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Scaling approach to conical indentation in elastic-plastic solids
with work hardening
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We derive, using dimensional analysis and finite element calculations, several scaling relationships
for conical indentation in elastic-plastic solids with work hardening. Using these scaling
relationships, we examine the relationships between hardness, contact area, initial unloading slope,
and mechanical properties of solids. The scaling relationships also provide new insights into the
shape of indentation curves and form the basis for understanding indentation measurements,
including nano- and micro-indentation techniques. They may also be helpful as a guide to numerical
and finite element calculations of indentation problemsl1@®8 American Institute of Physics.
[S0021-897€08)04215-1

I. INTRODUCTION In this article, we extend the scaling approach to the
analysis of conical indentation in elastic-plastic solids with
For nearly one hundred years, indentation experimentgiork hardening. We derive, using dimensional analysis and
have been performed to obtain the hardness of matérialsfinite element calculations, simple scaling relationships for
Recent years have seen significant improvements in indentdsading and unloading curve, initial unloading slope, contact
tion equipment and a growing need for measuring the meeepth, and hardness. We show that hardness is a function of
chanical properties of materials on small scales. With thébasic mechanical properties of solids, such as Young's
improvement in indentation instruments, it is now possible tomodulus, initial yield strength, and work-hardening expo-
monitor, with high precision and accuracy, both the load anchent. The new results are compared with the classic results of
displacement of an indenter during indentation experimentFabor for conical indentation in metais’ These scaling re-
in the respective micro-Newton and nanometer réifyln  lationships provide new insights into the shape of indentation
addition to hardness, basic mechanical properties of matergurves and should, therefore, be useful for the interpretation
als, such as Young's modulus, yield strength, and work-of results obtained by instrumented indentation technigues,
hardening exponent, may be deduced from the indentatioimcluding nano- and micro-indentation measurements. They
load versus displacement curves for loading and unloadingnay also be helpful as a guide to numerical and finite ele-
For example, Oliver and Pharand Doerner and Nfxhave  ment calculations of conical indentation problems.
proposed methods for determining the hardness and Young'’s
mod_ulus from the_ peak load and the initial slope of the UN DIMENSIONAL ANALYSIS
loading curves. Finite element methods have also been used
to extract the mechanical properties of materials by matching We consider a three-dimensional, rigid, conical indenter
the simulated loading and unloading curves with that of theof a given half angleg, indenting normally into an elastic-
experimentally determined oné&&° plastic solid with work hardening. The stress—stréin-¢)
Recently, significant efforts have been made to bettecurves of the solids under uniaxial tension are assumed to be
understand the general form of indentation loading and ungiven by
loading curves. For example, seyeral empl'rlcal formulae o=Ee, for e<Y/E,
have been proposed for the loading curves in terms of the . 1)
Young’s modulus and hardne¥st? Loading curves have o=Ke", for e=Y/E,
also been discussed using energetic considerations of revekghereE is the Young’s modulusy is the initial yield stress,
ible and irreversible parts of the indentation inducedK is the strength coefficient, and is the work-hardening
deformations®** Using dimensional analysis and finite ele- exponent® To ensure continuity, we not&=Y(E/Y)".
ment calculations, we have recently derived scaling relationConsequently, eitheE, Y, andK or E, Y, andn are suf-
ships for indentation in elastic-perfectly plastic solids usingficient to describe the stress—strain relationship. We use the
conical indenters>*° latter set of parameters extensively in the following discus-
sions. Whem is zero, Eq(1) becomes the model for elastic-

3Electronic mail:Yang_T. Cheng@notes.gmr.com perfectly plastic solids. For most metals,has a value be-
YElectronic mail: zhengzm@LNM.imech.ac.cn tween 0.1 and 0.5 We further assume that the friction
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are all dimensionless.
' Based on the above dimensional analysis, we can make
several observations for a rigid conical indenter with a given

1F where I1,=F/Eh?, Ilz=h./h, II;=Y/E, v, n, and 6

deformed
surface

"""""""""" REAN

""" original
surface

half angle,, indenting into an elastic-plastic solid with work
hardening. First, the force on the indentér,is proportional
to the square of the indenter displacemdnt,Second, the
contact depthh., is proportional to the indenter displace-
ment,h, i.e., the ratioh./h, is independent of the indenter

displacementh, and is a function o¥/E, v, n, for a givené.
Consequently, the hardness, defined in &), is indepen-
dent of indenter displacemerit, or indenter loadF.
coefficient at the contact surface between the indenter and

the solid is zero. Unlike the cases of indenting into elastic- oB. Dimensional analysis of unloading

rigid-plastic solids, this problem involving elastic-plastic sol-

FIG. 1. lllustration of conical indentation.

ids with work hardening has no analytical solution.

A. Dimensional analysis of loading

Because unloading takes place after loading during
which the indenter reaches the maximum depth, the
force, F, is now a functionf, of seven independent gov-
erning parameters: Young's modulug)( Poisson’s ratio

In general, the quantities of interest from the loading(¥), initial yield strength ), work-hardening exponentj,

portion of indentation measurements include the forgg (
and the contact deptth() (Fig. 1), from which the contact
radius @) and the hardness under lodd)(can be evaluated,

a=h, tan 6, v
F

H=—. 3)
wa

For an isotropic elastic-plastic solid obeying the work-
hardening rule Eq(1), the two dependent variables, and
h., must be functionsf, andg, of all the independent gov-
erning parameters, namely, Young’'s modul&3,(Poisson’s
ratio (v), initial yield strength ), work-hardening exponent

(n), indenter displacemenh], and indenter half angl&):

F=f_(E,»,Y,n,h,0), (4)
h.=g(E,»,Y,n,h,0). (5)

Among the six governing parametets, v, Y, n, h,

and 6 two of them, namelyE andh, have independent di-
n, 6, F, andh, are

mensions. The dimensions ¥f v,
then given by

[Y]=[E]
[v]=[EI’[h]°,
[n]=[E]’[h]°,
[61=[EI°[h1°,
[FI=[EI[h]%,
[he]=[h].

(6)

Applying theII theorem in dimensional analysi$we ob-

tain:
Im,=1,I14,v,n,0), or equivalently,
F=Eh’II(Y/E,v,n,0), (7)
[g=II4(114,v,n,0), or equivalently,
he=hIl4(Y/E,v,n,0), ®)

indenter displacementhj, maximum depth If,,), and in-
denter half angld6):

F=fy(E,»,Y,n,h,h,,6). 9)
Dimensional analysis yields

IT,=1I1(II,IT;,v,n,6), or equivalently,

F=EhI (I h v,N a) (10
“WE'h, ")

wherell, =F/EN?, I1;=Y/E, II,=h/h,, », n, and 6 are
all dimensionless. In contrast to loading, Efj0) shows that
the force,F, is, in general, no longer simply proportional to
the square of the indenter displacemdntt also depends on
the ratio,h/hy,, through the dimensionless functidh, .

We now consider the initial unloading slopd=/dh.
Taking the derivative with respect to the indenter displace-
ment and evaluating it dt,,, Eq. (10) becomes

dF

an =Ehp,

h=hp

Y Y
Hy E,l,v,n,@ +2Hy E,l,v,n,b’
11
Consequently, the dimensionless quantity,

1 dF 1 Yl ol Yl
E_hm% - y E! lvlnlg + y E! 1V1n10

h=hp

Y
EH(s(E,V,n,a), (12)

is independent ofh/h, and is a function, Ils, of
Y/E, v, n, and#é. Equation(12) shows that the initial un-
loading slope is proportional th,, in each indentation ex-
periment for whichE, v, Y, n, and @ are fixed.

lll. FINITE ELEMENT ANALYSIS

Finite element calculations using ABAQ&%have been
carried out to illustrate the scaling relationships given by
Egs. (7), (8), (12), and to evaluate the dimensionless func-
tions II1;(Y/E,v,n,6)(i=a,B,8). In a previous study>'®
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TABLE |. Parameters used in finite element calculations to reveal the scaling relationships in conical indenta-
tion using a rigid, conical indenter of half angle 68° indenting in a solid with a Poisson’s ratio 0.3.

Case E(GPa3 Y(GPa

=}

Case E(GPa Y(GPa n Case E(GPa Y(GPa n

1 200 0.04 0 9 200 2.0 0 17 100 9.0 0
2 200 0.08 0 10 200 4.0 0 18 100 7.0 0
3 200 0.12 0 11 200 6.0 0 19 100 4.0 0
4 200 0.16 0 12 200 8.0 0 20 100 1.0 0
5 200 0.4 0 13 200 10 0 21 100 0.5 0
6 200 0.8 0 14 200 12 0 22 100 0.1 0
7 200 1.2 0 15 200 16 0 23 100 0.05 0
8 200 1.6 0 16 200 20 0 23 100 0.05 0
24 200 20 0.1 39 200 20 0.3 54 200 20 0.5
25 100 8 0.1 40 100 8 0.3 55 100 8 0.5
26 200 12 0.1 41 200 12 0.3 56 200 12 0.5
27 200 8 0.1 42 200 8 0.3 57 200 8 0.5
28 100 2 0.1 43 100 2 0.3 58 100 2 0.5
29 200 2 0.1 44 200 2 0.3 59 200 2 0.5
30 200 1.6 0.1 45 200 1.6 0.3 60 200 1.6 0.5
31 100 0.6 0.1 46 100 0.6 0.3 61 100 0.6 0.5
32 200 0.8 0.1 47 200 0.8 0.3 62 200 0.8 0.5
33 200 0.4 0.1 48 200 0.4 0.3 63 200 0.4 0.5
34 100 0.1 0.1 49 100 0.1 0.3 64 100 0.1 0.5
35 200 0.16 0.1 50 200 0.16 0.3 65 200 0.16 0.5
36 100 0.06 0.1 51 100 0.06 0.3 66 100 0.06 0.5
37 200 0.08 0.1 52 200 0.08 0.3 67 200 0.08 0.5
38 200 0.04 0.1 53 200 0.04 0.3 68 200 0.04 0.5

we have examined these functions in detail for elasticwith or without work hardening, as expected from dimen-
perfectly plastic solidsi.e., n=0.0), including the effects of sional analysis Eq(7). This square dependency is further
Poisson’s ratigpy=0.2, 0.3, and 0.4 For the present calcu- illustrated in dimensionless form in Fig. 3 for the loading and
lations, the frequently used half angle of 68° for the rigidunloading curves scaled by the respective maximum depth,
indenter and a typical Poisson’s ratio of 0.3 for the solid areh,,, and maximum forcef,,. Since work hardening does
chosen to illustrate the essential physics of conical indentanot change the square dependence, loading curves from coni-
tion in elastic-plastic solids with work hardening. To sim- cal indentation alone cannot be used to detect whether mate-
plify notation, II;,(Y/E,n)(i=«,B,6) is used instead of rial work-hardens.
IT,(Y/E,0.3n,68°) (i = «, 8, ) in the following discussions. The relationships betwedf/Eh? andY/E are illustrated

The rate-independent, incremental theory of plasticityin Fig. 4. Clearly, these two quantities lie on a single curve
in ABAQUS was used for the finite element calculations.for each value of, as predicted from dimensional analysis.
In particular, the plasticity theory uses the Mises yield sur-Thus, F/Eh? is a function of bothY/E and n, i.e., F
face model with associated plastic flow rule. The harden=Eh?II (Y/E,n). As expected, work hardening has a
ing rule used was that of isotropic hardening and the hardgreater effect on the force required to move the indenter for
ening curves were given by Edl). Table | summarizes
the parameters:, Y, n, used for the finite element calcu-
lations. The finite element model has been discussed in detail o000
previously*>*®n particular, it was shown that the results of o n=0.0
finite element calculations for indentation loading curves ap- 50000 | g 4
proach that predicted by slip-line field theory for rigid-plastic
solids and agree with that for elastic solids.

F= 202000h%""

40000 | |°n=0.3

E__; 30000 | - n=0.5]  F=116000h**
= ‘ R? = 0.9998
IV. RESULTS AND DISCUSSION w
20000 [
A. Indentation loading curves
: . 10000 |
Figure 2 shows examples of the calculated loading 0
curves for several sets of valuesif Y, andn. The loading 0
curves were fitted with a power functioRk:=ah*, wherea 0.00 0.10 0.20 0.30 0.40 0.50
andx are two fitting parameters. The exponext,obtained
from all simulations, such as that shown in Fig. 2 is between h (pm)

1.98 and 2.03. The finite element calculations thus show thagIG. 2. Examples of indentation curves obtained from finite element analy-

the force,F, is proportional to the square of the displace-sis: Loading and unloading curves in a solid witk 200 GPayY =2.0 GPa,
ment,h, for conical indenter indenting a homogeneous solidand several values of.
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FIG. 3. The same loading and unloading curves shown in Fig. 2 scaled by
the respective maximum depth,,, and maximum forcef,, .

smaller ratio ofY/E. For a large ratio ofY/E, the value of
F/Eh? approaches that for purely elastic contact with or
without work hardening. Figure 4 shows that, in generaI,Y*/E, where the “
loading curves alone cannot uniquely determine bdtk

and n. Thus, caution must be exercised when mechanical

FIG. 5. Approximate scaling relationship betweeEh? and Y* /E.

To further study the question of what can be obtained
from indentation loading curves, we note that a simple, ap-
proximate scaling relationship exists betweEHEh? and
effective yield strength,Y*, is given by

Y*=(YK)Y2 (13

properties of solids are extracted by matching the computeg Fig. 5, we plotF/Eh? vs Y*/E. The two quantities lie
indentation loading curves with that obtained from eXperi'approximately on a single curve, i.e.,

ments.
20
N-: 15 g g [} é
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FIG. 4. Scaling relationship foF/Eh?=II(Y/E,n): (a) For 0.0<Y/E

<0.1; (b) for 0.0<Y/E<0.01.

F=Eh2II(Y/E,n)~Eh?II (Y*/E,0). (14)

Consequently, it is possible to estimate the effective yield
strength,Y*, from indentation loading curves provided that
the Young’s modulusk, is known. ConverselyE may be
obtained ifY* is known.

B. Contact depth, sinking-in, and piling-up

Figure 6 shows examples of calculatedvs h for sev-
eral sets of values dE, Y, andn. The predicted linear de-
pendence, Eq@8), is evident. Figure 7 displays the relation-
ship between the calculatéd /h andY/E for several values
of n. It is apparent that the ratib./h is a function of both
Y/E andn, as predicted by dimensional analysis. Further-
more, the value ofi;/h can be either greater or smaller than

0.6
05

~ 04

E

S 03

.co o n=0.0
02 | o n=0.1
01 L o n=0.3

a n=0.5

00 1 1 1 L 1

00 01 02 03 04 05 06

h (um)

FIG. 6. Examples showing the linear relationship between contact depth,
h., and indenter displacemerit, obtained from finite element calculations
for E=200 GPa,\Y=2.0 GPa, and several valuesrof
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FIG. 8. Examples showing the linear relationship between initial unloading
slope,dF/dh, and indenter displacemertt, obtained from finite element
calculations for several values &f, Y, andn.

FIG. 7. Scaling relationship fon./h=I14(Y/E,n). The dashed line indi-
catesh./h=1.0.

one, corresponding to the “piling-up” and ‘“sinking-in” of Y
the displaced surface profiles, respectively. For largg, 1— 2 dF 1,2 H,S(E,v,n,ﬁ)
-V -V

sinking-in occurs for all values af>0. For smallY/E, both hll (15)
sinking-in and piling-up may occur depending on the degree ~ Ea dhj,_, ~ tan wlY e

of work hardening. In the case of severe work hardening g

(i.e.,n=0.5), sinking-in is expected even for very small val- 2 —AQo
ues of Y/E, whereas piling-up is expected for elastic- We evaluate[(1~»7)/Ea] (dF/dh)|h:hm for ¢=68

perfectly plastic solids and for solids with a small work- @1d»=0.3. The results are plotted againSE in Fig. 102' It
hardening exponerte.g.,n=0.1). is apparent from Fig. 10 that the quantify(1—v°)/

These simulation results are expected from analyticaF@l (dF/dh)[n=p_is roughly independent o¥/E and n.
theories of conical indentation in elastic solids of Snedtfon, The numerical value, obtained from averaging all the cases
where sinking-in occurs, and in rigid-plastic solids of Presented in Fig. 10, is given by
Lockett?® where piling-up occurs. They are also consistent  1_ ,2 4p
with experimental observations of sinking-in and piling-up — = ~2.17+0.05. (16)

- - . Ea dh| _

phenomena reported in the literature. For example, in metals h=h

such as Cu and mild-steel, wheYéE is small, sinking-inis  gqation(16) shows that, in principle, the elastic constant,
usually observed in fully-annealed Specimens, zvg/hereagl(l_ %), may be calculated from the initial slope of un-
piling-up is seen in heavily work-hardened sampfe&:**In loading curves, provided that the contact radaysis known.
genera!, therefore, piling-up and sinking-in p_henomena are  Equation(16) should be compared with a general rela-
determined byY/E, as well as the work-hardening exponent, tionship between the initial unloading slope
n. [(d F/dh)|h:hm], the contact radiusa), Young’s modulus

(E), and Poisson’s ratioy):

m

C. Initial unloading slope, contact area, and Young's
modulus

Figure 2 also shows examples of calculated unloading

curves. The unloading slope was obtained from a linear fit to 8.0
the first two or three points on the unloading curvéare < % o n=0.0
was taken so that there were sufficient number of points = 7.0 1% o n=0.1
close together to represent initial unloadindhe initial 2 o °g > n=0.3
unloading slopes are plotted against the maximum degth  if 6.0 A s n=0.5
in Fig. 8 for several values df,,,. A linear relationship be- & L oy 8
tween the initial unloading slope and the maximum depth X 59 ‘_’AAMA o 4
is evident, confirming the predictions of E{.2). From Fig. u:.l' a o 7 o
9, it is clear that (Eh,,) (dF/dh)|h:hm is a function of = 40 | 4 & 8 o ;
both Y/E andn, i.e., (L/Ehy,) (dF/dh)|h:hm:H5(Y/E,n), E‘
as given by dimensional analysis. 3.0 . ' ! L

As an application of the scaling relationships, we con- 0.00 0.02 0.04 0.06 0.08 0.10
sider the relationship between the initial unloading slope, the Y/E
contact radius, and Young's modulus of materials. Using
Egs.(2), (8), and(12) we obtain FIG. 9. Scaling relationship for (Eh)dF/dh=1I(Y/E,n).
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FIG. 10. Relationship betwediil— v?)/Ea] (dF/d h)|h:r1m andY/E.

FIG. 11. Relationship betwedn/Y andY/E for several values ofi.
1-v? dF ) an
Ea dh _ 7

m

illustrated in Fig. 11. It is apparent that, over the practically

) o . ) o relevant range of//E, the ratioH/Y is not a constant. The
Equation(17) was initially derived for indentation into elas- hardnessH, depends orY, E, andn. As expected, work

. . 22,26 . . . . . . : ) L) ) . L]

tic solids™ Using the infinitesimal theory of continuum  p4rqening has a greater effect on the hardness value for small
mechanics, we have recently generalized it to the initial Unatio of Y/E. For large ratio ofY/E, the hardness value ap-
Ioadi.ng in elastic-plf';lsti70 solids using indenters with aXisym'proach 1.7 times the initial yield strengt¥, and is insensi-
metric smooth profile&” Furthermore, we have shown that (e 1o n. For small ratios ofY/E, the hardness value can be
Eqg. (17) holds true even for materials with work hardening many times that of the initial yield strength

and residual stress. _ o Tabot* introduced the concept of “representative yield
While Eq. (17) was derived using linearized boundary gyess y,. He showed that, for conical indentation in met-
conditions and infinitesimal theory of continuum mechan|cs,a|s, the hardness is about 3 timés, whereY, is the yield
our finite element calculations take into account nonlineakiyagss at a representative straig, of 8—10%. Following
effects, including large stra?n and mpving co_ntact bound-rapors idea, we evaluated/(K D) and noted an approxi-
aries. 12'herefore, the small difference in numgrlcal values fop te scaling relationship betweeti(K e}) and Y/E, if the
[(1-»*)/Ea] (dF/dh)|n_p between that given by EQSs. yqjye for strain,e,, is taken to be 10%. In Fig. 12, we plot
(16) and (17) is not unexpected. In fact, Tanaka and H/(0.10'K) againstY/E. All the data points shown in Fig.
Koguch?® and Bolshakov and Phafrhave shown tha(1 11 lie approximately on a single curve. Thus, the concept of
—1?)/Ea] (dF/dh)|,-, is about 2.09 and 2.16, respec- representative strain seems applicable.
tively, after taking into account the finite radial displace- It is also evident thaH/Y is a function ofY/E and is,
ments of points along the surface of contact. While theirtherefore, not a constant over the wide rangeYoE (Fig.
analyses were for conical indentation in elastic sofftfs, 12). For Y/E<0.02,H/Y is about 2.4 to 2.8Fig. 12. For
Eq. (16) is a generalization to elastic-plastic solids with work Y/E>0.06,H/Y is about 1.7 to 2.8Fig. 11), i.e.,
hardening.

h

4.0
D. Relationship between hardness and mechanical o n=0.0
properties 35 | 0.10 0'1
: £,=0. o n=0.
We now consider the relationship between hardness, ° o n=0.3
elastic and plastic properties of solids. Using E@, (3), o~ 30 ¢ _0'5
(7) and (8) the ratio of hardness to initial yield strength is 5 8 2 =0
¥ 25 B
given by x a5
I s s
H cof 6] M (Y/E,vn,0) . 20 | ® 5
— = ) °
Yom {(Y/E)HZ(Y/E,V,n,G) 15 |
B
o , 1.0 : : . :
Clearly, the hardness is independent of the depth of indenta- 0 0.02 0.04 0.06 0.08 01
tion, h. The ratioH/Y is, in principle, a function ofY/E, v, ' ) YIE ’ ' '

n, as well as indenter geometryy). Taking #=68° and
v=0.3 for example, the dependencettfY on Y/E andn is
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H=2.8Y,, for Y/E—0.0 example, we consider indentation in elastic-plastic solids

(19 with work hardening using an elastic, pyramidal indenter.
Let O be the set of angles that describe the shape of a pyra-
midal indenterE; the Young’s modulus of the indentew,

In practice, it is therefore possible to estimate directly fromits Poisson’s ratio, ang. the friction coefficient for the in-

hardness measurements the representative y|e|d sk¥gss, terface between the indenter and solid, dimensional analysis

for materials with a small ratio of/E and the initial yield ~shows that for loading the force is given by

H=1.7y, for Y/E—O0.1

stress.Y, for materials with a larg&//E. % =
F=Eh2Ha(E,V,n,E,Vi,,U,,®), (20
V. SUMMARY and the contact ared,,
Using dimensional analysis and finite element calcula- Y E.
tions we have derived several scaling relationships for coni- Ac:hZHB E’V’n’EI’Vi ,u@) (21

cal indentation in elastic-plastic solids with work hardening.
We have shown that, for loading, the force on the indenter i©bviously, three-dimensional finite element calculations are
proportional to the square of the indenter displacement. Thaeeded to evaluate the dimensionless functions in E§5.
contact depth is proportional to the indenter displacementand (21). Such calculations, though computationally inten-
For unloading, the initial unloading slope is proportional tosive, are within the current capabilities of commercial finite
the depth of indentation. These scaling relationships imply:element software. It is evident, however, that the functional
(1) The “effective” yield stress, given by the geometric dependence, such Bs<h? and the independence of hardness
mean of initial yield stress and strength coefficient, i.e.,on h, remains the same as that for conical indentations. We
(YK)¥2 can be determined from indentation loading curvestherefore believe that the results for rigid conical indentation

provided the Young’'s modulus is known. presented here capture the essential features of indentation in
(2) Loading curves alone cannot detect work hardeningglastic-plastic solids with work hardening. In fact, the scaling
in materials. relationships have been used to establish a new correlation

(3) The sinking-in and piling-up of the surface profiles between hardness, elastic modulus, and the work of
are determined by the ratio of the initial yield stress andindentatior=°
Young’'s modulus,Y/E, as well as the degree of work-
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