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Abstract—A review is presented of the mechanics of microscale adhesion in microelectromechanical
systems (MEMS). Some governingdimensionlessnumbers such as Tabor number, adhesionparameter
and peel number for microscale elastic adhesion contact are discussed in detail. The peel number is
modi� ed for the elastic contact between a rough surface in contact with a smooth plane. Roughness
ratio is introduced to characterize the relative importance of surface roughness for microscale
adhesion contact, and three kinds of asperity height distributions are discussed: Gaussian, fractal, and
exponentialdistributions. Both Gaussian and exponentialdistributionsare found to be special cases of
fractal distribution. Casimir force induced adhesion in MEMS, and adhesion of carbon nanotubes to
a substrate are also discussed. Finally, microscale plastic adhesion contact theory is brie� y reviewed,
and it is found that the dimensionless number, plasticity index of various forms, can be expressed by
the roughness ratio.

Keywords: Microscale adhesion contact; Tabor number; adhesion parameter; peel number; surface
roughness; fractal distribution; surface energy; surface force.

1. INTRODUCTION

Scale effect is one of the fundamental issues in building MEMS [1]. The most
challenging issues lie in the fact that the surface-to-volume ratio increases when
the MEMS dimensions decrease. The types of forces that in� uence microscale
devices are different from those that in� uence devices with conventional scale.
This is because the size of a physical system bears a signi� cant in� uence on the
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Figure 1. Stiction of microcantilevers to substrate.

Figure 2. Adhesion between � ngers of a comb structure in a microaccelerometer.

physical phenomena that dictate the dynamic behavior of that system. For example,
larger-scale systems are in� uenced by inertia effects to a much greater extent than
smaller-scale systems, while smaller systems are more in� uenced by surface effects.
Therefore, surface effect induced strong adhesion, friction and wear are major
problems limiting both the fabrication yield and operation lifetime of many MEMS
devices [2, 3]. Strong adhesion is generally caused by capillary, electrostatic, van
der Waals forces, and other kinds of ‘chemical’ forces [4, 5]. Stiction is a term
that has been applied to the unintentional adhesion of compliant microstructure
surfaces when restoring forces are unable to overcome interfacial forces. The
stiction problem of MEMS can be divided into two categories: release-related
stiction and in-use stiction. Release-related stiction occurs during the sacri� cial
layer removal process in fabrication of microstructures, and such stiction is caused
primarily by capillary forces. In-use stiction usually occurs upon exposure of
successfully released microstructures to a humid environment. Figure 1 illustrates
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(a) (b)

Figure 3. SEM of adhered RF-MEMS switch to substrate: (a) low magni� cation; (b) high
magni� cation.

Figure 4. Adhesion of microstructural members in an accelerometer after impact loading.

stiction of microcantilevers to the substrate. Figure 2 shows the adhesion between
the � ngers of a comb structure in a micromachined accelerometer. Figure 3 shows
the adhesion (stiction) of an RF-MEMS switch to the substrate [6]. As a result,
adhesion (stiction) can be a fundamental catastrophic failure that deserves a great
deal of study [7, 8].

Adhesion (stiction) can also be caused by inertia (shock, rapid air � ow) forces.
Figure 4 shows the adhesion of microstructural members in a micromachined
accelerometer after impact loading.
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Since adhesion (stiction) failure is one of the most important issues concerning
reliability of MEMS, the microscale elastic adhesion contact theory will be reviewed
in Section 2. Emphasis will be placed on some governing dimensionless numbers,
namely, Tabor number, adhesion parameter and peel number. The effect of surface
roughness will also be discussed in detail, and three kinds of roughness distributions
will be treated, namely, Gaussian, exponential and fractal distributions. Microscale
plastic adhesion contact will be brie� y reviewed in Section 3.

2. MICROSCALE ELASTIC ADHESION CONTACT THEORIES

Early experiments with a soft rubber sphere in contact with glass revealed the
importance of adhesion and led to the development of mechanical theories of
adhesion of elastic spherical surfaces [9], which enable Hertzian contact areas to be
reliably calculated in the presence of adhesion. The theory shows that the relative
magnitude of the adhesion varies inversely with the product of the contact size
and the equivalent elastic modulus of the two surfaces. In the experiments with
rubber, the contact size is comparatively large (millimeters), but the equivalent
elastic modulus is small. In the experiments with nanoprobe instruments, the
equivalent elastic modulus is large but the contact size is very small (nanometers).
It has been known for a long time that the surface roughness is very important
in the magnitude of the force required to separate two materials after they had
been brought into contact. Development of sophisticated understanding of adhesion
between solid– solid surfaces is important, for example, in microelectronics and
MEMS technologies.

All the theories reviewed in this section are continuum elastic theories and hence
assume that no plastic deformation occurs.

2.1. Tabor number

Bradley in 1932 showed that if two rigid (incompressible) spheres of radii R1 and
R2 were placed in contact, they adhered with a force [10]

Pc D 2¼RWa; (1)

where R D R1R2=.R1 C R2/ is the equivalent radius and Wa D °1 C °2 ¡ °12 is
the Dupré adhesion or work of adhesion, with °1 and °2 being the surface energies
of the two spheres and °12 being the interface energy. Subsequently by modifying
the classic Hertz contact theory which takes into account neither surface forces nor
adhesion, Johnson, Kendall and Roberts (JKR) showed that the force required to
separate the spheres was [11]

Pc D
3

2
¼RWa; (2)

which is independent of the elastic modulus and so appears to be universally
applicable and therefore to con� ict with Bradley’s view. According to JKR theory
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the elastic modulus, while having an effect on the contact area, has no effect on
the adhesion force. The discrepancy between the Bradley and JKR theories was
explained by Tabor [12], who identi� ed a governing dimensionless parameter called
the Tabor number (¹)

¹ D

Á
RW 2

a

E¤2"3

!1=3

; (3)

where E¤ is the equivalent Young’s modulus given by 1=E¤ D .1 ¡ º2
1/=E1 C

.1 ¡ º2
2/=E2; " is the interatomic spacing, E1;2 and º1;2 are Young’s modulus and

Poisson’s ratio of the two spheres, respectively. Tabor noted the existence of a neck
around the contact area in the JKR contact, with a height of the order

h¤ D

Á
RW 2

a

E¤2

!1=3

: (4)

The Tabor number is thus the ratio of the neck height to the intermolecular spacing
". This number is also a measure of the magnitude of the elastic deformation, which
depends on the range of surface forces [13]; thus, contact bodies with small Tabor
number are easier to adhere to each other. Subsequently Muller et al. [14] performed
a complete numerical solution in terms of surface forces rather than surface energy,
and con� rmed that the Tabor number (¹) did indeed govern the transition from
Bradley model to JKR model [14].

For small ¹ (less than say 0.1) elastic deformation is negligible and the Bradley
analysis provides a good approximation; for large ¹ (greater than say 5) the JKR
theory is applicable [13]. The numerical analysis by Greenwood [15] shows that
the load-approach curves become S-shaped for ¹ values greater than one, leading
to jumps in and out of contact. It is pointed out by Muller et al. [14] that the JKR
equations describe the behavior well for values of ¹ of 3 or more. To the authors’
knowledge, there is no general agreement that the JKR theory is valid for ¹ > 3 or
¹ > 5.

A map (as shown in Fig. 5) for the contact of elastic spheres was constructed by
Johnson and Greenwood [16]. Such map permits contact model selection based
on the material properties [17, 18]. This map is also called ‘adhesion map’ [17].
It is noted that adhesion between elastic surfaces can be expressed in terms of two
dimensionless parameters: Tabor number ¹ (or elasticity parameter ¸ D 1:16¹) and
NP , which expresses the ratio of the external load to the magnitude of the adhesion

force.
There is no agreement on the best form for Tabor number [15], so a conversion

factors are given in Table 1. Estimated values of elasticity parameter (¸) from a few
published experiments are given in Table 2 [17].
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Figure 5. Map of the elastic behavior of bodies. NP is the ratio between the total load and the
adhesion part of the load. When adhesion is negligible, the bodies fall in the Hertz limit. ±1 is
the elastic compression, and h0 is the equilibrium distance. When ±1 ¿ h0, the bodies are rigid
and follow Bradley theory. ±0 is the deformation due to adhesion. When the adhesion is small the
behavior of materials is described by the Derjaguin, Muller and Toporov (DMT) theory [19], whilst
the JKR theory predicts the behavior of highly adhesive bodies. The Maugis theory [20] (also called
Maugis– Dugdale theory) � ts the intermediate region, Dugdale potential is used in the Maugis theory
to model the separation energy of a single asperity contact [21].

Table 1.
Conversion table for Tabor number

Symbol and equation Conversion References

¹ D
Á

RW 2
a

E¤2"3

! 1
3

[12, 14]

¹T D
Á

6¼2RW2
a

E¤2"3

! 1
3

¹T D 3:898¹ [13]

¹D D
32

3¼

Á
2RW 2

a

¼E¤2"3

! 1
3

¹D D 2:921¹ [13]

¸ D
Á

9

2¼

R¾ 3
0

E¤2Wa

! 1
3

; ¾0 D 16

9
p

3

Wa

"
¸ D 1:157¹ [18]

¸0 D
Wa

2E¤

Á
R

"3

! 1
2

¸0 D 0:5¹3=2 [20]
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Table 2.
Estimates of elasticity parameter ¸ [17]

Material system ¸

Polyurethane sphere with glass substrate [22] 103

Two mica surfaces in contact using Surface Force Apparatus [23] 50
8 ¹m diameter pentaerythrite (PET) mono� laments in contact [24] 12
1.0 ¹m diameter carbon particles in contact 0.5–1.5
Platinum-coated AFM tip with mica in UHV [25] 0.8
Si AFM tip with NbSe2 in UHV [26] 0.2–0.3

For adhesion between bodies of the same material, Wa; E¤ and " are � xed, and as
a result, Tabor number in equation (3) scales as

¹ » R1=3: (5)

Equation (5) illustrates that the smaller the equivalent sphere radius, the easier the
two bodies will adhere to each other. For the same equivalent radius R; ¹ (or ¸) is
small for hard materials and large for soft materials.

2.2. Surface roughness and adhesion parameter

At microscale, no surface used in MEMS structures can be regarded as being
smooth. The resistance to motion offered by rough surfaces is larger than that given
by the equations for a smooth surface. On the other hand, the roughness plays a
major role in preventing adhesion or stiction [27].

To study the relative importance of surface roughness, a dimensionless number,
termed roughness ratio, is introduced as follows

4 D
¾

L
; (6)

where ¾ is the characteristic dimension of the asperities on the rough surface (e.g.
the standard deviation of the distribution of asperity heights), L is the characteristic
dimension of a microstructure contacting the asperities. In the study of nano/micro-
tribology, L can be considered the radius of curvature of the asperity R, or,
alternatively, as the correlation distance between asperities. It should be pointed
out that roughness ratio has been widely used in � uid dynamics to determine the
in� uence of wall roughness on turbulence [28].

Another governing dimensionless number, called adhesion parameter µ , was
introduced by Fuller and Tabor [29] governing the adhesion between a rough and a
smooth surface

µ D
E¤

Wa

r
¾ 3

R
; (7)

where ¾ is the standard deviation of the distribution of asperity heights, and R is
the radius of curvature of the asperity tips. The adhesion parameter represents the
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statistical average of the competition between the compressive forces exerted by the
higher asperities, which tend to separate the surfaces and the adhesion between the
lower asperities, which hold the surfaces together. When the adhesion parameter is
small the adhesion dominates and the adhesion is high; as the surface roughness,
and hence the adhesion parameter, increases the high asperities push the surfaces
apart and the adhesion is reduced. Using the roughness ratio in equation (6), the
adhesion parameter in equation (7) can be recast as (remembering that L can be
considered as R)

µ D
E¤¾

Wa
41=2: (8)

Using the adhesion parameter µ as a measure, three kinds of wafer contacts can
be identi� ed in direct wafer bonding with respect to their bondability [30], viz., the
nonbonding regime (µ > 12), the bonding regime (µ 6 1), and the transition regime
(1 < µ < 12).

2.3. Adhesion of microstructures to the substrate

2.3.1. Peel number. To study the adhesion of movable MEMS microstructures
to the substrate, a dimensionless number, termed peel number, was proposed by
Mastrangelo and Hsu in [31]. The peel number, NP, is the ratio of elastic strain
energy stored in the deformed microstructure to the work of adhesion between the
microstructure and the substrate. If NP > 1, the restored elastic strain energy is
greater than the work of adhesion, and the microstructure will not adhere to the
substrate. If, on the other hand, NP 6 1, the deformed microstructure does not have
enough energy to overcome the adhesion between the beam and the substrate.

For a long slender cantilever of thickness t and elastic modulus E suspended at a
distance h from the substrate, illustrated in Fig. 6a, the peel number is [31]

NP D
3Et3h2

2s4Wa
; (9)

where s is the crack length, and again Wa is the work of adhesion between the
cantilever and the substrate. For a short cantilever beam with just its tip adhered to
the substrate, shown in Fig. 6b, the corresponding peel number is [31]

NP D 3Et3h2

8L4Wa
: (10)

For a doubly clamped beam, and suspended square and circular plates, the residual
stress, ¾R, must be considered, and their peel numbers are [31]

NP D
128Et3h2

5L4Wa

"
1 C 4¾RL2

21Et2
C 256

2205

³
h

t

´2
#

(doubly clamped beam); (11)
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Figure 6. (a) S-shaped cantilever adhered to the substrate over a distance d ; (b) arc-shaped cantilever
adhered to the substrate only very near its tip [8].

NP D 186Et3h2

.1 ¡ º2/w4Wa

"
1 C 27.1 ¡ º2/¾Rw2

310Et2
C 12

31

³
h

t

´2
#

(suspended square plate); (12)

NP D
40Et3h2

3.1 ¡ º2/R4
PWa

"

1 C 51.1 ¡ º2/¾RR2
P

160Et2

#

(suspended circular plate); (13)

where º is Poisson’s ratio, L; w and RP are the length of the doubly clamped beam,
width of the square plate and radius of the circular plate, respectively.

The maximum dimensions of the microstructures (length of cantilever or doubly
clamped beam, width of square plate, and radius of circular plate) that will not
stick to the substrate can be obtained from equations (10)– (13) using the threshold
condition NP D 1, i.e. the stored elastic strain energy is equal to the adhesion. From
equation (10), the maximum cantilever length that will not adhere to the substrate
can be determined as

Lmax D

Á
3Et3h2

8Wa

!1=4

: (14)

From equations (11)– (13), the maximum length, width and radius of the � xed-� xed
beam, square plate and circular plate are expressed in the same form as follows

Lmax; wmax; .RP/max D
Á

b C
p

b2 C 4c

2

!1=2

: (15)

The corresponding values of b and c in equation (15) for different microstructures
are presented in Table 3.
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Table 3.
Coef� cients in equation (15) for different microstructures

Microstructure b c

Doubly clamped beam
512

105

¾Rh2t

Wa

128

5

"

1 C
256

2205

³
h

t

²2
#

Et 3h2

Wa

Square plate
5022
301

¾Rh2t

Wa

"
1 C 12

31

³
h

t

´2
#

186Et 3h2

.1 ¡ º2/Wa

Circular plate
17
4

¾Rh2t

Wa

40Et 3h2

3.1 ¡ º2/Wa

2.3.2. In� uence of surface roughness on adhesion of microstructures. For sim-
plicity and without loss of generality, we consider the elastic contact of a smooth
surface and a rough surface (illustrated in Fig. 7). The surface roughness is repre-
sented by asperities, which are modeled as spherical caps with the same radius of
curvature R, and the heights of these asperities obey the Gaussian distribution.

Suppose the asperity density, de� ned as the number of asperities per unit area, is
N , then the number of asperities per unit area in contact with the smooth surface is

n D N

1Z

d

’.z/ dz; (16)

where d is the separation of the smooth plane with respect to the reference plane of
mean asperity height. If the peak height z of asperities above the mean line has a
Gaussian distribution ’.z/, one has

’.z/ D 1p
2¼¾

exp

³
¡

z2

2¾ 2

´
: (17)

The probability that an asperity has a height between z and z C dz above the plane
de� ned by the mean asperity height is ’.z/ dz.

Since silicon has a high elastic modulus, the DMT model [19] is adopted here.
The total compressive load per unit area is given by

P D
ENR1=2

p
2¼¾

1Z

d

.z ¡ d/3=2 exp

³
¡

z2

2¾ 2

´
dz ¡

2¼WaNRp
2¼¾

1Z

d

exp

³
¡

z2

2¾ 2

´
dz:

(18)
The maximum extension of a single asperity when peeling takes place is

±C D
1

3R

³
3RPC

E

´2=3

; (19)
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Figure 7. Microscale representationof elastic contact between smooth and randomly rough surfaces.

and the adhesion parameter is given by µ D E¾ 3=2=.R1=2Wa/ D .¾=±C/3=2.
Introducing dimensionless variables s D d=¾ and x D z=¾ , equation (18) is then
transformed to a dimensionless form as follows [30]

P ¤ D
P

Wa=¾

D RN¾

"
4µ

3
p

2¼

1Z

s

.z ¡ s/3=2 exp

³
¡

x2

2

´
dx ¡

p
2¼

1Z

s

exp

³
¡

x2

2

´
dx

#
:

(20)

The equilibrium separation se can be determined by setting P ¤ D 0. The
equilibrium separation is the distance where the stored strain energy in the MEMS
structure and the adhesion energy are balanced.

The mechanical work needed for separating two bonded surfaces from equilib-
rium separation to in� nity is

U 0
Sp D

1Z

se

P ds: (21)

The dimensionless separation work is then recast into the form

U ¤ D
U 0

Sp

Wa
D RN¾

1Z

se

"
4µ

3
p

2¼

1Z

s

.x ¡ s/3=2 exp

³
¡

x2

2

´
dx

¡
p

2¼

1Z

s

exp

³
¡

x2

2

´
dx

#

ds: (22)

It is noted that for an actual surface the following relation exists

¾RN »D C; (23)

where the value of constant C is between 0.05 and 0.1 [27, 30].
It is seen from equations (20) and (23) that the effective adhesion, W 0

C, considering
the surface roughness is given by

W 0
C D f .µ/Wa; (24)
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where

f .µ/ D C

1Z

se

"
4µ

3
p

2¼

1Z

s

.x ¡ s/3=2 exp

³
¡

x2

2

´
dx ¡

p
2¼

1Z

s

exp

³
¡

x2

2

´
dx

#

ds;

(25)
is a dimensionless roughness function re� ecting the in� uence of surface roughness
on adhesion (Fig. 8).

Consider the adhesion of an S-shaped cantilever beam (illustrated in Fig. 6a) with
a rough substrate. The detachment energy of the cantilever from the substrate is

US D w.L ¡ s/W 0
C D w.L ¡ s/f .µ /Wa;

and the elastic strain energy is

UE D
EI

2

sZ

0

³
d2u

dx2

´2

dx D
6EIh2

s3
:

The corresponding peel number for cantilever beam adhesion to a rough surface is
determined by the equilibrium condition

d.US C UE/

ds
D 0

as

NNP D
NP

f .µ/
; (26)

where NP is the peel number for smooth contact (equation (9) or equation (10)),
NNP is the peel number considering the rough contact, and f .µ/ is the dimensionless

roughness function de� ned in equation (25). Equation (26) indicates [32] that the
adhesion of a cantilever beam with a rough substrate is reduced with increasing
adhesion parameter, µ . The modi� cation of peel number for doubly clamped beam,
and suspended square and circular plates with surface roughness can be done in the
same manner. The design parameters in equations (14) and (15) should be modi� ed
accordingly, for example, the maximum cantilever beam length that will not adhere
to the substrate can be modi� ed to

L0
max D

³
3Et3h2

8Waf .µ/

´1=4

:

The difference between L0
max and Lmax in equation (14) is f .µ/. Noticing the fact

that the dimensionless roughness function is less than 1 by referring to Fig. 8, then
L0

max is always larger than Lmax.
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Figure 8. In� uence of adhesion parameter on the dimensionless roughness function f .µ/, which
decreases monotonically with the adhesion parameter µ [30].

2.4. Adhesion of rough surfaces with fractal geometry

Most of the literature on rough surfaces assumes that the height distributions are
Gaussian, which is too restrictive for many important applications of MEMS. As an
illustration, Fig. 9a shows the Atomic Force Microscope (AFM) pro� le of the rough
surface of Single Crystal Silicon (SCS) etched by KOH solution. The height of the
surface asperities (shown in Fig. 9b) does not obey Gaussian distribution.

A model developed by Chow [33] describes the adhesion between deformable
fractal surfaces with distribution of asperity heights as

Ã.z/ D Ã0 exp

µ
¡®

± z

¾

²1=®
¶
; 0 < ® 6 1; (27)

where ® is the roughness exponent, ¾ is the standard deviation of the asperity
heights, and

Ã0 D

"
¾

1Z

0

exp
¡
¡®u1=®

¢
du

#¡1

D
1

¾®1¡®0.®/
; (28)

where 0 is the gamma function. When ® D 1=2, one obtains the Gaussian
distribution function from the above two equations, and the exponential distribution
is obtained when ® D 1. The radius of curvature of asperities R is given as

1
R

D
2¾

» 2
; (29)

where » is the correlation length of the self-af� ne fractal surface parallel to the
surface. The relative adhesion (or pull-off force) for rough surfaces in contact can
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(a)

(b)

Figure 9. (a) Surface roughness pro� le of single crystal silicon (8 ¹m £ 8 ¹m) obtained by atomic
force microscope (AFM); (b) a cross-sectional analysis of part of the region of surface shown in (a),
showing roughness distribution determined by AFM.

be written as

P

Pc
D ¡

1
®1¡®0.®/

1Z

0

f
¡
j¯s ¡ 1j

¢
exp

¡
¡®s1=®

¢
ds; (30)
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Figure 10. In� uence of dimensionless parameter E¤¾ 2=.Wa»/ on relative adhesion in equation (30)
[33].

where Pc D .3=2/¼WaR, which is the same as that in equation (2). A dimensionless
parameter, ¯, is introduced

¯ D 2

³
4

3¼

E¤¾ 2

Wa»

´2=3

; (31)

and de� ned as the ratio between the standard deviation of the asperity heights
and the maximum extension of an asperity tip above its undeformed height before
separation occurs. The normalized force–displacement relationship is then

f .j¯s ¡ 1j/ D
»

¡1; for 0 6 j¯s ¡ 1j < 1;

j¯s ¡ 1j3=2 ¡ 2j¯s ¡ 1j3=4; for j¯s ¡ 1j > 1:
(32)

Equations (30)– (32) give quantitative predictions of the adhesion between de-
formable fractal surfaces (fractal dimension can be calculated using digital data
obtained from AFM [34]). Figure 10 shows the effect of roughness exponent ® and
the dimensionless number E¤¾ 2=.Wa»/ on the relative adhesion (equation (30)).

2.5. Adhesion by Casimir force

An important feature of the Casimir effect is that even though it is quantum in
nature, it predicts a force between macroscopic bodies [35]. This makes the
Casimir force relevant in MEMS and Nanoelectromechanical Systems (NEMS);
the Casimir force fundamentally in� uences the performance and yield of NEMS
devices [35]. Casimir force actuation for MEMS has been claimed recently by some
researchers [36].

The Casimir force has been associated with van der Waals forces. The following
comparison between the Casimir and van der Waals forces has been made by
Lifshitz [37]:
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Figure 11. Comparison of van der Waals and Casimir forces for thick gold � lms [38].

(1) van der Waals force: Approximation of perturbation theory applied to electro-
static interaction of two dipoles. This is valid only when separation a < ¸,
with ¸ being the retardation length, and corresponds to the transition between
the ground and the excited states of the atom. The attraction is proportional to
1=a3 and is affected by material properties.

(2) Casimir force: When the separation a » ¸ or a > ¸, retardation effects
become operative. The attraction is proportional to 1=a4 and it is not affected
by material properties.

Thus the Casimir forces are in effect at longer distances than the van der Waals
forces. Figure 11 shows calculated results of Casimir and van der Waals energies
for two thick � lms [38]:

EvdW.a/ D 0:28
Nh!p

16¼
p

2a2
; ECasimir.a/ D

¼ 2 Nhc

720a3
; (33)

where Nh is the Planck’s constant divided by 2¼; !p is the plasma frequency, a is the
gap height, and c is the speed of light. The crossing point in Fig. 11 is at »100 nm
gap height for !p D 1016 Hz. As the surfaces get closer together, van der Waals
forces and electron exchange interactions dominate.

The Casimir force acting on two parallel uncharged plates in vacuum is given
by [38, 39]

F .a/ D ¡
¼ 2

240
Nhc

a4
S; (34)

where S À a2 is the area of plates. Thus movable components in NEMS devices
fabricated at distances less than 100 nm between each other often stick together due
to strong Casimir force.

Buks and Roukes [40] measured the adhesion between gold surfaces using a
micromachined cantilever beam. The adhesion is caused by the Casimir force with
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Figure 12. Illustration of the Casimir effect between a rectangular membrane strip and the substrate.
w.x/ is the de� ection of the strip, q.x/ is the load, and w0 is the initial separation between the strip
and the substrate.

a gap of a few micrometers between the cantilever and the substrate. The Casimir
force for a small separation is reduced to the nonretarded van der Waals forces [41]
with interaction energy per unit area

U D ¡
A

12¼a2
; (35)

where A is the Hamaker constant. For the case of Au, it was found [40] that
equation (35) was a good approximation for the gap a < 2 nm and the Hamaker
constant was measured to be A D 4:4 £ 10¡19 J.

Serry et al. [42] studied the criterion for adhesion of a 2 ¹m thick highly doped
single crystal Si microfabricated rectangular membrane strip with a parallel � xed
surface in terms of Casimir force as shown in Fig. 12. Due to proximity to the rigid
� at surface S of the bottom plate, the strip is subject to the attractive Casimir force,
and de� ects into a curved shape. Numerical simulation in [42] showed that for
those systems which exhibited adhesion-free stable equilibrium state, the de� ection
at middle of the strip was always less than 0:48w0 , with w0 being the initial gap
between the rectangular strip and the parallel surface. However, Serry et al. [42] do
not discuss the building of the structure studied or how the de� ection of the strip
was measured.

2.6. Adhesion of carbon nanotubes to a substrate

Carbon nanotubes not only have remarkable electronic properties but also aston-
ishing mechanical properties. Thus carbon nanotubes are promising materials for
application in NEMS.

Because the characteristic dimension of carbon nanotubes is down to nanometers,
there is a strong adhesion between carbon nanotubes and substrates due to van
der Waals forces. The work of adhesion between a multi-walled carbon nanotube
(MWCNT) and SiO2 substrate, Wsn D 2

p
°SiO2 °g, is measured to be approximately
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Figure 13. (a) 3D AFM image showing adhesion of a carbon nanotube rope of 20 nm diameter to the
substrate; (b) measurement of the mechanical behavior of the rope loaded by AFM tip [44].

330 mJ/m2 [43], where °g is the surface energy of graphite and °SiO2 is the surface
energy of SiO2 substrate.

The elastic modulus of a carbon nanotube rope adhered to the polished alumina
ultra� ltation membrane (shown in Fig. 13a) has been measured [44] by AFM tip
loading (shown in Fig. 13b). Nanotubes occasionally lie over pores with most
of the tube in contact with the membrane surface, producing a suspended beam
con� guration at the nanoscale. The SWNT rope of 20 nm diameter suspends over a
200 nm pore. The AFM tip pushes the rope down towards the pore. It is noted that
the adhesion between the carbon nanotube rope and the substrate is strong enough
to endure the large deformation of the rope.

3. MICROSCALE PLASTIC ADHESION CONTACT THEORIES

3.1. Criterion for plastic deformation of microscale contact

Greenwood and Williamson proposed asperity contacts at plastic � ow in terms of
plasticity index [45], i.e.

Ã D
E¤

H

r
¾

R
; (36)

where E¤ is the equivalent Young’s modulus, 1=E¤ D .1 ¡ º2
1/=E1 C ..1 ¡

º2
2/=E2/; H is the indentation hardness of the material, ¾ is the standard deviation

of the distribution of asperity heights, and R is the radius of curvature of the asperity
tips, which are assumed to be spherical. The asperity will behave elastically when
Ã < 0:6, and plastic � ow will occur at the asperity when Ã > 1. For 0:6 < Ã < 1,
the contact will be elastoplastic. Hutchins [46] found that for metal surfaces, Ã was
in the range 0.1–100 [47]. Using the roughness ratio in equation (6), equation (36)
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can be rewritten as

Ã D
E¤

H

p
4: (37)

It should be noted that equations (36) and (37) are valid for isotropic microcon-
tacts (i.e. the contact area being circle); for an elliptical contact, the plasticity index
was modi� ed as follows [48]

9 D
¼=2p

E.e/K.e/

E¤

H

r
¾

Rm
; (38)

where e D
p

1 ¡ .a=b/2 is the eccentricity of the ellipse, a and b .a < b/ are
the semi-minor and semi-major radii of contact asperity, respectively, K.e/ and
E.e/ are complete elliptical integrals of the � rst and second kinds, respectively,
Rm D 2.1=Rx C 1=Ry/¡1 is the mean effective radius of curvature of asperities,
Rx and Ry are the effective radii of curvature in the principal x and y planes,
respectively. When a D b; E.0/ D K.0/ D ¼=2 and Rm D R, then equation (38)
can be reduced to equation (37). It should be noted that equation (38) can be
rewritten as

9 D
¼=2p

E.e/K.e/

E¤

H

p
4m; (39)

where 4m is the average roughness ratio.
A similar formula [49] for plasticity index was suggested by Onions and Archard

[50] as

9¤ D
E¤

H

¾

¯¤ ; (40)

where ¯¤ denotes the correlation distance between the asperities. One advantage of
equation (40) over equation (36) is that ¯¤ is easier to measure [51] than R. Setting
R D 2

p
¼.2:3¯¤/2=.9¾/ [52] we � nd using equation (36) that

9 D 0:699¤ : (41)

It should be noted that equations (36) and (41) are valid for ‘sphere-on-plane’
contact. The plasticity index for ‘cylinder-on-plane’ contact, 9c, has been suggested
recently by Zhao and Talke [53] as follows

9c D 9s; (42)

where

s D

"
2
p

2
¼

s

ln

³
¼p
e

E¤

H

´#¡1

(43)

is a shape coef� cient which is less than unity. The ‘cylinder-on-plane’ contact can
be classi� ed as: (1) largely elastic when 9c < 0:6; and (2) largely plastic when
9c > 1:0.
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To study the steady sliding wear behavior of asperities, a so-called ‘repeated
sliding plasticity index’ was de� ned by Kapoor et al. [54] as

9s D
E¤

ps

r
¾

R
; (44)

where ps is the shakedown limit load [54, 55]. Equation (44) can be written as

9s D
E¤

ps

p
4; (45)

where 4 D ¾=R is the roughness ratio (equation (6)).
Experimental veri� cation of the Greenwood–Williamson model [45] was carried

out by Handzel–Powierza et al. [56]. Good agreement was found between the
experimental and theoretical results within the range of elastic deformation of the
surface roughness and for quasi-isotropic surfaces. The Greenwood–Williamson
model does not show agreement with experimental results for loads exceeding
approximately half of the yield-point load.

3.2. Microscale plastic adhesion contact theory

By using the von Mises yield criterion, Maugis and Pollock [57] derived the
approximate plastic initiation condition at the central point of the contact area
between a semi-sphere and a semi-in� nite plane (shown in Fig. 14) as

P C 1:5Sf D 1:1¼a2¾Y; (46)

where P is the applied load, ¾Y is the yield stress, a is the contact radius, and the
surface force Sf is

Sf D
r

3

2
¼WaE¤a3: (47)

The expression for fully plastic contact given by Chowdhury and Pollock [58] is

P C 2¼WaR D ¼a2H; (48)

where H is the hardness of the softer material, R is the radius of curvature of the
asperities, and a is the radius of contact area.

Consider the contact between a rough deformable surface and a rigid smooth
surface. If the asperity peak height z above the mean line has an exponential
distribution Á.z/, we have [58]

Á.z/ D
N

¾
exp

±
¡

z

¾

²
; (49)

where N is the number of asperities per unit area, and ¾ is the standard deviation of
the asperity heights. The condition for fully plastic deformation of an asperity is

P

Ar
C Wa

¾
D H; (50)
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Figure 14. Contact between a semi-sphere and a semi-in� nite plane. Contact circle with radius a is
achieved under the applied force P and surface force Sf.

where Ar D 2¼nR¾ is the real contact area, R is the radius of curvature of
asperities, and n is the number of asperities actually making contact per unit
area [58]. It is interesting to note that fully plastic deformation of the asperity
occurs in the absence of external applied load provided that

¾ D
Wa

H
: (51)

4. DISCUSSION

Because a large surface-to-volume ratio is a distinctive attribute of a micromechan-
ical structure, adhesion (stiction) in both MEMS and NEMS has caused great con-
cerns in both scienti� c and industrial communities [59, 60]. Therefore, a new � eld
of mechanics, which can be called micro /nano mechanics, has been introduced [61].
Micro/nano contact mechanics is one of the main components of this new � eld.
Though continuum adhesion contact mechanics is comparatively well understood,
a systematic framework for micro /nano contact mechanics is still lacking.

Plasticity index (9) can be used as a criterion for plastic yielding of a single
asperity. However, surface energy is not considered for single asperity contact,
and it should be noted that surface effect is very important at micro /nano scales
because of large surface-to-volume ratio. As a result, equations (36)– (45) should
be modi� ed. For an illustration of the importance of adhesion, we consider the
indentation of a thin � lm with a rigid sphere as illustrated in Fig. 14. The classical
Hertz theory predicts the contact radius to be

a3 D
3P R.1 ¡ º2/

4E
; (52)



540 Y.-P. Zhao et al.

Figure 15. In� uence of adhesion Wa, and applied load on nanoindentation stiffness ratio [62]. The
tip radius is R D 1 ¹m.

where P is the applied load, R is the asperity radius of curvature, E and º are the
elastic modulus and Poisson’s ratio of the � lm, respectively. The contact stiffness
SH using Hertz contact theory is

SH D 2
E

1 ¡ º2

³
3P R.1 ¡ º2/

4E

´1=3

: (53)

If, on the other hand, the JKR model is used, the contact radius produced by both
pressure and adhesion is

a3 D
3P R.1 ¡ º2/

4E

µ
P C 3¼WaR C

p
6¼WaRP C .3¼WaR/2

¶
; (54)

which leads to the contact stiffness SJKR

SJKR D 2
E

1 ¡ º2

(
3P R.1 ¡ º2/

4E

µ
P C 3¼WaR C

p
6¼WaRP C .3¼WaR/2

¶)1=3

:

(55)
The ratio of equations (55) and (53) is

SJKR

SH
D

(
1 C 3¼WaR

P
C

s
6¼WaR

P
C

³
3¼WaR

P

´2
)1=3

: (56)

Equation (56) shows that the stiffness ratio SJKR=SH increases with Wa and with
decreasing applied load (shown in Fig. 15). In Fig. 15, the nanoindentation tip
radius is 1 ¹m, and the adhesion between the tip and � lm is 100 mJ/m2. It is seen
from Fig. 15 that the indentation is controlled by the adhesion energy when the
load is less than 10¡3 mN [62]. It should be noted that a systematic study is still
lacking on the effect of adhesion on nanoindentation test results with other kinds of
tip shapes (such as Berkovich, cube corner, etc.), and on plastic � ow of asperities.
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The size effect is another important issue at micro /nano scale. The size
effect of the elastic adhesion contact is re� ected by the Tabor number (shown in
equation (5)); therefore, for a given material, the horizontal coordinate in Fig. 5
is equivalent to length scale. Adhesion effect will be important for smaller bodies
and lighter external loads. For microscale plastic contact, it is interesting that the
measured hardness of crystals often exhibits indentation depth effect (or plastic
strain gradient effect) when the indentation depth is on the order of micrometer
or less [63]. Equation (50) is now modi� ed to [64]

P

Ar
C Wa

¾
D H

r
1 C h0

h
; (57)

where h0 is the reference indentation depth [63] and h is the actual indentation
depth. Indentation depth (or plastic strain gradient) effect is demonstrated by
equation (57): the right-hand side value in equation (57) will increase with the
decrease of the indentation depth.

The plastic index, 9 , which de� nes the extent of plastic deformation in elastic –
plastic asperity contacts, appears to increase without limit as the sampling length
is reduced, showing that the smaller scale asperities will always deform plasti-
cally [65]. This scale effect and the experimental results strongly indicate that
fractal description of the rough surface and elastic –plastic deformation of asper-
ities would be more appropriate [65]. A fractal model of elastic – plastic contacts
between rough surfaces has been developed [66].

The elastic contact of rough surfaces has been studied for Hertzian contacts
by Greenwood and Williamson [45] and for JKR contacts [11] by Fuller and
Tabor [29]. Maugis [67] extended the DMT theory to elastic contacts of rough
surfaces. DMT contacts include the extraload due to adhesion around the contacts.
This extraload acts in addition to the applied load and thus increases the friction
force [67].

5. CONCLUSION

A review is presented of microscale elastic and elastoplastic adhesion contact
mechanics in MEMS and NEMS. Special emphasis is placed on discussion of some
governing dimensionless parameters such as Tabor number, adhesion parameter,
and peel number. Peel number is modi� ed for the case of contact between rough
surfaces. Roughness ratio, which is widely used in � uid mechanics, is introduced to
characterize the relative importance of surface roughness for microscale adhesion
contact in MEMS. Three kinds of asperity height distributions are discussed:
Gaussian, fractal and exponential distributions. Both Gaussian and exponential
distributions are shown to be special cases of fractal distribution. Casimir force
induced adhesion in NEMS, and adhesion of carbon nanotubes with the substrate
are also discussed. Finally, microscale plastic adhesion contact theory is brie� y
reviewed, and it is shown that the dimensionless number, the plasticity index in
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various forms, can be expressed by the roughness ratio. Therefore, roughness
ratio is an important dimensionless number to characterize the in� uence of surface
asperities on mechanical behavior of MEMS.

The outstanding issues in the � eld include the micromechanical process of making
and breaking of adhesion contact, the MEMS structural members’ adhesion by
inertia forces (as shown in Fig. 4), the coupling of physical (e.g. humidity, thermal,
electromagnetic, mechanical, etc.) interactions, the trans-scale (nano-micro-macro)
mechanisms of adhesion contact, adhesion hysteresis, as well as new effective
ways of adhesion control in MEMS/NEMS. Work addressing these issues will help
to understand the fundamental physics of microscale adhesion and the emerging
concepts of nanoscale adhesion.
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APPENDIX

List of symbols
a contact radius, separation of two plates
a; b semi-minor and semi-major radii of elliptical contact
A Hamaker constant
Ar real contact area
b; c parameters in equation (15) and Table 3
c speed of light
C constant in equation (23)
d separation of smooth plane with respect to reference plane of

mean asperity height
e eccentricity of ellipse
E Young’s modulus
E¤ equivalent Young’s modulus
E.e/ complete elliptical integral of the second kind
ECasimir Casimir energy
EvdW van der Waals energy
f .µ/ dimensionless roughness function de� ned in equation (25)
F .a/ Casimir force acting between two parallel plates in vacuum
h suspension height of cantilever beam from substrate, indenta-

tion depth
h0 equilibrium distance in Fig. 5, reference indentation depth in

equation (57)
h¤ neck height in the JKR model in equation (4)
H hardness of material
K.e/ complete elliptical integral of the � rst kind
L characteristic length, length of cantilever beam or doubly

clamped beam
Lmax maximum length of cantilever beam that will not adhere to

substrate
n number of asperities per unit area in contact with smooth

surface
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N number of asperities per unit area
NP peel number
NNP peel number for rough contact

ps shakedown limit load
P applied load
Pc pull-off force
NP ratio between total load and adhesion part of load

P ¤ dimensionless total compressive load per unit area
q.x/ load in Fig. 12
R radius of curvature, equivalent radius
Rm mean effective radius of curvature of asperities
RP radius of circular plate
.RP/max maximum radius of circular plate that will not adhere to

substrate
Rx; Ry effective radii of curvature in the principal x and y planes
s crack length, s D d=¾ , shape coef� cient in equation (43)
se equilibrium separation
S area of plates
Sf surface force
SH contact stiffness using Hertz contact theory
SJKR contact stiffness using JKR contact theory
t thickness of cantilever beam
u.x/ de� ection of cantilever beam in Fig. 6
U interaction energy of van der Waals force per unit area
UE; US elastic energy and detachment energy of cantilever beam
U 0

Sp mechanical work for separating two bonded surfaces from
equilibrium to in� nity

w width of square plate
w0 initial separation between strip and substrate in Fig. 12
w.x/ de� ection of strip in Fig. 12
wmax maximum of square plate that will not adhere to substrate
Wa Dupré adhesion or work of adhesion
W 0

C effective adhesion considering surface roughness
Wsn work of adhesion between MWCNT and SiO2 substrate
x z=¾

® roughness exponent
¯ dimensionless parameter in equation (31)
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¯¤ correlation distance between asperities
° surface energy
°g surface energy of graphite
°SiO2 surface energy of SiO2 substrate
0 gamma function
±0; ±1 deformation due to adhesion, elastic compression
±c maximum extension of asperity
" interatomic spacing
µ adhesion parameter
¸ elasticity parameter (¸ D 1:157¹), retardation length

¸0 0:5¹3=2

¹ Tabor number
¹D 2:921¹

¹T 3:898¹

º Poisson’s ratio
» correlation length of the self-af� ne fractal surface
4 roughness ratio de� ned in equation (6)
4m average roughness ratio
¾ standard deviation of the distribution of asperity heights
¾0 parameter de� ned in Table 1
¾R residual stress
¾Y yield stress
’.z/ Gaussian distribution
Á.z/ exponential distribution
Ã.z/ asperity height distribution of a fractal surface
Ã0 parameter de� ned in equation (28)
9 plasticity index
9¤ plasticity index suggested by Onions and Archard in equa-

tion (40)
9c plasticity index for ‘cylinder-on-plane’ contact
9s repeated sliding plasticity index
!p plasma frequency

Nh Planck’s constant divided by 2¼


