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A B S T R A C T :  In this paper, a systematic approach is proposed to obtain the macro- 
scopic elastic-plastic constitutive relation of particle reinforced composites (PRC). 
The strain energy density of PRC is analyzed based on the cell model, and the ana- 
lytical formula for the macro-constitutive relation of PRC is obtained. The strength 
effects of volume fraction of the particle and the strain hardening exponent of ma- 
trix material on the macro-constitutive relation are investigated, the relation curve of 
strain versus stress of PRC is calculated in detail. The present results are consistent 
with the results given in the existing references. 
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1 I N T R O D U C T I O N  

Composites comprised of a metal or intermetallic matrix reinforced by particles which 
do not deform plastically have properties which make them potentially attractive for a range 
of applications, including high specific stiffness materials and creep resistant high temper- 
ature materials, which are widely used in the production of major components in various 

industries, such as those of automobiles and aircrafts. The overall mechanical properties of 

composites are determined by mechanical properties of the matrix and the volume, size, and 
spacings of the reinforcement. The optimization and improvement of strength, ductility and 

fracture toughness of composites is a major research orientation, and the investigation on 

the fundamental relationships between the macroscopic behavior of the composites and its 
microstructure is very important.  

The linear elastic theory of composites is well developed, and methods based on Es- 
helby's solution of a single inclusion embedded in an infinite matrix have been developed 
and employed by many investigators (for example, the self-consistent method, Mori-Tanaka 
method, and the differential method)[ 1~3]. In this work we focus our attention on nonlin- 

ear elastic-plastic materials and derive the overall macroscopic response of the composites 
through a volume averaging procedure as discussed below. 

Investigation on the elastic-plastic behavior of PRC was pioneered by. a number of 
investigators, and some analytical models were suggested. Budiansky et al.(1982)H (see 

also Duva & Hutchinson(1984)[ 5]) had studied the plastic deformation of an infinite solid 
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containing a void. In that  approach an upper bound solution was obtained where approxi- 
mate velocity fields were assumed by the superposition of a uniform field due to a uniform 
remote axisymmetric stress in the absence of the void, and an additional nonuniform one. 
Then a Rayleigh-Ritz method based on minimum energy principle was used to generate 
approximate solutions in the material. Duva(1984)[ 61 used a similar method to analyze the 

stiffening effect of rigid inclusions on an infinite domain of a power-law material. Since 
interactions between neighboring inclusions were ignored, the validity of the equation was 
limited to small concentrations of inclusion. 

Zhu &: Zbib(1995) [7] investigated the mechanical properties of composites based on the 
use of a finite unit cell model accounting for the interaction of particles in composites with 
periodic microstructures(e.g. Bao et ai. (1991)[ s] and Llorca ~ Gonzs the finite 
unit cell model is geometrically clearer and  can describe the microstructure features more 
accurately. 

This work ia motivated by the work of Gurson(1977) [l~ on yield surfaces for porous 
materials. It seems that,  although many aspects of PRC are well explained, understanding 

of the strengthening mechanisms is still a subject that  needs further investigation. The 
purpose of the present work is to develop a mathematical model capable of incorporating 

the basic features of elastic-plastic properties of PRC. The main goals are to rigorously 

derive the relationships that  describe the overall nonlinear elastic-plasti c macro constitutive 

behavior of PRC, and propose explicit expressions for the macro-constitutive relation of the 
composites, accounting for various materials parameters. 

2 C E L L  M O D E L  O F  P R C  

In general, an arbitrary and non- 
uniform distribution of particles, which may 

include local clustering, may bet ter  represent 
the actual state of the composite. The size 
and geometry of the particles are inhomoge- 

neous which will significantly affect the me- 

chanical properties of composites, especially 
the strength, ductility and fracture tough- 

ness. However if all the actual factors were 

considered, the problem will become very dif- 

ficult. In this paper, the composites were ide- 
alized as uniformly distributed periodic ar- 
rays of unit cells, and each unit cell consists of 

an elastic inclusion surrounded by an elastic- 
plastically deforming matrix (see Fig.l).  

3 

2 

Fig.1 The cell model for particle reinforce- 
ment composite 

We suppose that  the macro elastic-plastic constitutive relation can be expressed with 
the global theory as follows 

e 3 E_~, S~ (1) 
Eij = Eij + E~ = CijklZkt + -~ A(Ee ) 

where Zij is the macro average stress of the composite, Sij is the deviatoric part  of the 
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. .  e P macro average stress, E~,Eij ,Eij  a re  the macro strain, elastic strain and plastic strain, 

( 2 p E p ) I ~ 2  
respectively. E~ = ~Eij ij is the macro equivalent plastic strain, and Cijkl is the 

macro elastic compliance tensor of the composite. According to Mori-Tanaka equation (Mori 
& Tanaka (1973)[11]), we have 

L = Lo(I H- IQ) - I  (2) 

where L is the macro elastic modulus matrix of composite, i.e., the inverse matr ix of the 
macro elastic compliance matrix, L0 is the elastic modulus matrix of matrix material, I is 
the unit matrix, f is the volume fraction of particle reinforcement and Q is the concentration 
factor matrix, which can be expressed as 

Q = {L0 + (L1 - Lo)[fI + (1 - f )S]}- l (Lo - L1) (3) 

where L1 is elastic modulus matrix of the particle, S is Eshelby's tensor matrix. 
In Eq.(1), the function A(E p) describes the work hardening properties of composites. It 

is worth noting that  the constitutive relation of the composites will be completely determined 
if A(E p) is known. 

Considering the cell model, as shown in Fig.l,  a spherical inclusion embedded in the 

spherical matrix, and the inclusion is well cohered with the matrix. Duva and Hutchinson 
(1984) [5] have shown that  the macro constitutive relation of composites can be expressed 

by the macro strain energy density if the constitutive relation of any components can be 
expressed by the strain energy density, which is expressed as 

W = ~ wkdV (4) 
k=0,1 

where Vo is the volume of matrix in the unit cell, w0 is the micro strain energy density of 

matrix, Vk(k r 0) is the volume of the kth particle component, wk is the micro strain energy 
density of the kth particle component. The macro constitutive relation can be expressed as 

OW 
2~  = OE~j (5) 

where the macro strain of composites, Eij, is 

Eij = ~ eijdV (6) 

and the macro stress of composites, ~ij, is 

Sit = ~ aijdV (7) 

In this paper, the elastic deformations of both inclusion and matrix were neglected to 

simplify the evaluation of the strain hardening function of composites, then the particle can 
be simplified as a rigid inclusion, and the matr ix  was simplified as an incompressible power 
law material, which obeys the following equation 

- -  = (s) 
if0 
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where e0 is the reference strain, a0 is the reference stress, and n is the strain hardening 
exponent of the matrix material. For multi-axis stress condition, Eq.(8) can be written as 

sit  - 3 e~ eij (9) 

where 8ij,gij is the deviatoric part of microscopic stress and strain, respectively, and ee = 
2 -~ 1/2 
~ C i j e i j )  is the effective strain, so the strain energy density of the matrix is 

J f s i j ( e ) d e i 3 -  aoeo ec (10) wo 

since Wk = 0 (k ~ 0), according to Eq.(4) the macroscopic strain energy density is 

1 / .  ~ 
w = ~ w o d V  

and then 

(il) 

W = \ ~ - - ~  ] e~+ldV (12) 

since the composite was treated as incompressible plastic material, then the macroscopic 
stress is 

O W  
Si j  - OE~ (13) 

3 A N A L Y S E S  M E T H O D  A N D  R E S U L T S  

Suppose that  the outer boundary condition of the unit cell is 

Ui = E i j X j  X C [21 (14) 

and since the particle was assumed as a rigid inclusion, so the inner boundary condition of 
cell is 

ui = 0 X C /22 (15) 

where [21 and/22 are the outer and inner boundaries of the unit cell, respectively. 

The strain field equations of unit cell written in spherical coordinate are 

Ou~ 1 Duo u~ 

r 00 r (16) 
1 Ou~ u~ Ouo ue 1 Our 

e~ -- + U~ ctgO + - -  Vro -- + - 
r sin 0 0 ~  r r O r  r r 

where 

u~ = 0 ~/~ = 70~ = 0 (17) 

For plastically incompressible matrix materials under axisymmetric loading conditions, 
a simple way to derive the physical components of the displacement vector u is to employ 
a displacement potential function ( such that  u = V • (0,0, ~ /gv~) ( see ,  for example, Lee 
& Mear (1992)[12]), yielding 

u~ = O0 uo = - -~r u~ = 0 (18) 
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where 911, 922, 933 are the covariant components and 9 is the determinant of the metric 
tensor of the spherical coordinate systems. Consider the choice of the displacement potential 
function ~(r, 0), a general form for a spherical model was given by Budiansky et al. (1982) [4] 
a s  

r = goc tg0+  ~ P~,o(cosO)h(r) (19) 
k=2,4 .... 

where Pk is the Legendre polynomial of degree k, fk is a function of radius r alone, and A0 
corresponds to the volume deformation. In this work, the following form of ~ is adopted 

r  vff ~ ~,-3(1 (20) - - ~ r  2 E E - a ) 2 ( a )  m~kmsink0 
k:2 ,4 , . . ,  m = - - c ~  

As we know in spherical coordinate, x/g = r2 sin 0, ~ = 1 and ~ = r , then according 
to Eq.(18) and Eq.(20), the displacements of cell are 

1 m 

E E ~ E r ( 1 -  a )  2 (a)ml3km(CtgOsinkO + k.coskO) 
k=2,4,. . ,  m------~ 

 0=-E E 
k=2,4,. . ,  r n = - - ~  

6 E r [ ( m - 1 )  a ( m - 3 ) ] ( 1 - a ) ( a ) m ~ k m s i n k O  

u~ = 0  

(21) 

Equation (21) shows that the inner boundary condition (15) is automatically satisfied. Ex- 
panding Eq.(14) in spherical coordinates and noting that the macroscopic strain Eij has 
only principal values E u  = E22 and E33, we obtain the outer boundary conditions 

ur=Eb(1E +3cos20)  } 

uo = - -~ b sin 20 

r = b (22) 

where 
1 

= E33  - ~ ( E l l  + E 2 2 )  

Upon applying the boundary conditions (22) to Eq.(21) we obtain 

(23) 

( 1 - -~ ] ~ k m  = 1 
m = - o o  

o o  
a m 

m = - - o o  

T F t  ~ - -  O 0  

~ T t = - - ( X )  

k = 2  

k = 4, 6 , . . .  

k = 2  

k = 4, 6 , . . .  

(24) 
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So the strain field of the unit cell can be evaluated with the following equations, 
OO 

r  E E E(a-r)  r (a+am+r-mr)(ctgOsinkO+kcosO)flkm 
k=2,4, . . ,  m = - o o  

~0 = ~ ~ ~(~ - r )  ( k ( ~ m  - ( - 2  + m)~)  cos kO+ 
k = 2 , 4 , . . ,  m = - - o o  

(a - r)ctg0 sin kO)~km 

r E ~ ~--r-2-E(a-r)(a) m(k(a-r) cOskO+(am- 
k----2,4,.., m = - - o o  

( -2  + m)r)ctg0 sin k0)f~km 

~r2Ekr) (-k(a - r) 2 coskOctg0 + (a2(-1 + m+ 
k = 2 , 4 , . . ,  m = - - o o  

m 2 + k 2) - 2a(-1 + ( -1  + m)m + k2)r + (1 + ( -3  + m)m + k2)r2+ 

(25) 
(a - r)2ctg20) sin kO)flkm 

Let 

~ij = E~ij (26) 

then Eq.(12) is turned into 

1 (~0~o~ ~+1 fro ~+'dV (27) W = V \ n + I ]  

Substituting Eq.(27) into Eq.(13), we have 

L ~o-~ f ~Fldy o-~ 
S~j = v ~ Jvo OE~ 

(28) 

then 
i S I a0E -n/yo ^,i+i Sn=$22  - ~  33 2V e~ 

Since E~ = 2E/3, ,F,~ = $33 - Su, so 

(31 ~+I l ~oE~ ~ ~:+ldV 
Eo= v c~ 

and after simplifying, we have 

a0 \ e0 ] 
and 

F(f,n) = ~ gen+IdV 

where f = aa/b 3. According to Eq.(31), the work hardening function is obtained as 

A(E~) = aoF(f,n) -~o 

(29) 

(30) 

(31) 

(32) 

(33) 
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Here, we call F(f,n) the hardening factor. It is a nonlinear problem to solve for 
F(f, n). The minimum energy principle was employed in evaluating the unknown coefficients 
of displacement field of unit cell. The central issue of the problem is to evaluate the integral 

1 /yo g~+ldV (34) w=V 

where the integral must be carried out numerically. The minimization of l~ is a minimum 
problem with the boundary conditions, where Eq.(24) were rewritten a s . E  bi(~km), then 
the problem is transferred to the following equivalent minimum problem 

~P(A/3kr~, Ai) = lZV(Aflkm) + E Aibi(A~km) (35) 

where Ai is Lagrangian factor. Newton-Raphson method is the common method used to 
solve this kind of problem, but the calculating work is rather heavy, and the convergence 
of the solution depends on the initial value of solution. If the initial value is not selected 
properly, the right solution could not be reached. An adaptive method is adopted in this 
paper recommended as follows. Firstly, a displacement mode consisting of two terms was 
adopted, i.e., in Eq.(21), k = 2, and m = 1, 2, where the two coefficients ~21 and ~22 can be 
determined by boundary conditions, then the strain of any point of the cell was obtained, 
and then the integral of Eq.(35) can be worked out easily. Secondly, based on the solution 
of two terms of displacement mode, the coefficients of multi-terms displacement mode can 
be obtained by using the perturbation method. The steps are as follows 

Suppose that 

gij = gij* " [ -  Agij (36) 

where the symbol ' , '  express the solution related to the displacement field of two terms, 
then 

g2j 2̂ ~- eij , -k 2gij, /kgij -b (Agij) 2 (37) 

then 
I 4 gij,A~ij 2 A~ijAgij I (n+l)/2 

= 1 +  3 + 3 (3s) 

Expanding Eq.(38) using binomial expansion, with the first two terms of the expansion being 
reserved, we obtain 

g~+l ~ gen,+l [1 + 2(n3 + 1) gij,Agij~, + n~_+ 1 AgijAgijg~, + ~ n  2 - 1 eij,AgiJg2, ) ~ J ] (39) 

Substituting Eq.(39) into Eq.(35), and differentiating ~P with respect to ]~km and Ai the 
linear algebraic equations about ~km will be found by letting the derivative of g' to be zero. 
/~krn can be obtained by solving the linear equations. 

The number of terms of the displacement field included in the calculation should be 
considered seriously, which may affect the computing precision and calculation work. If the 
number of terms of the displacement field is not large enough, the precision of calculation 
could not reach the required level, however, if the number of terms of displacement is very 
large, the calculation work will become difficult. 

According to the work of Budiansky et a1.(1982)I4], high order harmonics have miner 
quantitative influence on the solution which involves volume averaging. Duva(1984)[ ~] used 
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the first two order harmonics about  8, and Zhu & Zbib(1995)[ 7] selected the first order of 

the harmonic, they all obtained satisfied results. The results of the first order harmonic 
included in the calculation is compared with the results of the first two order harmonics 

included, the error involved is less than 0.1%, see Fig.2, so in the calculation of this paper,  
we use the first order harmonic, i.e., k = 2. 

Theoretically, we need to consider a large number of terms in the series (21) to ensure 

a good quanti tat ive accuracy. The terms with positive and nonpositive powers should both 

be considered, i.e., a finite number of terms in the series (21) with M1 <_ m <_ M2(M1 < O, 
/1//2 _> 1). To ensure the required precision, the effect of the number of terms in m on 

the precision of calculation is also investigated by comparing the results of selecting m = 

- 3 , . . . ,  7 with those of selecting m -- - 3 , - .  �9 8. The calculating results were described in 

Fig.3. The difference between them was less than 0.1%, so we choose m = - 3 , . . . ,  8 (i.e., 

M1 = - 3 ,  Ms = 8) in the following calculation. 

• I  ~ one harmonio , /  

0.0 0.1 0.2 0.3 0.4 0.5 
f 

0.6 

Fig.2 The influence of harmonics included 
in the displacement field on the cal- 
culating precision of F(f ,  n), m = 
- 1 , . - . , 4  

6 

5 

4 

~ 3  

- -  11 terms of m used / 
�9 12 terms of m used / 

/ 

1 
�9 , . , �9 , . , �9 , �9 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 
f 

Fig.3 The dependence of solutions on the 
number of terms of displacement 
field respect m 

The hardening factor F ( f ,  n) was eval- 

uated at a various value of particle volume 

fraction f , in this case the parameter  of 

the matr ix  was given by n = 0.1. The pre- 

dicted relation of F ( f ,  n) versus f was con- 

sistent with the results given by Zhu & Zbib 

(1995) M, and the comparing result was plot- 

ted in Fig.4. I t  can be seen tha t  the particles 

have a distinct hardening effect on the com- 

posites as its volume fraction increases. 

The relation curve of stress and plastic 

strain of composites A1-SiC was calculated 
for two different particle volume fractions, 

t - -  present results 
�9 Zhu &Zbib [7] /" 

n=0.1 ./" 
m 4 / 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 
f 

Fig.4 Hardening effect of particle volume 
fraction on the strength of compos- 
ite 

namely, 0.19 and 0.31. The materials constants were selected from reference of Zhu & 
Zbib(1995) [7], the stress and plastic strain relation of matr ix  is expressed as, cr = a0~ n, 

where ao = 0 .1226GPa  and n = 0.09835. The present results agree well with the results 
given by Zhu & Zbib as shown in Fig.5. 
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The elastic-plastic relation of strain and 
stress of composites was investigated. For 

0.20 
the composite A1-A1203 , the elastic con- 
st~tnts of the matrix, Young's modulus and 0.16 

Poisson's ratio, were 70 GPa  and 0.33, while ~ 0.12. 

those of the reinforcement were 450 GPa  and "~ 0.08 
0.17. The flow stress for the matrix was rep- 
resented by the power law a -- a0c n, with 0.04 

n = 0.2, ao = 700 GPa. Two different vol- 0.00 
ume fractions of particle were considered, i.e., 

f = 0.05 and 0.15, t h e  calculating results Fig.5 
were described in Fig.6 and Fig.7, respec- 
tively. The calculation results were compared 

with the finite element results of Llorca & 
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f =0.31 

~ ~ _ ~  f=0 .19  . 

�9 Zhu &Zbib [7] 
present results 

0.000 0.0'02 0.004 :o.d06 0.008 
s 

Predicted stress and plastic strain curves 

compared to the calculation results of Zhu 
& Zbib ffl 

5O01 
4001 

a~ 300 ] 
200- 

b 
lOO- 

o 
0.00 

f=0 .05 ,  n=0.2 

" i / ' ' ' ~ o  
; ' 9 nzalez[ ] 
i - -  present results 

0.04 0.08 0.12 
8 

600 
500 ~ 

~ 400 
300 

b 200 I ...... Llorca & Gonzfilez [9] 
100 ! - -  present results 

0 
0.00 0.04 0.08 0.12 

s 

Fig.6 Predicted stress and elastic-plastic 
strain curve compared with FEM 
results of Llorca & Gonz~lez [91, 
( I  = 0.05) 

Fig.7 Predicted stress and elastic-plastic 
strain curve compared ~vith FEM 
results of Llorca & Gonz~lez [91, 
( I  = 0.15) 

Gonz~lez(1998) [9]. From the two figures, it can be seen that the analytical results were well 

supported by the FEM results when the particle volume fraction is small, however, some error 
exists when the particle volume fraction is large. The discrepancy can be at t r ibuted mainly 
to three factors, the first one is that  the cell model of this paper is different from that  of 
Llorca & Gonz~lez(1998)[ 91 which is a spherical inclusion embedded in the cylindrical matrix, 
the second one is that  the strain formula used in FEM calculation is selected as logarithm 
strain which is different from that  of this paper, the third one is that  the macroscopic stress 
of the reference is the average stress on the transverse cross section of cell, which is also 
different from this paper. 

4 E L A S T I C - P L A S T I C  C O N S T I T U T I V E  R E L A T I O N  

The relation of hardening factor F(f, n) versus particle volume fraction f was calcu- 

lated at a various value of strain hardening exponent n, the calculating results were described 
in Fig.8, which shows that  the influence of strain hardening exponent and the particle vol: 
ume fraction on the macroscopic constitutive relation is significant. Numerical calculation 

was not the goal of this paper, the objective of this paper is to give the analytical expression 
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of macroscopic constitutive relation of PRC. So the calculation results plotted in Fig.8 were 

fitted by the polynomial formulae, then the analytical formula of F( f ,  n) was obtained as 

follows 

F ( f , n )  = Ao + A l l  + A2 f  2 + A3 f  3 --b A4f  4 (40) 

where 

Ao = 1.00014 - 0.000 41n + 0;001 54n 2 -  

0.002 54n 3 + 0.001 32n 4 

A1 = 0.505 67 + 1.850 7n - 0.44187n2+ 

1.138 36n 3 - 0.566 39n 4 

A2 = 1.390 65 + 2.243 55n + 28.400 18n 2 -  

35.719 9n 3 + 19.178 01n 4 

A3 = 3.10918 + 45.158 05n - 182.950 22n2+ 

322.200 01n 3 - 173.039 26n 4 

A4 = 31.77342 - 47.3414n + 517.894 51n 2 -  

798.393 58n 3 + 459.754 51n 4 

(41) 

28 i 
�9 n = l  0 

24 t /" " I 
201 
164 i / '  I 
124 / i / n : o . 7  

o ~ ,  n_0.0 I 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 

f 
Fig.8 Effects of strain hardening exponent 

and particle volume fraction on the 

constitutive relation of composite 

This fitting results in Eq.(40) and Eq.(41) provide an approximation to F( f ,  n) for PRC 

in the range f <_ 0.2 and 0 < n < 1.0. The explicit expression of macroscopic elastic-plastic 

constitutive relation of PRC was obtained by combining Eqs.(1), (33) and (40). 

To check the precision of the fitting formulae, the hardening factor F( f ,  n) was re- 

calculated by using the analytical fitting equations at n = 0.1, 0.3, 0.5, 1.0, the results were 

compared with the exact value plotted in the Fig.9, which shows a good fitting to the exact 

value. Zhu & Zbib (1995)[ 7] also gave an analytical formula of F( f ,  n), however it is only 

used in the range f < 0.2 and 0 _~ n < 0.2, where the value range of n is narrower than tha t  

of this paper. In the intersection of the fitting range of the two kinds of analytical formulae, 
the two fitting equations are consistent with each other as shown in Fig.10. 

3.0 �84 

2.5 

2.0 
4 

1.5 

1.0 

0.5 
0.00 

�9 numerical results 
fitting equation (40) n = l . 0 / / /  

~ n - ~ o . l n  ~0.3 

0.05 0.10 0 . i5  0.20 
f 

2 . 5  �84 

2.0 

1.0 

- -  present results 
�9 Zhu & Zbib [7] 

~ ~  ~ 

0.5 o.o 0:1 0;2 
f 

Fig.9 Predicted results of analytical for- 
mula of F(f,  n) compared with the 
exact values 

Fig.10 Predicted results of present analyt- 
ical formula compared with the re- 
sults of formula of Zhu & Zbib [71 
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5 C O N C L U S I O N  

In summary, this paper found the macroscopic elastic-plastic constitutive relation of 
PRC based on the cell model, and gave the solving method, i.e., first suppose the displace- 
ment field with two terms and deduce the strain and stress field, then the displacement 
field with multi-terms was obtained by perturbation method based on the two terms results, 
and then hardening factor F ( f , n )  was evaluated, without solving the nonlinear problem. 
The analytical formula of constitutive relation of PRC was given further in a wider range 
of usage. It is shown that  this model has successfully described the basic features of the 
nonlinear elastic-plastic response of the composite and identified effects of particle shape and 

volume fraction on the overall flow properties of composite. The results predicted by the 

current work are consistent with the results given in the references of Zhu & Zbib (1995)[ 7], 
and Llorca & Gonzs (1998) [9], which proved that current model is right. 
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