
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where K
C
"k*

#
a/D and K

S
"k*

4
a/D are the non-

dimensional growth and dissolution interface ki-
netics, respectively. K

C
can be calculated with the

known dimensional growth kinetic coe$cient
k*
#

[11]. But for the simpler model in which the
pure di!usion dissolution process and the "xed
interfaces are assumed, the boundary conditions
are simpli"ed by adopting K

S
PR and <

!#
"0.

In Eq. (2.4) K
S
must be solved using the follow-

ing mass balance relationship between growth and
dissolution for the steady model:
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where M
C

and M
S

are the solute #ux at growth
interface and dissolution interface, respectively.
o
#3:

is the non-dimensional crystal density. The
crystal density di!erence between the seed and
the source is neglected in this work.
<

!#
"!:j
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C
d> is the non-dimensional

crystal average growth velocity which must be iter-
atively solved. Constant A"D(C*

S
!C*

C
)/o*

#3:
i

arises from the di!erence between the typical velo-
city of #uid #ow and the typical crystal growth
velocity.

Eq. (2.1) associated with boundary conditions
expressed by Eq. (2.4) is numerically solved using
the "nite di!erence method. The numerical scheme
used in this work is similar to the previous paper
[10]. The simulation process is presented here
again. The calculation begins with the initial values
of unknown K

S
and <

!#
. In order to obtain the

accurate results, two successive convergence cri-
terions are employed. The "rst one is that the
maximums relative error in the dependent variables
is less than 10~6 between two successive iterations
for a "xed K

S
. <

!#
can be solved in each iteration.

After the "rst criterion is achieved, the mass bal-
ance relationship between growth and dissolution
must be checked. The study requires that the rela-
tive error in the solute #ux is less than 10~2 in this
work. If the second requirement fails, the "rst circu-
lation calculation continues with a new K

S
ob-

tained by Eq. (2.5).
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Fig. 2. Concentration pro"les at the growth interface.

3. Results and discussion

In this paper, the same thermophysical proper-
ties and the operating conditions of the sodium
chlorate solution as in previous papers [5,6,10]
are used, thus the relationship Ra

5
"0.385 Ra

#
"

5.175]107g
0
remains. Since the solution #ow is the

concentration dominated, the convection driven by
both thermal gradient and concentration gradient
must be considered. Ra

5
stands for the magnitude of

gravity. Because the e!ects of moving interfaces
and the concentration boundary conditions at dis-
solution interface can be certainly distinguished
from the given results, this work does not separ-
ately present the two e!ects.

In the resulting "gures, case 1 represents the new
model, in which the dissolution process is also
described by the di!usion-reaction theory and the
e!ect of moving interfaces are considered; case 2
stands for the simple model, in which the dissolu-
tion process is described by the pure di!usion
process and the interfaces are assumed as "xed
boundaries. Figs. 2 and 3 show the concentra-
tion pro"les at the growth and the dissolution
interfaces, respectively. For j"0.2, Ra

5
"1000,

c"!303, Fig. 3a illustrates that the concentra-
tion at the dissolution interface is non-uniform, but
the value is very close to the solubility, the maximal

relative di!erence is not larger than 0.05%, and the
non-uniformity is small enough to be neglected for
case 1, which means that the dissolution process
is almost controlled by the di!usion process.
However, Fig. 2a shows that the concentration at
the growth interface of case 1 is obviously larger
than that of case 2. According to the above results,
it is impossible to absolutely conclude that
the concentration boundary conditions at the dis-
solution interface have nothing to do with the con-
centration distribution at the growth interface, but
it is an a$rmation that the moving interfaces are
the predominant factors. For comparison, Fig. 2b
and 3b show that for the case of j"0.2,
Ra

5
"10 000, c"303, the di!erence of /

S
between

cases 1 and 2 is obvious, interestingly, /
#
of case 1

is very close to that of case 2. Thus, it is not hard
for us to conclude that the e!ect of the concentra-
tion boundary conditions is limited, but the e!ect of
moving interfaces on the concentration distribution
at the growth interface is obvious in some cases.
We confer that the reason why /

#
of case 1 is

very close to that of case 2 for large Ra
5
is that

for j"0.2, Ra
5
"10 000, c"303 the convec-

tion velocity is much faster than the crystal growth
velocity. Thus, the e!ect of the moving interfaces
on the concentration distribution relatively
decreases.
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Fig. 3. Concentration pro"les at the dissolution interface.

In order to approve this presumption, Fig. 4a, 4b
and Fig. 5 illustrate the non-dimensional max-
imum solution velocity <

.!9
, the interfaces moving

velocity <
B
"A<

!#
and the ratio <

B
/<

.!9
versus

the gravity orientation c, respectively. From Fig. 4a
it can be seen that <

.!9
increases as Ra

5
or j in-

creases, and the change is very di!erent at various
orientations. For example, the change is very lim-
ited for c(!503, but obvious for c*!503, es-
pecially for large positive orientations. For j"0.2,
Ra

5
"10 000 and j"0.4, Ra

5
"1000, it is can be

also see that <
.!9

increases as c increases, and for
c(!503 the amplitude of <

.!9
is small, but for

c*!503 <
.!9

almost linearly increases until
c reaches to 703, after which the change tends to be
gradual. For j"0.2, Ra

5
"1000, the change of

<
.!9

with c is limited. Fig. 4b shows that <
B

is
much smaller than<

.!9
, and the change of <

B
with

Ra
5
and j is almost similar to that of <

.!9
. For

j"0.2, Ra
5
"1000, the change of <

B
with c is also

limited, but for j"0.2, Ra
5
"10 000 and j"0.4,

Ra
5
"1000 <

B
slowly increases as c increases when

c(!503; when !503)c)503,<
B

signi"cantly
increases; when c'503, <

B
decreases. The reason

for the last behavior, the decreases of <
B

when
c'503, is that the #uid vortex moves upward
along the growth interface, which then results in the

local concentration gradient, !L//LX, at the
lower part of the growth interface signi"cantly de-
creases as illustrated in Fig. 6.

Fig. 5 clearly illustrates the e!ect of the moving
interfaces on the crystal growth environment. It is
obvious that <

B
/<

.!9
decreases as Ra

5
or j in-

creases. Similarly, the change of<
B
/<

.!9
is di!erent

at various orientations. For example, <
B
/<

.!9
sig-

ni"cantly decreases as Ra
5

or j increases for
c(!503, but weakly decreases for c'503. For
"xed Ra

5
and j, the change of <

B
/<

.!9
with c is

more obvious. For the three cases considered, as
c increases, <

B
/<

.!9
signi"cantly decreases when

c(!503, after then, <
B
/<

.!9
changes smoothly.

When c'503, <
B
/<

.!9
slightly increases only for

j"0.2, Ra
5
"1000.

To date, we are sure that the e!ect of the moving
interfaces on the concentration distribution at the
growth interface must be considered for the cases of
small Ra

5
and j which means that the dissolution

and growth interfaces must be treated as the mov-
ing boundaries so as to obtain the accuracy concen-
tration distribution at the growth interface, except
for only in a limited range of c (e.g., 03)c)503 for
j"0.2, Ra

5
"1000). For large Ra

5
or large j, the

decision to consider these e!ects depends on the
gravity orientation: when c is small (e.g., c(!503
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Fig. 4. Dimensionless maximum solution velocity depending on
gravity orientation (a) and dimensionless interfaces moving ve-
locity depending on gravity orientation (b).

Fig. 5. Ratio of interfaces velocity to solution maximum velo-
city versus gravity orientation.

Fig. 6. Local concentration gradient !L//LX along the
growth interface.

in this work), the e!ect must be considered; when
c is large (e.g., c*!503), the simple treatment can
give the accuracy concentration distribution at the
growth interface.

4. Summary

The concentration distribution for a quasi-
steady state of solution crystal growth in a two-

dimensional rectangular container in low gravity is
numerically investigated in this paper. A linear dif-
fusion-reaction theory is employed to describe the
dissolution and the growth processes, and the e!ect
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of the moving interfaces on the concentration dis-
tribution at the growth interface is considered.
A comparison of this new model is made with the
simple model used in previous papers [5,6], in
which the dissolution process is treated as the pure
di!usion process and the moving interfaces are
assumed as "xed boundaries. It is shown that it is
imperative to consider the e!ect of the moving
interfaces on the supersaturation at the growth
interface for some cases. For small aspect ratio and
small gravity magnitude, because compared with
the convection velocity the crystal growth and dis-
solution velocities are not small enough to neglect,
except for some orientations, e.g., 03)c)503 for
j"0.2, Ra

5
"1000 in this work, the dissolution

and the growth interfaces must be treated as the
moving boundaries. For large aspect ratio or large
gravity magnitude, the e!ect of the moving interfa-
ces on the concentration distribution at the growth
interface can be neglected except for c(!503.
Through the comparison made in this work, a

further understanding of the feasibility and the lim-
itation of the simple treatment has been achieved.
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