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Instability of Two-Layer Rayleigh—Bénard Convection with Interfacial
Thermocapillary Effect *
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The linear instability analysis of the Rayleigh—Marangoni—Bénard convection in a two-layer system of silicon oil
10cS and fluorinert FC70 liquids are performed in a larger range of two-layer depth ratios H, from 0.2 to 5.0
for different total depth H < 12 mm. Our results are different from the previous study on the Rayleigh—Bénard
instability and show strong effects of thermocapillary force at the interface on the time-dependent oscillations

arising from the onset of instability convection.

PACS: 47.20. Ma, 47.20. Bp, 47. 27. Te

Both surface tension gradients and buoyancy may
drive convective motion in a liquid layer with a free
surface when heated by the bottom. The thermocap-
illary forces at a free upper boundary play a major
role when the depth of the liquid layer is small or the
liquid layer is in a gravity reduced field. The Bénard-
Marangoni convection in single layers has been a
typical phenomenon since the Bénard experiments [
around 1990. The convective instabilities and mech-
anisms in two or more superposed layers of liquid—
liquid systems become more complex than single layer
systems, due to the competition between instabili-
ties in the separate layers and the various interfa-
cial surface tension driven modes. Many scientists
have extensively studied two- or multiple-layer con-
vection due to several interfacial phenomena in nature
(layered earth’s mantle convection [273]) and in numer-
ous engineering applications (liquid encapsulated crys-
tal growth techniques,/*® film processing,!®”) multi-
layer coating,!®! transportation of oil [9]). In the ba-
sic research the study of two-layer convection consti-
tutes an important new direction for the field of pat-
tern formation and bifurcation phenomenon in non-
equilibrium systems. For the flow in a two- or multi-
layer system, one of the more interesting problems
is the possibility of finding time-dependent states at
the onset to convection. The oscillatory convection
in the two-layer Rayleigh—Bénard system where ther-
mocapillary is negligible has been investigated theo-
retically 1913 and experimentally.'418] The onset
of thermocapillary oscillatory convection in a float-
ing half zone of large Prandtl number fluids are stud-
ied numerically.['¥) Both instability analyses and ex-
perimental observation found two possible convec-
tive states: thermal coupling, or mechanical coupling
in two-layer Rayleigh-Bénard convection for different
combinations of two liquids. In the first coupling case,
the superposed convection rolls are co-rotating, and

in the second case the superposed rolls are counter-
rotating. In a narrow transition region between the
two different states the time-dependent convection
(Hopf modes) may appear.[?*) Colinet and Legros [1°]
revisited the problem theoretically by assuming a non-
deformable interface and by selecting the non-identical
fluids properties of the two-layer system, and gave a
typical stability diagram for one range of layer depth
ratios, as shown in Fig.1, in which the oscillatory
modes arise in between the two different stationary
convective states. Recently, the experiments on the
two-layer Rayleigh—Bénard system with two different
pairs of fluids were performed by Degen et al.['8] They
found time-dependent patterns at or near convective
onset, but some evident differences such as the periods
of the time-dependent flow and the time-dependent re-
gion of layer depth ratios have also been shown in com-
parison with the theoretical predictions.[2%! In fact, for
the two-liquid system of silicon oil 10 ¢S and fluorinert
FC70 used in Degen’s experiments, the oscillatory con-
vection region for the total layer depth H = 12mm is
too small to be practically accessible for experiments
or possible even nonexistent at the onset of convection.
What will the instability behaviour of convection be
in the above-discussed two-layer system while simulta-
neously considering the thermocapillary effects at the
interface, for example in the cases when the two-layer
depth is thinner than 12mm? It is the main objec-
tive of the present work to investigate theoretically the
thermocapillary effects on two-layer Rayleigh—Bénard
convective instabilities, and much attention is paid
to the oscillatory instability at the onset of convec-
tion. The instability analysis results presented here
are the first part of study on the two-layer Rayleigh—
Marangoni—Bénard convection.

The theoretical model of two-layer Rayleigh—
Marangoni—Bénard system is assumed to be infinite
in the horizontal direction as shown schematically in
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Fig.2. By using the total depth of two layers H as
the non-dimensional scale for length, the layers have
non-dimensional depths hy = Hy/H and hy = H2/H,
where the subscripts 1 and 2 refer to the top and
bottom fluid layers, respectively. The depth ratio is
defined as H, = H;/H;. A temperature difference
AT = Ty, —T; is imposed parallel to the acceleration of
gravity g between the top and bottom isothermal and
rigid plates. When AT > 0, the bottom boundary is
hotter than the top boundary (T > T7). The dimen-
sionless ratio of the fluid properties are k* = k1 /K2
(thermal diffusivity), 8* = 81/B2 (volumetric expan-
sion coefficient), x* = x1/ = chis (thermal conduc-
tivity), u* = p1/pe (dynamic viscosity), p* = p1/p2
(density) and v* = v /vy (kinematical viscosity), re-
spectively. The interface between the immiscible lig-
uids is assumed to be flat. The interfacial tension at
the interface is considered to be a linear function of
temperature: o = oy + (00/0T)(T — Ty), where Ty
is the reference temperature of interface, and do /9T
is usually negative. The governing equations for each
fluid layer are the heat transport equation and the
Navier—Stokes equations with the Boussinesq approx-
imation, i.e. only the densities p; are dependent on the
temperature, p; = poi[l — B;(T; — Tp)]. In a two-layer
Rayleigh—Marangoni-Bénard system, the convection
arises due to buoyancy and temperature dependence of
the interfacial tension, and their contributions are esti-
mated by two important non-dimensional parameters:
the Rayleigh number Ra = gB3; AT H?/(vok2), and the
Marangoni number Ma = (—90/0T)ATH/uak2). At
the onset of convection, these parameters correspond
to the critical values Ra., Ma. with the critical tem-
perature difference AT,.. The linear stability analysis
is performed on the base state of the system with a
flat interface at z = 0, a zero velocity field and a
temperature field which varies linearly with z in each
fluid. We introduce spatial normal perturbations pro-
portional to exp[At + i(k; + ky)] into the linearized
full governing equations referred to in chapter 2 of
Ref. [21]. By using vo/H, H?/vy, H and AT as the
scaling factors for velocity, time, length and temper-
ature, respectively, the dimensionless linear governing
equations of the two-layer system are formulated in
the form of the amplitudes of perturbation quantities
w;, the velocity component in the vertical direction z
and 6;, the temperature in each layer:

R
v (D? — k2)2w; — ——3*k20;, = AN(D? — k)w,
Pr
(1)
T,
k*(D* — k)6, — a—lPrwl = APrb,, (2)
z

R
(D% — k2)*ws — P—“k202 = AD? - E)ws,  (3)
T
T,
(D? — k*)0, — B—;Prwg = APrb,. (4)

together with the boundary conditions

wy = le = 91 =0 at z= —hl, (5)
W) = Wy = 0, D’LU]_ = D’U.)z,
0y =02, x"DO; = Dby,
M
D?wy — p*D*wy = —P—ak292 at z=0, (6)
T

WQ:D’U.)2:02:0 atz:h2, (7)

where D is the dimensionless differential opera-
tor d/dz, Ra is the Rayleigh number, Ma is the
Marangoni number, Pr = vy/ks is the Prandtl num-
ber of fluid-2, A is the time growth rate, k is the dimen-
sionless wavenumber, and 07;/9z is the temperature
gradient of liquid-: at the steady state.
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Fig.1l. Critical bifurcation diagram for the onset of
Rayleigh—Bénard convection in a two-layer fluid system.
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Fig. 2. Schematic diagram of two-layer liquids.

A spectral numerical method (Tau—Chebychev)
was used to resolve the eigenvalue problem in A for
the above linear equations together with its bound-
ary conditions of the two-layer Rayleigh—Marangoni—
Bénard system. The complex growth rates A were
computed in complex double precision. A liquid sys-
tem of silicon oil (10¢St) (in the top layer) and flu-
orinert (FC70) (in the bottom layer) is selected here
since this fluid pair has been more recently investi-
gated theoretically 21=23] and experimentally./*®! The
oscillatory convection regions at the onset state are
given in Table 1 for different depths H of two-layer
fluids. The four different cases for H =12, 6, 4 and
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Table 1. Oscillatory convection at the onset in the system of silicon oil (10c¢St) and fluorinert (FC70) for different total depths
H of two layers (Pr = 406, k* = 2.762, * = 1.1, x* = 1.917, pu* = 0.344, p* = 0.482, v* = vi/v2 = 0.714, and 9o /0T =

—4.46 x 107° N/mK).

Two-layer depth Oscillatory region Rac. in oscillatory ke in r
H(Hi + H>) (mm) for H, region oscillatory region (Ra/Ma)
12 1.461-1.564 26840-26321 5.13-5.08 61.38
6 1.5-2.1 25010-21520 5.17-4.87 15.35
4 1.55-2.95 22400-18349 5.24-4.65 6.82
3 1.6-3.5 19715-18418 5.35-4.62 3.84

3mm were investigated numerically here when con-
sidering both thermogravitational and thermocapil-
lary effects which may be represented by the relation
between the Ra and Ma numbers, I' = Ra/Ma =

~gB2p2H?/(90/T).
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Fig. 3. Variation of the critical parameters Rac, at the
onset of the Rayleigh—Marangoni-Bénard convection in
the system H = 6mm and g = 9.8ms~2 for different
depth ratios H,, in comparison with the case without the
Marangoni effect (Ma = 0).

A narrow gap 1.461 < H, < 1.564 in which the
oscillatory onsets of the Rayleigh—-Marangoni—Bénard
convection could occur in this system was found in
the neutral stability curve of the Ra. — —H, plane
for H = 12mm. The corresponding critical Rayleigh
number of the system varies from 26840 to 26321, and
the critical wavenumber k. from 5.13 to 5.08. When
the total depth H is reduced from 6 to 3 mm the os-
cillatory instability at onset occurs in the larger and
larger gap regions of two-layer depth ratio H, from
1.5-2.1 to 1.6-3.5. This variation of the gap regions
is due to the augment of thermocapillary effect at
the interface which corresponds to the decrease of the
ratio I' = Ra/Ma when we increase H from 12 to
3mm given in Table 1. The contribution of the ther-
mocapillary effect on the instability of the system is
shown in Fig.3 where the neutral stability curve of
the system displaces to the right while we consider the
Marangoni effect at the interface in comparison with
the Rayleigh—Bénard instability of the system with-
out the Marangoni effect (Ma = 0) corresponding to

the case considered in Colinet and Legros’ works.[!3]
It is notable that the more larger oscillatory regime
for 1.5 < H,. < 2.1 found in the Rayleigh—Marangoni—
Bénard convective instability of the system replaces
the very narrow oscillatory onset gap in the Rayleigh—
Bénard instability of the system when neglecting the
thermocapillary effect (Ma = 0).

In summary, we have presented a new feature
of oscillatory instability of the Rayleigh—Marangoni—
Bénard convection in a thin two-layer system when
considering the real thermocapillary effect at the in-
terface. The oscillatory regime in the oscillatory
gap region given in Table 1 is more complex in the
time-dependant pattern formation than that in the
Rayleigh—Bénard convection in the case of Ma = 0.
This new phenomenon resulting from the competi-
tion between the thermocapillary forces and buoyancy
forces has been confirmed recently by our preliminary
numerical investigation of nonlinear convective insta-
bility in the same system [23] and will be discussed in
details elsewhere.
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